
On the Differences Between Correct Student Solutions

Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, Se-Young Yu
Dept. of Computer Science
The University of Auckland

Auckland, New Zealand
{andrew,paul,diana,ewan,seyoung}@cs.auckland.ac.nz

ABSTRACT
We know that students solve problems in different ways, but
we know little about the kinds of variation, or the degree of
variation between these student generated solutions. In this
paper, we propose a taxonomy that classifies the variation
between correct student solutions in objective terms, and we
show how the application of the taxonomy provides instruc-
tors with additional insight about the differences between
student solutions. This taxonomy may be used to inform
instructors in selecting examples of code for teaching pur-
poses, and provides the possibility of automatically applying
the taxonomy to existing solution sets.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, Human Factors

Keywords
variation, taxonomy, novice, programming, syntax

1. INTRODUCTION
Examples are a critically important part of learning to

program. Almost all instructors of introductory program-
ming courses use examples to illustrate the use of syntax
to solve simple programming problems, and numerous text-
books emphasise the importance of examples in the learning
process (for example, see [16]).

One common use of examples is to illustrate the different
approaches (and/or programming styles) that may be used
to solve a given problem. This process of asking students to
consider the differences between solutions is characteristic
of pedagogies such as peer review [15], and is underpinned
by variation theory [10, 14] and social cognitive theory [3].

Advocates of pedagogies that involve reviewing of peer
generated code claim numerous benefits for students, includ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’13, July 1–3, 2013, Canterbury, England, UK.
Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

ing the development of self-assessment skills, critical think-
ing, communication skills and content knowledge [13, 7]. We
believe that exposing students to a variety of solutions is
particularly important in programming, since students must
learn to read and understand code produced by others if they
are to be successful.

However, if there are many solutions, it is not clear which
of them to expose to students. Ideally we would like to
identify a small number of solutions that usefully convey
the variation that is possible while still being correct. But
to do so, we need a good understanding of what variety is
possible. Unfortunately, there are few reports that focus
on the nature of the variation between different successful
student-generated solutions. Studies conducted in this area
have tended to focus on variation in high-level concepts, such
as novice programmers’ conceptions of “object” and “class”
[5], rather than characterising the variation in syntax and
semantics present in different student solutions. A system-
atic way of classifying solutions that captured their variation
would help identify interesting solutions to use as examples.

Categorizing correct student solutions may provide a num-
ber of additional benefits to teachers, students and develop-
ers of automated learning systems. It may provide instruc-
tors with some insight into the programming choices made
by their students. This opportunity to gain feedback about
how students are solving problems is invaluable, since “the
most powerful feedback occurs when feedback is to the in-
structor: about how well they have taught, who they taught
well, what they have or have not taught well” [6]. Students
may be provided with objective feedback about how their
solution relates to other solutions submitted by their peers.
Automated learning systems such as those involving peer
review [9] could use this categorisation to determine which
learning resources should be distributed to a student to en-
sure exposure to a variety of solution types.

Numerous previous studies have investigated how students
solve simple programming problems [12, 11]. Taxonomies
such as SOLO have been used to categorize the degree to
which solutions are correct, in order to tease out the differ-
ent cognitive skills involved in programming [8], but these
studies have focused on the correctness of code rather than
trying to capture the differences between correct solutions.

In this paper, we examine a set of successful student so-
lutions to simple programming problems and propose a tax-
onomy that classifies the variations between the code used
in those solutions (i.e. the relationships between different
solutions to the same problem). Additionally, we apply the
top level of this taxonomy to categorise a set of solutions
submitted by novice programmers.

We investigate only “correct” solutions that have passed
a set of test cases defined for each problem. That is, for

each problem we have a set of solutions that are function-
ally equivalent with respect to the test cases. Each student
solution consists of a single method, so the taxonomy pro-
posed here is intended to categorize only variation of code
within methods and does not necessarily capture variation
in the design of larger systems.

The major contributions of this paper are:
• describing a taxonomy that captures the variation be-

tween correct student solutions, and
• showing the potential benefits of automatically apply-

ing the top level of the taxonomy to a real data set.

2. METHODOLOGY
Code can vary in many ways, some possibly important

to helping understand what variation is interesting, some
probably not. Coming up with a systematic classification of
code variation that can be objectively applied and is simple
enough to be automated has been a challenge.

We began by examining the solutions to a set of short pro-
gramming exercises in Java developed by students in a sec-
ond programming course. Each exercise required students to
complete a method that fulfilled the problem specification.
The methods were tested for correctness using an automated
test suite and students were given feedback on the test cases
they passed or failed. Students were able to keep submitting
until their code passed all the tests.

While we expected to see variation, we were surprised by
the amount of variation we saw to one of the simplest prob-
lem specifications, shown in Figure 1.

Write a method that will take two ints as parame-
ters and return their sum. The method header has
been provided below:

int sumTwoInts(int a , int b)

Figure 1: The SumTwoInts method.

Even with this very simple exercise, we observed varia-
tions of code that involved use of parentheses, use of white
space, variable declaration and initialization, simple variable
declaration, choice of identifier names, and use of assignment
statements. Figure 2 illustrates some of the observed varia-
tion among student solutions.

return a + b ; return (a + b) ;

return a+b ; return (a+b) ;

int resu l t = a + b ;
return resu l t ;

int resu l t = (a + b) ;
return resu l t ;

int c ;
c = a + b ;
return c ;

int sum;
sum = (a + b) ;
return sum;

int resu l t ;
return (resu l t = a + b) ;

Figure 2: Examples of student solutions to a simple
programming exercise.

To formally analyse the solutions, we used a process known
as thematic analysis [4] to identify patterns in the data and
organize those patterns into themes. Braun and Clarke [4]
describe six phases of thematic analysis as follows:

1. Familiarizing yourself with the data

2. Generating initial codes
3. Searching for themes
4. Reviewing themes
5. Defining and naming themes
6. Producing the report
Initially, we read through the set of student solutions,

making notes of any initial observations and discussing par-
ticular examples in detail. After familiarization with the
data, one of the researchers generated codes that described
various features of the solutions. The process of coding
started with the first student solution, and progressed by
adding codes as new features were identified in subsequent
solutions. The codes were distributed to other researchers
and checked against a sample of student solutions for con-
tent validity. After the entire set of codes was generated, the
data was rechecked for consistency and related codes were
grouped together to identify a set of themes. These themes
were refined and described in terms of objective compiler
concepts to reduce the level of ambiguity between categories.

3. REVIEW OF COMPILER CONCEPTS
We found that the themes we identified were most clearly

defined in terms of some standard compiler concepts, which
we now review. The first step in the compilation process
is typically to represent the source code as a sequence of
tokens. A token is an atomic unit of the language, for exam-
ple the operator >= or the identifier cokesPurchased. The
token stream will usually remove all information regarding
formatting (use of whitespace, layout, and so on).

The next step is to parse the token stream according to
the language grammar. The grammar generally refers to
token classes rather than individual tokens, so that it will
treat cokesPurchased and count as both members of the
token class IDENTIFIER.

Some compilers operations (such as optimisation and other
forms of analysis) represent the code as a control flow graph.
This is a graph in which each vertex is a basic block, and
edges between vertices indicate control flow. A basic block
is a sequence of statements with a single entry point at the
beginning (i.e. there are no jumps to anything other than
the first statement), and a single exit point (no possibility
of control to leave other than the last statement). More de-
tails are available in any standard text on compilers, such
as Aho et al.[1].

4. TAXONOMY
We characterise the variation observed in the data as be-

longing to three distinct themes: Structure, Syntax and Pre-
sentation. In this taxonomy, the themes are hierarchical in
nature. Structural variation is the highest level of variation,
followed by Syntax, with Presentation being the lowest level.
If two solutions have the same structure, then we may con-
sider how the syntax varies between the two solutions. If
two solutions have the same structure and the same syn-
tax, then it is possible to consider how they might differ in
presentation.

For each theme, we illustrate the variation with examples
of solutions to an exercise in which students were asked to
calculate the number of free Coke cans awarded for a given
purchase during a promotion. The rules of the promotion
state that for every 20 cans purchased, 3 are given away
for free. The method signature provided to students when
solving this exercise is shown below:

int freeCoke (int cokesPurchased)

4.1 Variation of structure
We define the structure of the code as being expressed

by the control flow graph of the code. Solutions to a given
problem that have different control flow graphs illustrate
structural variation.

An example of this structural variation is shown in Figures
3(a) and 3(b). In Figure 3(a), the student has calculated and
returned the result in a single expression. In Figure 3(b),
the student has used a conditional statement to handle the
case when the input value is less than 20. Although this is
not strictly necessary as the integer division would evaluate
to 0 when the input value is less than 20, this does result in
a different structure to the solution in Figure 3(a).

return (cokesPurchased/20) ∗3;

(a) A simple solution to the freeCoke problem

i f (cokesPurchased < 20) {
return 0;

} else {
int coke = cokesPurchased/20;
return coke∗3;

}

(b) A more complex solution to freeCoke problem that uses
a conditional statement

Figure 3: Solutions (a) and (b) illustrate structural
variation because they have different control flow
graphs.

4.2 Variation of syntax (within blocks)
The second theme is the variation of code that occurs

within basic blocks (i.e. code with a single entry point, sin-
gle exit point, and no internal branching). We use the name
Syntax to characterize these sequences of tokens that occur
within basic blocks. We acknowledge that the term carries
other connotations, but we believe that the proposed taxon-
omy classifies variation between solutions at the appropriate
levels, and the term Syntax is adequate for characterising
the variation within blocks. In this taxonomy we only clas-
sify the variation of syntax between solutions that have the
same structure. As Figure 2 illustrates, even simple prob-
lems have numerous solutions with the same structure but
different code within the structure.

The code fragments shown in both Figures 4(a) and 4(b)
are examples of basic blocks, that is, series of sequential
statements without any branches. Although both blocks
exhibit the same structure, the approach taken in calculating
the result is different in each case. In Figure 4(a), the result
is calculated and returned in the same expression without
the use of separate variables. In Figure 4(b), two separate
variables are declared to store intermediate results, and the
return value is a single variable.

4.3 Variation of presentation
The third and final theme captures the variety of ways

that the code is presented. Two solutions that vary only in
presentation will have the same sequence of token classes,
even though the token values may vary. In other words,
presentation is about the use of whitespace, identifier names
and other superficial elements of style.

The code fragments shown in Figures 5(a) and 5(b) are
both basic blocks, and both feature the same token classes

return (cokesPurchased/20) ∗3;

(a) A simple solution to the freeCoke problem

int temp = cokesPurchased/20;
int numOfFreeCoke = temp∗3;
return numOfFreeCoke ;

(b) A solution that uses intermediary variables to calculate
the result

Figure 4: Solutions (a) and (b) illustrate variation
of syntax because they have the same structure, but
different statements within basic blocks.

in the same order. The only variation in these solutions are
the identifier names and the spacing used (a blank line is
included in Figure 5(b)).

int temp = cokesPurchased/20;
int numOfFreeCoke = temp∗3;
return numOfFreeCoke ;

(a) A solution that uses informative variable names

int f = cokesPurchased/20;
int f r ee = f ∗3;

return f r ee ;

(b) A solution that uses less informative variable names, and
contains a blank line

Figure 5: Solutions (a) and (b) illustrate variation
in presentation because they have the same syntax,
but the identifiers and code layout vary.

5. EVALUATION
In order to evaluate the feasibility of applying the pro-

posed taxonomy, we developed an Eclipse plugin to auto-
matically categorise solutions at the structural level. The
plugin generates a control flow graph for a target method
based on the open-source project Control Flow Graph Gen-
erator [2].

A collection of Java source files is accepted as input to be
analysed using this plugin. The plugin tool compares the
control flow graph of a given method within a Java source
file with each graph already generated. If a match is ob-
tained, then the analysed code joins the existing set with
the identical structure. However, if the control flow graph
doesn’t match any existing graph, then it becomes the first
entry of a new category. Once all solutions have been anal-
ysed, the plugin produces a summary of the categories, and
the source files that belong to each category.

We used this tool to analyse a new data set of solutions.
Students in a typical CS1 course were asked to produce so-
lutions to 10 simple exercises. The first 5 exercises were
designed to be straightforward, and may be solved with-
out the use of a loop. The second set of 5 exercises were
more challenging, with 4 of the 5 exercises (all except for
“magicNumbers”) requiring a loop to solve. Students were
only eligible to attempt the second set of 5 exercises if they

successfully completed (i.e. submitted a correct solution to)
all 5 of the first set of exercises. Table 1 lists all 10 exercises.

We generated the control flow graphs for each of the stu-
dent solutions to a given problem, and grouped the solutions
according to these graphs. That is, all the student solutions
that had the same structure were grouped together into a
single category.

6. RESULTS
Table 1 shows the results of classifying the student solu-

tions to the 10 exercises according to the structure the solu-
tion has. The exercises are ordered in increasing difficulty as
determined by the instructor (Paul Denny). The Np column
gives the total number of passing student solutions that have
been classified for the corresponding exercise. The Nc col-
umn gives the number of different categories into which the
passing solutions for the exercise have been classified. The
next 5 columns show the number of student solutions in the
5 most populous categories for the given exercise. Note that
the most popular category for one exercise is not necessarily
the most popular category for any other.

Over all passing solutions to the 10 exercises, there were
278 different categories. Of these 166 contained only one
solution. The most popular category (consisting of a single
block followed by a return statement) had 189 solutions.
The 5 most popular categories had 186, 106, 106, 102, and
76 solutions respectively.

Name Np Nc 5 Most Popular Cat.

replaceCharAtPos 186 19 134 33 2 2 1
productIsEven 208 16 55 43 32 28 25
swapEnds 183 58 19 16 14 11 11
containersNeeded 188 53 27 17 16 15 13
weeklyPay 179 58 18 12 11 11 10
countOdds 140 17 98 9 9 5 3
posOfValInArray 135 34 57 10 10 8 5
reverse 132 6 101 17 8 4 1
magicNumbers 138 53 30 16 9 7 5
sumValues 133 56 27 19 11 7 6

Table 1: Analysis of the variation in structure of
correct student solutions to 10 short programming
exercises.

The underlined numbers in Table 1 show the category that
the instructor’s solution was classified as. For “weeklyPay”,
the instructor’s solution was in the 17th most popular cat-
egory (with 5 student solutions). For “sumValues”, the in-
structor’s solution was in the 8th most popular (3 students).
For “magicNumbers”, the instructors solution was in one of
the 29 categories that had only one student solution.

Figure 6 shows the distribution across all categories (not
just the 5 most popular) for 3 exercises. The values plotted
are the proportion of student solutions in each category. To
show separation between the three curves, the largest value
for “reverse” (0.77) is omitted. The exercises chosen are
shown in bold type in Table 1.

7. DISCUSSION
Considerable differences in the distribution of category

sizes exist between exercises. The “reverse” exercise stands
out as having solutions with very few structural variations.
This exercise required students to return an array of inte-
gers in which the elements were in the reverse order to the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60

P
ro

po
rt

io
n

in
 c

at
eg

or
y

Category in order of decreasing population

productIsEven
weeklyPay

reverse

Figure 6: Number of different structural categories
for the product, weekly and reverse exercises

original input array. It is remarkable that there were only 6
variations of structure for this exercise, when some simpler
exercises exhibited more than 50 variations. The structure
of the most common solution to this exercise consisted of
a basic block (to create the new array), followed by a for
loop (to assign elements to the new array), followed by a
single statement to return the result. The next most com-
mon structure category, with 17 entries, did not include the
initialization block as it reversed the elements in place by
swapping pairs of elements working from the outer indices
towards the middle of the array, and then returning a refer-
ence to this modified array. Students were not required to
preserve the order of the elements in the input array, so this
is a perfectly valid solution to the problem.

At the other extreme, the “weeklyPay” exercise required
students to calculate the weekly pay of an employee with
an age-based pay-scale. The inputs to the exercise were the
number of normal hours worked (normalHrs), the number
of overtime hours worked (overtimeHrs) and the age (age)
of the worker. The actual wording of the question was as
follows:

The base pay rate for all workers is $15 per hour.
On top of the base rate, each worker over the age
of 20 earns an extra $1 per hour for every year
their age exceeds 20. So, for example, a worker
who is 25 years old, will receive a base pay rate of
15 + 5 = $20 per hour. However this additional,
age-based bonus is only valid up until the age of
40. So, for example, a 40 and a 45 year old will
earn the same base rate. Finally, any overtime
hours are paid at twice the base rate.

The instructor’s solution to this exercise, shown in Fig-
ure 7, had a very simple structure consisting of just a simple
block followed by a return statement. Of the 179 correct
solutions submitted to this exercise there were 58 distinct
structure variations. One student solution, which was in a
category of its own, is shown in Figure 8.

The tool used to collect the data for our study (CodeWrite
[5]) included a feature where students were able to view all
other successful submissions to an exercise once they had
made a successful submission of their own. In large classes,
each exercise may have many successful submissions associ-
ated with it, making it impractical to expect a student to

int base = 15 + Math.min(20 , Math.max(0 , age−20)) ;
return normalHrs ∗ base + 2 ∗ overtimeHrs ∗ base ;

Figure 7: The instructor’s solution to the
“weeklyPay” exercise

int money = 0;
int basePay = 15;

i f (age <= 20){
int normalPay = basePay ∗ normalHrs ;
int overtimePay = (2 ∗ basePay) ∗ overtimeHrs ;
money = normalPay + overtimePay ;

} else i f (age > 20 && age <= 40){
int olderBasePay = (age−20) + basePay ;
int normalPay = olderBasePay ∗ normalHrs ;
int overtimePay = (olderBasePay ∗ 2) ∗

overtimeHrs ;
money = normalPay + overtimePay ;

} else i f (age > 40){
int normalPay = (basePay + 20) ∗ normalHrs ;
int overtimePay = (2 ∗ (basePay +20)) ∗

overtimeHrs ;
money = normalPay + overtimePay ;

}
return money;

Figure 8: One student’s solution to the “weeklyPay”
exercise

view them all. One potential application of the taxonomy
presented here would be as a filter so that a given student
would not be shown two different solutions if there was no
variation between those solutions. The type of variation
permitted could be determined by selecting an appropriate
level of the hierarchy. Filtering at the highest level of the
hierarchy, the structure level, would remove solutions that
did not vary by structure. Taking an exercise such as “re-
placeCharAtPos” for example, this would reduce the number
of solutions a student would potentially see from 246 down
to 19.

Conversely, in the context of a marking activity in which
the set of class submissions are divided amongst multiple
markers, it might be preferable to reduce the structural vari-
ation in the code that a given marker is allocated in order
to simplify the grading process.

The taxonomy may also be of use to instructors who are
designing their own examples (possibly for discussion in class
or as the basis for questions on a test) as a way of help-
ing them think about the different kinds of variations that
are typical in student code. As an example, consider the
“sumValues()” function in which, depending on the value
of a boolean input (“positivesOnly”), either all of the ele-
ments or only the positive elements in the array (“values”)
should be summed. The instructor solution to this exercise,
given in Figure 9(a), uses a single loop and a single complex
condition. Students answering the same exercise were less
inclined to define complex boolean conditions. The most
common structure amongst student submissions (seen in 30
of 153 submissions) involved first iterating over the array
elements and, for each, using an if/else construct to handle
the positivesOnly condition (see Figure 9(b)). The second
most common structure (with 21/153 submissions) involved
first using an if/else statement to handle the “positivesOnly”
condition and then using a loop in each branch to iterate
over the array elements (see Figure 9(b)). In fact, only 3 of
the 153 student submissions to this exercise used the same

structure as the instructor. This may suggest a useful code
re-writing exercise for this cohort, as part of a test or exam,
could involve rewriting code provided in one of the more
common structures so that only a single condition is used.

int sum = 0;
for (int i = 0; i < values . length ; i++) {

i f (values [i] > 0 | | ! positivesOnly) {
sum += values [i] ;

}
}
return sum;

(a) Instructor solution to “sumValues”

int sum = 0;
for (int i = 0; i < values . length ; i++) {

i f (positivesOnly ==true) {
i f (values [i] >=0) {

sum += values [i] ;
}

} else {
sum += values [i] ;

}
}
return sum;

(b) The most popular student solution, in terms of structure

int sum = 0;
i f (positivesOnly) {

for (int i =0; i<values . length ; i++) {
i f (values [i] > 0) {

sum+= values [i] ;
}

}
} else {

for (int i = 0; i<values . length ; i++) {
sum+= values [i] ;

}
}
return sum;

(c) The second most popular student solution, in terms of
structure

Figure 9: The instructor’s solution (a) to the
“sumValues” exercise, along with the two most com-
mon structural approaches (b, c) taken by students

Finally, application of the taxonomy to a set of student so-
lutions may assist instructors in identifying misconceptions
or poor code design that often appears in student submis-
sions that are the only example in their structural category
for a given exercise. As an example, consider the three stu-
dent submissions to the“countOdds”exercise (see Figure 10)
in which the number of elements in an array that are odd
should be calculated. Of the 153 submissions to this exer-
cise, 40 had a unique structure and these three examples
have been selected from this group. The set of solutions
with unique structures for a given exercise tended to be a
rich source of examples that contained redundant or unusual
code that an instructor may wish to address.

8. CONCLUSIONS
The objective nature of the taxonomy makes it a feasi-

ble candidate to be automatically applied to large data sets
of solutions, thereby allowing both staff and students view-
ing those solutions to concentrate on the differences between

int oddCount = 0;
for (int i = 0; i < values . length ; i++) {

i f (values [i] % 2 > 0) {
oddCount++;

} else {} ;
}
return oddCount ;

(a) Inclusion of an empty else clause and redundant
semicolon

int numOdds = 0;
for (int i =0; i<values . length ; i++){

i f (values [i]==1){
numOdds++;

}else i f (values [i]%2!=0){
numOdds++;

}
}
return numOdds;

(b) Redundant check for the literal value “1” being present
in the array

int k = 0;
for (int i = 0; i<values . length ; i++){

int j = 0;
i f (values [i]%2 != 0){

k++;
} else i f (values . length == 0){

k = 0;
} else {} ;

}
return k ;

(c) Redundant check for an empty array performed on each
loop iteration

Figure 10: Student solutions to the “countOdds” ex-
ercise that were the only examples in their struc-
tural categories

them. We have shown how student solutions may be cate-
gorised at the structural level, and the potential insight it
may provide to instructors.

In future, we intend to use this taxonomy to perform
more detailed analysis of student-generated solutions. Hav-
ing identified different categories of solutions, we plan to
investigate the relationships that exist between categories
of solutions and code comprehension. Although we do not
currently know which kinds of variation provide the best
learning opportunities for students, the taxonomy described
here provides an initial framework with which such questions
may be answered.

9. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley,
1986.

[2] A. Alimucaj. Eclipse control flow graph generator.
Retrieved from
https://eclipsefcg.svn.sourceforge.net/
svnroot/eclipsefcg/org.flowChartPlugin/ on
9/01/13.

[3] A. Bandura. Social foundations of thought and action:
A social cognitive theory. Prentice-Hall, 1986.

[4] V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative Research in Psychology,
3(2):77–101, 2006.

[5] P. Denny, A. Luxton-Reilly, E. Tempero, and
J. Hendrickx. Codewrite: supporting student-driven
practice of java. In Proceedings of the 42nd ACM
technical symposium on Computer science education,
SIGCSE ’11, pages 471–476, New York, NY, USA,
2011. ACM.

[6] J. Hattie. The black box of tertiary assessment: An
impending revolution. In L. H. Meyer, S. Davidson,
H. Anderson, R. Fletcher, P. Johnston, and M. Rees,
editors, Tertiary Assessment & Higher Education
Student Outcomes: Policy, Practice & Research, pages
259–275. Ako Aotearoa, Wellington, New Zealand,
2009.

[7] C. Hundhausen, A. Agrawal, D. Fairbrother, and
M. Trevisan. Integrating pedagogical code reviews into
a CS 1 course: an empirical study. In Proceedings of
the 40th ACM technical symposium on Computer
science education, SIGCSE ’09, pages 291–295, New
York, NY, USA, 2009. ACM.

[8] R. Lister, T. Clear, Simon, D. J. Bouvier, P. Carter,
A. Eckerdal, J. Jacková, M. Lopez, R. McCartney,
P. Robbins, O. Seppälä, and E. Thompson. Naturally
occurring data as research instrument: analyzing
examination responses to study the novice
programmer. SIGCSE Bull., 41(4):156–173, Jan. 2010.

[9] A. Luxton-Reilly. A systematic review of tools that
support peer assessment. Computer Science
Education, 19(4):209–232, Dec 2009.

[10] F. Marton and S. Booth. Learning and Awareness.
Lawrence Erlbaum Associates, 1997.

[11] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year cs students. SIGCSE
Bull., 33(4):125–180, Dec. 2001.

[12] E. Soloway and J. C. Spohrer. Studying the Novice
Programmer. L. Erlbaum Associates Inc., Hillsdale,
NJ, USA, 1988.

[13] H. Sondergaard. Learning from and with peers: the
different roles of student peer reviewing. In
Proceedings of the 14th annual ACM SIGCSE
conference on Innovation and technology in computer
science education, ITiCSE ’09, pages 31–35, New
York, NY, USA, 2009. ACM.

[14] E. Thompson, J. Suhonen, J. Davies, and Kinshuk.
Applications of variation theory in computing
education. In R. Lister and Simon, editors, Koli
Calling 2007. Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research,
volume 88, pages 217–220. Australian Computer
Society Inc, 2008.

[15] K. Topping. Peer assessment between students in
colleges and universities. Review of Educational
Research, 68(3):249–276, 1998.

[16] C. Walnum. Java by Example. Que, 1996.

