
REPORT

COMPUTING AS A DISCIPLINE

The final report of the Task Force on the Core of Computer Science presents
a new intellectual framework for the discipline of computing and a new
basis for computing curricula. This report has been endorsed and approved
for release by the ACM Education Board.

PETER J. DENNING (CHAIRMAN), DOUGLAS E. COMER, DAVID GRIES, MICHAEL C. MULDER,
ALLEN TUCKER, A. JOE TURNER, and PAUL R. YOUNG

It is ACM’s 42nd year and an old debate continues. Is
computer science a science? An engineering discipline?
Or merely a technology, an inventor and purveyor of
computing commodities? What is the intellectual sub-
stance of the discipline? Is it lasting, or will it fade
within a generation? Do core curricula in computer
science and engineering accurately reflect the field?
How can theory and lab work be integrated in a com-
puting curriculum? Do core curricula foster compe-
tence in computing?

We project an image of a technology-oriented disci-
pline whose fundamentals are in mathematics and
engineering-for example, we represent algorithms as
the most basic objects of concern and programming and
hardware design as the primary activities. The view
that “computer science equals programming” is espe-
cially strong in most of our current curricula: the intro-
ductory course is programming, the technology is in
our core courses, and the science is in our electives.
This view blocks progress in reorganizing the curricu-
lum and turns away the best students, who want a
greater challenge. It denies a coherent approach to
making experimental and theoretical computer science
integral and harmonious parts of a curriculum.

Those in the discipline know that computer science
encompasses far more than programming-for example,
hardware design, system architecture, designing operat-
ing system layers, structuring a database for a specific
application, and validating models are all part of the
discipline, but are not programming. The emphasis on
programming arises from our long-standing belief that
programming languages are excellent vehicles for gain-
ing access to the rest of the field, a belief that limits our
ability to speak about the discipline in terms that reveal
its full breadth and richness.

0,989 ACM 0001.0782/89/0100-0009 $1.50

The field has matured enough that it is now possible
to describe its intellectual substance in a new and com-
pelling way. This realization arose in discussions
among the heads of the Ph.D.-granting departments of
computer science and engineering in their meeting in
Snowbird, Utah, in July 1984. These and other similar
discussions prompted ACM and the IEEE Computer
Society to form task forces to create a new approach.
In the spring of 1985, ACM President Adele Goldberg
and ACM Education Board Chairman Robert Aiken ap-
pointed this task force on the core of computer science
with the enthusiastic cooperation of the IEEE Computer
Society. At the same time, the Computer Society
formed a task force on computing laboratories with the
enthusiastic cooperation of the ACM.

We hope that the work of the core task force, embod-
ied in this report, will produce benefits beyond the
original charter. By identifying a common core of sub-
ject matter, we hope to streamline the processes of de-
veloping curricula and model programs in the two soci-
eties. The report can be the basis for future discussions
of computer science and engineering as a profession,
stimulate improvements in secondary school courses in
computing, and can lead to a greater widespread appre-
ciation of computing as a discipline.

Our goal has been to create a new way of thinking
about the field. Hoping to inspire general inquiry into

This article has been condensed from the Report of the ACM
Task Force on the Core of Computer Science. Copies of the
report in its entirety may be ordered, prepaid, from

ACM Order Department
P.O. Box 64145
Baltimore, MD 21264

Please specify order #201880. Prices are $7.00 for ACM
members, and $12.00 for nonmembers.

Janua y 1989 Volume 32 Number I Communications of the ACM 9

Report

the nature of our discipline, we sought a framework,
not a prescription; a guideline, not an instruction. We
invite you to adopt this framework and adapt it to your
own situation.

We are pleased to present a new intellectual frame-
work for our discipline and a new basis for our
curricula.

CHARTER OF THE TASK FORCE
The task force was given three general charges:

1. Present a description of computer science that em-
phasizes fundamental questions and significant ac-
complishments. The definition should recognize that
the field is constantly changing and that what is said
is merely a snapshot of an ongoing process of growth.

2. Propose a teaching paradigm for computer science
that conforms to traditional scientific standards,
emphasizes the development of competence in the
field, and harmoniously integrates theory, experi-
mentation, and design.

3. Give a detailed example of an introductory course
sequence in computer science based on the curricu-
lum model and the disciplinary description.

We immediately extended our task to encompass both
computer science and computer engineering, because
we concluded that no fundamental difference exists be-
tween the two fields in the core material. The differ-
ences are manifested in the way the two disciplines
elaborate the core: computer science focuses on analy-
sis and abstraction; computer engineering on abstrac-
tion and design. The phrase discipline of computing is
used here to embrace all of computer science and
engineering.

Two important issues are outside the charter of this
task force. First, the curriculum recommendations in
this report deal only with the introductory course se-
quence. It does not address the important, larger ques-
tion of the design of the entire core curriculum, and
indeed the suggested introductory course would be
meaningless without a new design for the rest of the
core. Second, our specification of an introductory
course is intended to be an example of an approach to
introduce students to the whole discipline in a rigorous
and challenging way, an “existence proof” that our def-
inition of computing can be put to work. We leave it to
individual departments to apply the framework to de-
velop their own introductory courses that meet local
needs.

PARADIGMS FOR THE DISCIPLINE
The three major paradigms, or cultural styles, by which
we approach our work provide a context for our defini-
tion of the discipline of computing. The first paradigm,
theory, is rooted in mathematics and consists of four
steps followed in the development of a coherent, valid
theory:

(1) characterize objects of study (definition);
(2) hypothesize possible relationships among them

(theorem);

(3) determine whether the relationships are true
(proof);

(4) interpret results.

A mathematician expects to iterate these steps (e.g.,
when errors or inconsistencies are discovered.

The second paradigm, abstraction (modeling), is rooted
in the experimental scientific method and consists of
four stages that are followed in the investigation of a
phenomenon:

(1) form a hypothesis;
(2) construct a model and make a prediction;
(3) design an experiment and collect data;
(4) analyze results.

A scientist expects to iterate these steps (e.g., when a
model’s predictions disagree with experimental evi-
dence). Even though “modeling” and “experimentation”
might be appropriate substitutes, we have chosen the
word “abstraction” for this paradigm because this usage
is common in the discipline.

The third paradigm, design, is rooted in engineering
and consists of four steps followed in the construction
of a system (or device) to solve a given problem:

(1) state requirements;
(2) state specifications;
(3) design and implement the system;
(4) test the system.

An engineer expects to iterate these steps (e.g., when
tests reveal that the latest version of the system does
not satisfactorily meet the requirements).

Theory is the bedrock of the mathematical sciences:
applied mathematicians share the notion that science
advances only on a foundation of sound mathematics.
Abstraction (modeling) is the bedrock of the natural
sciences: scientists share the notion that scientific prog-
ress is achieved primarily by formulating hypotheses
and systematically following the modeling process to
verify and validate them. Likewise, design is the bed-
rock of engineering: engineers share the notion that
progress is achieved primarily by posing problems and
systematically following the design process to construct
systems that solve them. Many debates about the rela-
tive merits of mathematics, science, and engineering
are implicitly based on an assumption that one of the
three processes (theory, abstraction, or design) is the
most fundamental.

Closer examination, however, reveals that in com-
puting the three processes are so intricately intertwined
that it is irrational to say that any one is fundamental.
Instances of theory appear at every stage of abstraction
and design, instances of modeling at every s,tage of the-
ory and design, and instances of design at every stage of
theory and abstraction.

Despite their inseparability, the three paradigms are
distinct from one another because they represent sepa-
rate areas of competence. Theory is concerned with the
ability to describe and prove relationships among ob-
jects. Abstraction is concerned with the ability to use
those relationships to make predictions that can be

10 Communications of the ACM January 1989 Volume 32 Number 1

Report

compared with the world. Design is concerned with the
ability to implement specific instances of those relation-
ships and use them to perform useful actions. Applied
mathematicians, computational scientists, and design
engineers generally do not have interchangeable skills.

Moreover, in computing we tend to study computa-
tional aids that support people engaged in information-
transforming processes. On the design side, for exam-
ple, sophisticated VLSI design and simulation systems
enable the efficient and correct design of microcir-
cuitry, and programming environments enable the
efficient design of software. On the modeling side, su-
percomputers evaluate mathematical models and make
predictions about the world, and networks help dissem-
inate findings from scientific experiments. On the the-
ory side, computers help prove theorems, check the
consistency of specifications, check for counterexam-
ples, and demonstrate test cases.

Computing sits at the crossroads among the central
processes of applied mathematics, science, and engi-
neering. The three processes are of equal-and funda-
mental-importance in the discipline, which is a
unique blend of interaction among theory, abstraction,
and design. The binding forces are a common interest
in experimentation and design as information trans-
formers, a common interest in computational support of
the stages of those processes, and a common interest in
efficiency.

THE ROLE OF PROGRAMMING
Many activities in computing are not programming-for
example, hardware design, system architecture, operat-
ing system structure, designing a database application,
and validating models-therefore the notion that “com-
puter science equals programming” is misleading. What
is the role of programming in the discipline? In the
curriculum?

Clearly programming is part of the standard practices
of the discipline and every computing major should
achieve competence in it. This does not, however, im-
ply that the curriculum should be based on program-
ming or that the introductory courses should be pro-
gramming courses.

It is also clear that access to the distinctions of any
domain is given through language, and that most of the
distinctions of computing are embodied in program-
ming notations. Programming languages are useful tools
for gaining access to the distinctions of the discipline.
We recommend, therefore, that programming be a part
of the competence sought by the core curriculum, and
that programming languages be treated as useful vehi-
cles for gaining access to important distinctions of
computing.

A DESCRIPTION OF COMPUTING
Our description of computing as a discipline consists
of four parts: (1) requirements; (2) short definition;
(3) division into subareas; and (4) elaboration of suba-
reas. Our presentation consists of four passes, each
going to a greater level of detail.

What we say here is merely a snapshot of a changing

and dynamic field. We intend this to be a “living defini-
tion,” that can be revised from time to time to reflect
maturity and change in the field. We expect revisions
to occur most frequently in the details of the subareas,
occasionally in the list of subareas, and rarely in the
short definition.

Requirements
There are many possible ways to formulate a definition.
We set five requirements for ours:

1. It should be understandable by people outside the
field.

2. It should be a rallying point for people inside the
field.

3. It should be concrete and specific,
4. It should elucidate the historical roots of the disci-

pline in mathematics, logic, and engineering.
5. It should set forth the fundamental questions and

significant accomplishments in each area of the
discipline.

In the process of formulating a description, we consid-
ered several other previous definitions and concluded
that a description meeting these requirements must
have several levels of complexity. The other definitions
are briefly summarized here.

In 1967, Newell, Perlis, and Simon [5] argued that
computer science is the study of computers and the
major phenomena that surround them, and that all the
common objections to this definition could just as well
be used to demonstrate that other sciences are not sci-
ence. Despite their eloquence, too many people view
this as a circular definition that seems flippant to out-
siders. It is, however, a good starting point because
the definition we present later can be viewed as an
enumeration of the major phenomena surrounding
computers.

A slightly more elaborate version of this idea was
recently used by the Computing Sciences Accreditation
Board (CSAB), which said, “Computer science is the
body of knowledge concerned with computers and
computation. It has theoretical, experimental, and de-
sign components and includes (1) theories for under-
standing computing devices, programs, and systems;
(2) experimentation for the development and testing of
concepts; (3) design methodology, algorithms, and tools
for practical realization; and (4) methods of analysis for
verifying that these realizations meet requirements.”

A third definition is, “Computer science is the study
of knowledge representations and their implementa-
tions.” This definition suffers from excessive abstrac-
tion and few people would agree on the meaning of
knowledge representation. A related example that suf-
fers the same fate is, “Computer science is the study of
abstraction and the mastering of complexity,” a state-
ment that also applies to physics, mathematics, or
philosophy.

A final observation comes from Abelson and Suss-
man, who say, “The computer revolution is a revolu-
tion in the way we think and in the way we express
what we think. The essence of this change is the emer-

[anua y 1989 Volume 32 Number 1 Communications of the ACM 11

Report

gence of what might best be called procedural espiste-
mology-the study of the structure of knowledge from
an imperative point of view, as opposed to the more
decla:rative point of view taken by classical mathemati-
cal subjects. Mathematics provides a framework for
dealing precisely with notions of ‘what is.’ Computation
provides a framework for dealing precisely with notions
of ‘how to’ [I].”

Short Definition
The d.iscipline of computing is the systematic study of
algorithmic processes that describe and transform infor-
mation: their theory, analysis, design, efficiency, imple-
mentation, and application. The fundamental question
underlying all of computing is, “What can be (effi-
ciently) automated?”

Division into Subareas
We grappled at some length with the question of divid-
ing the discipline into subareas. We began with a pref-
erence for a small number of subareas, such as model
versu.s implementation, or algorithm versus machine.
However, the various candidates we devised were too
abstract, the boundaries between divisions were too
fuzzy, and most people would not have identified com-
fortably with them.

Then we realized that the fundamentals of the disci-
pline are contained in three basic processes-theory,
abstraction, and design-that are used by the discipli-
nary subareas to accomplish their goals. Thus, a de-
scription of the discipline’s subareas and their relation
to these three basic processes would be useful. To qual-
ify as a subarea, a segment of the discipline must satisfy
four criteria:

(I) underlying unity of subject matter;
(2) substantial theoretical component;
(3) significant abstractions;
(4) important design and implementation issues.

Moreover, we felt that each subarea should be identi-
fied with a research community, or set of related com-
munities, that sustains its own literature.

Theory includes the processes for developing
the underlying mathematics of the subarea. These
processes are supported by theory from other areas. For
example, the subarea of algorithms and data structures
contains complexity theory and is supported by graph
theory. Abstraction deals with modeling potential im-
plementations. These models suppress detail while re-
taining essential features; they are amenable to analysis
and provide means for calculating predictions of the
modeled system’s behavior. Design deals with the proc-
ess of specifying a problem, transforming the problem
statement into a design specification, and repeatedly
inventing and investigating alternative solutions until a
reliable, maintainable, documented, and tested design
that meets cost criteria is achieved.

We discerned nine subareas that cover the field:

1. Algorithms and data structures
2. Programming languages

3. Architecture
4. Numerical and symbolic computation
5. Operating systems
6. Software methodology and engineering
7. Database and information retrieval systems
8. Artificial intelligence and robotics
9. Human-computer communication

Elaboration of Subareas
To present the content of the subareas, we found it
useful to think of a 9 x 3 matrix, as shown in Figure 1.
Each row is associated with a subarea, and theory, ab-
straction, and design each define a column.

Each square of the matrix will be filled in with spe-
cific statements about that subarea component; these
statements will describe issues of concern and signifi-
cant accomplishments.

Certain affinity groups in which there is scientific
literature are not shown as subareas because they are
basic concerns throughout the discipline. For example,
parallelism surfaces in all subareas (there are parallel
algorithms, parallel languages, parallel architectures,
etc.) and in theory, abstraction, and design. !Similar con-
clusions hold for security, reliability, and performance
evaluation.

Computer scientists will tend to associate with the
first two columns of the matrix, and computer engi-
neers with the last two. The full description of comput-
ing, as specified here, is given in the appendix.

CURRICULUM MODEL

Competence in the Discipline
The goal of education is to develop compete:nce in a
domain. Competence, the capability for effective action

1 Algorithms and data
structures

Theory Abstraction Design

2 Programming languages

3 Architecture

4 Numerical and symbolic
computation

5 Operating systems

6 Software methodology and
engineering

7 Databases and information
retrieval

8 Artificial intelligence and
robotics

9 Human-computer
communication

FIGURE 1. Definition Matrix for the Computing Discipline

12 Communications of the ACM]anuary 1989 Volume .32 Number 2

Report

is an assessment of individual performance against the
standard practices of the field. The criteria for assess-
ment are grounded in the history of the field. The edu-
cational process that leads to competence has five steps:
(1) motivate the domain; (2) demonstrate what can be
accomplished in the domain; (3) expose the distinctions
of the domain; (4) ground the distinctions in history;
and (5) practice the distinctions [4].

This model has interesting implications for curricu-
lum design. The first question it leads to is, In what
areas of computing must majors be competent? There
are two broad areas of competence:

1. Discipline-Oriented Thinking: The ability to invent
new distinctions in the field, leading to new modes
of action and new tools that make those distinctions
available for others to use.

2. Tool Use: The ability to use the tools of the field for
effective action in other domains.

We suggest that discipline-oriented thinking is the pri-
mary goal of a curriculum for computing majors, and
that majors must be familiar enough with the tools to
work effectively with people in other disciplines to help
design modes of effective action in those disciplines.

The inquiry into competence reveals a number of
areas where current core curricula in computing is
inadequate. For example, the historical context of the
computing field is often deemphasized, leaving many
graduates ignorant of computing history and destined to
repeat its mistakes. Many computing graduates wind up
in business data processing, a domain in which most
computing curricula do not seek to develop compe-
tence; whether computing departments or business de-
partments should develop that competence is an old
controversy. Discipline-oriented thinking must be based
on solid mathematical foundations, yet theory is not an
integral part of most computing curricula. The standard
practices of the computing field include setting up and
conducting experiments, contributing to team projects,
and interacting with other disciplines to support their
interests in effective use of computing, but most curric-
ula neglect laboratory exercises, team projects, or inter-
disciplinary studies.

The question of what results should be achieved by
computing curricula has not been explored thoroughly
in past discussions, and we will not attempt a thorough
analysis here. We do strongly recommend that this
question be among the first considered in the design of
new core curricula for computing.

Lifelong Learning
The curriculum should be designed to develop an ap-
preciation for learning which graduates will carry with
them throughout their careers. Many courses are de-
signed with a paradigm that presents “answers” in a
lecture format, rather than focusing on the process of
questioning that underlies all learning. We recommend
that the follow-on committee consider other teaching
paradigms which involve processes of inquiry, an ori-
entation to using the computing literature, and the

development of a commitment to a lifelong process of
learning.

INTRODUCTORY SEQUENCE
In this curriculum model, the motivation and demon-
stration of the domain must precede instruction and
practice in the domain. The purpose of the introductory
course sequence is precisely this. The principal areas of
computing-in which majors must develop compe-
tence-must be presented to students with sufficient
depth and rigor that they can appreciate the power of
the areas and the benefits from achieving competence
in them. The remainder of the curriculum must be
carefully designed to systematically explore those
areas, exposing new concepts and distinctions, and
giving students practice in them.

We therefore recommend that the introductory
course consist of regular lectures and a closely coordi-
nated weekly laboratory. The lectures should empha-
size fundamentals; the laboratories technology and
know-how.

This model is traditional in the physical sciences and
engineering: lectures emphasize enduring principles
and concepts while laboratories emphasize the tran-
sient material and skills relating to the current technol-
ogy. For example, lectures would discuss the design
and analysis of algorithms, or the organization of net-
work protocols in functional layers. In the correspond-
ing laboratory sessions, students would write programs
for algorithms analyzed in lecture and measure their
running times, or instal and test network interfaces and
measure their packet throughputs.

Within this recommendation, the first courses in
computer science would not only introduce program-
ming, algorithms, and data structures, but introduce
material from all the other subdisciplines as well.
Mathematics and other theory would be well integrated
into the lectures at appropriate points.

We recommend that the introductory course contain
a rigorous, challenging survey of the whole discipline.
The physics model, exemplified by the Feynman Lec-
tures in Physics, is a paradigm for the introductory
course we envisage.

We emphasize that simply redesigning the introduc-
tory course sequence following this recommendation
without redesigning the entire undergraduate curricu-
lum would be a serious mistake. The experience of
physics departments contains many lessons for comput-
ing departments in this regard.

Prerequisites
We assume that computing majors have a modest back-
ground in programming in some language and some
experience with computer-based tools such as word
processors, spreadsheets, and databases. Given the
widening use of computers in high schools and at
home, it might seem that universities could assume
that most incoming students have such a background
and provide a “remedial” course in programming for
the others. We have found, however, that the assump-
tion of adequate high school preparation in program-

]anuary 1989 Volume 32 Number 1 Communications of the ACM 13

Report

ming is quite controversial and there is evidence that
adequate preparation is rare. We therefore recommend
that c:omputing departments offer an introduction to
programming and computer tools that would be a pre-
requisite (or corequisite) for the introductory courses.
We further recommend that departments provide an
advanced placement procedure so that students with
adequate high school preparation can bypass this
course.

Formal prerequisites and corequisites in mathematics
are more difficult to state and will depend on local
circumstances. However, accrediting boards in comput-
ing require considerable mathematics, including dis-
crete mathematics, differential and integral calculus,
and probability and statistics. These requirements are
often exceeded in the better undergraduate programs.
In our description of a beginning computing curricu-
lum, we have spelled out in some detail what mathe-
matics is applicable in each of the nine identified areas
of computing. Where possible we have displayed the
required mathematical background for each of the
teaching modules we describe. This will allow individ-
ual departments to synchronize their own mathemati-
cal requirements and courses with the material in the
modules. In some cases it may be appropriate to intro-
duce appropriate underlying mathematical topics as
needed for the development of particular topics in com-
puting. In general, we recommend that students see
applications of relevant mathematics as early as possi-
ble in their computing studies.

Modular Organization
The introductory sequence should bring out the under-
lying unity of the field and should flow from topic to
topic in a pedagogically natural way. It would therefore
be inadequate to organize the course as a sequence of
nine sections, one for each of the subareas; such a map-
ping would appear to be a hodge-podge, with difficult
transitions between sections. An ordering of topics that
meet these requirements is:

Fundamental algorithm concepts
Computer organization (“von Neumann”)
Mathematical programming
Data structures and abstraction
Limits of computability
Operating systems and security
Distributed computing and networks
Models in artificial intelligence
File and database systems
Parallel computation
Human interface

We have grouped the topics into 11 modules. Each
module includes challenging material representative of
the subject matter without becoming a superficial sur-
vey of every aspect or topic. Each module draws mate-
rial from several squares of the definition matrix as
appropriate. As a result, many modules will not corre-
spond one-to-one with rows of the definition matrix.
For example, the first module in our example course is

entitled Fundamental Algorithm Concepts. It covers the
role of formalism and theory, methods in programming,
programming concepts, efficiency, and specific algo-
rithms, draws information from the first, second,
fourth, and sixth rows of the definition matrix and
deals only with sequential algorithms. Later modules,
on Distributed Computing and Networks, and on Paral-
lel Computation, extend the material in the first mod-
ule and draw new material from the third and fifth
rows of the definition matrix.

As a general approach, each module contains lectures
that cover the required theory and most abstractions.
Theory is generally not introduced until it is: needed.
Each module is closely coupled with laboratory ses-
sions, and the nature of the laboratory assignments is
included with the module specifications. Our specifica-
tion is drawn up for a three-semester course sequence
containing 42 lectures and 35 scheduled laboratory ses-
sions per semester. Our specification is not included
here, but is in the full report.

We reemphasize that this specification is intended
only to be an example of a mapping from the discipli-
nary description to an introductory course sequence,
not a prescription for all introductory courses. Other
approaches are exemplified by existing introductory
curricula at selected colleges and universities.

LABORATORIES
We have described a curriculum that separates princi-
ples from technology while maintaining coh.erence be-
tween the two. We have recommended that lectures
deal with principles and laboratories with technology,
with the two being closely coordinated.

The laboratories serve three purposes:

Laboratories should demonstrate how principles cov-
ered in the lectures apply to the design, implementa-
tion, and testing of practical software and hardware.
They should provide concrete experiences that help
students understand abstract concepts. These experi-
ences are essential to sharpen students’ intuition
about practical computing, and to empha.size the in-
tellectual effort in building correct, efficient com-
puter programs and systems.
Laboratories should emphasize processes leading to
good computing know-how. They should emphasize
programming, not programs; laboratory techniques;
understanding of hardware capabilities; correct use
of software tools; correct use of documentation; and
proper documentation of experiments and projects.
Many software tools will be required on host com-
puters to assist in constructing, controlling, and
monitoring experiments on attached subsystems; the
laboratory should teach proper use of these tools:
Laboratories should introduce experimental meth-
ods, including use and design of experiments, soft-
ware and hardware ‘monitors, statistical #analysis of
results, and proper presentation of findings. Students
should learn to distinguish careful experiments from
casual observations.

14 Communications of the ACM January 1989 Volume 32 Number 1

To meet these goals, laboratory work should be care-
fully planned and supervised. Students should attend
labs at specified times, nominally three hours per week.
Lab assignments should be planned, and written de-
scriptions of the purposes and methodology of each
experiment should be given to the students. The depth
of description should be commensurate with students’
prior lab experience: more detail is required in early
laboratories. Lab assignments should be carried out un-
der the guidance of a lab instructor who ensures that
each student follows correct methodology.

2. Hardware and software must be fully maintained,
Malfunctioning equipment will frustrate students
and interfere with learning. Appropriate staff must
be available to maintain the hardware and software
used in the lab. The situation is analogous to labora-
tories in other disciplines.

The labs associated with the introductory courses
will require close supervision and should contain well-
planned activities. This implies that more staff will be
required per student for these laboratories than for
more advanced ones.

The lab problems should be coordinated with mate-
rial in the lecture parts of the course. Individual lab
problems in general will deal with combinations of
hardware and software. Some lab assignments empha-
size technologies and tools that ease the software devel-
opment process. Others emphasize analyzing and
measuring existing software or comparing known algo-
rithms. Others emphasize program development based
on principles learned in class.

3. Full functionality is important. (This includes ade-
quate response time on shared systems.) Restricting
students to small subsets of a language or system
may be useful in initial contacts, but the restrictions
should be lifted as the students progress.

4. Good programming tools are needed. Compilers get a
lot of attention, but other programming tools are
used as often. In UNIX systems, for example, stu-
dents should use editors like emacs and learn to use
tools like the shell, grep, awk, and make. Storage
and processing facilities must be sufficient to make
such tools available for use in the lab.

5. Adequate support for hardware and instrumentation
must be provided. Some projects may require stu-
dents to connect hardware units together, take
measurements of signals, monitor data paths, and
the like. A sufficient supply of small parts, connec-
tors, cables, monitoring devices, and test instruments
must be available.

Laboratory assignments should be self-contained in
the sense that an average student should be able to
complete the work in the time allocated. Laboratory
assignments should encourage students to discover and
learn things for themselves. Students should be re-
quired to maintain a proper lab book documenting ex-
periments, observations, and data. Students should also
be required to maintain their software and to build
libraries that can be used in later lab projects.

We expect that, in labs as in lectures, students will
be assigned homework that will require using com-
puters outside the supervised realm of a laboratory. In
other words, organized laboratory sessions will supple-
ment, not replace, the usual programming and other
written assignments.

The IEEE Computer Society Task Force on Goal Ori-
ented Laboratory Development has studied this subject
in depth. Their report includes a discussion of the re-
sources (i.e., staff and facilities) needed for laboratories
at all levels of the curriculum.

ACCREDITATION
This work has been conducted with the intent that
example courses be consistent with current guidelines
of the Computing Sciences Accreditation Board (CSAB).
The details of the mapping of this content to CSAB
guidelines does not fall within the scope of this com-
mittee.

In a substantial number of labs dealing with program
development, the assignment should be to modify or
complete an existing program supplied by the instruc-
tor. This forces the student to read well-written pro-
grams, provides experience with integration of soft-
ware, and results in a larger and more satisfying
program for the student.

CONCLUSION

Computing technology constantly changes. It is diffi-
cult, therefore, to give a detailed specification of the
hardware systems, software systems, instruments, and
tools that ought to be in a laboratory. The choice of
equipment and staffing in laboratories should be guided
by the following principles:

This report has been designed to provoke new thinking
about computing as a discipline by exhibiting the disci-
pline’s content in a way that emphasizes the funda-
mental concepts, principles, and distinctions. It has also
suggested a redesign of the core curriculum according
to an education model used in other disciplines: dem-
onstrating the existence of useful distinctions followed
by practice that develops competence. The method is
illustrated by a rigorous introductory course that puts
the concepts and principles into the lectures and tech-
nology into closely coordinated laboratories.

1. Laboratories should be equipped with up-to-date
systems and languages. Programming languages have
a significant effect on shaping a student’s view of
computing. Laboratories should deploy systems that
encourage good habits in students; it is especially
important to avoid outdated systems (hardware and
software) in core courses.

A department cannot simply replace its current intro-
ductory sequence with the new one; it must redesign
the curriculum so that the new introduction is part of a
coherent whole. For this reason, we recommend that
the ACM establish a follow-on committee to complete
the redesign of the core curriculum.

Many practical problems must be dealt with before a
new curriculum model can become part of the field.

January 1989 Volume 32 Number 1 Communications of the ACM

Report

15

Report

For example,

1. Faculties will need to redesign their curricula based
on a new conceotual formulation.

4. Teaching assistants and faculty are not familiar with
the new view.

5. Good high school preparation in computing is rare.

2. No textbooks or educational materials based on the We recognize that many of our recommendations are
fra.mework proposed here are currently available. challenging and will require substantial work to imple-

3. Most departments have inadequate laboratories, ment. We are convinced that the improvements in
facilities, and materials for the educational task computing education from the proposals here are worth
suggested here. the effort, and invite you to join us in achieving them.

APPENDIX

A DEFINITION OF COMPUTING AS A DISCIPLINE

Computer science and engineering is the systematic
study of algorithmic processes-their theory, analysis,
design, efficiency, implementation, and application-
that describe and transform information. The funda-
mental question underlying all of computing is, What
can be (efficiently) automated [Z, 31. This discipline was
born in the early 1940s with the joining together of
algorithm theory, mathematical logic, and the inven-
tion of the stored-program electronic computer.

The roots of computing extend deeply into mathe-
matics and engineering. Mathematics imparts analysis
to the field; engineering imparts design. The discipline
embraces its own theory, experimental method, and
engineering, in contrast with most physical sciences,
which are separate from the engineering disciplines
that apply their findings (e.g., chemistry and chemical
engineering principles). The science and engineering
are inseparable because of the fundamental interplay
between the scientific and engineering paradigms
within the discipline.

For several thousand years, calculation has been a
principal concern of mathematics. Many models of
physical phenomena have been used to derive equa-
tions .whose solutions yield predictions of those phe-
nomena-for example, calculations of orbital trajecto-
ries, weather forecasts, and fluid flows. Many general
methods for solving such equations have been de-
vised-for example, algorithms for systems of linear
equations, differential equations, and integrating func-
tions. For almost the same period, calculations that aid
in the design of mechanical systems have been a princi-
pal concern of engineering. Examples include algo-
rithms for evaluating stresses in static objects, calculat-
ing momenta of moving objects, and measuring
distances much larger or smaller than our immediate
perception.

One product of the long interaction between engi-
neering and mathematics has been mechanical aids for
calculating. Some surveyors’ and navigators’ instru-
ments date back a thousand years. Pascal and Leibniz
built arithmetic calculators in the middle 1600s. In the
183Os, Babbage conceived of an “analytical engine” that
could mechanically and without error evaluate loga-
rithms, trigonometric functions, and other general
arithmetic functions. His machine, never completed,
served as an inspiration for later work. In the 192Os,

Bush constructed an electronic analog computer for
solving general systems of differential equations. In the
same period, electromechanical calculating machines
capable of addition, subtraction, multiplicati.on, divi-
sion, and square root computation became available.
The electronic flip-flop provided a natural bridge from
these machines to digital versions with no moving
parts.

Logic is a branch of mathematics concerned with cri-
teria of validity of inference and formal principles of
reasoning. Since the days of Euclid, it has been a tool
for rigorous mathematical and scientific argument. In
the 19th century a search began for a universal system
of logic that would be free of the incompletenesses ob-
served in known deductive systems. In a complete sys-
tem, it would be possible to determine mechanically
whether any given statement is either true or false. In
1931, Godel published his “incompleteness theorem,”
showing that there is no such system. In the late 193Os,
Turing explored the idea of a universal computer that
could simulate any step-by-step procedure of any other
computing machine. His findings were similar to
Godel’s: some well-defined problems cannot be solved
by any mechanical procedure. Logic is important not
only because of its deep insight into the limits of auto-
matic calculation, but also because of its ins:ight that
strings of symbols, perhaps encoded as numbers, can be
interpreted both as data and as programs.

This insight is the key idea that distinguishes the
stored program computer from calculating machines.
The steps of the algorithm are encoded in a machine
representation and stored in the memory for later de-
coding and execution by the processor. The machine
code can be derived mechanically from a higher-level
symbolic form, the programming language.

It is the explicit and intricate intertwining of the an-
cient threads of calculation and logical symb’ol manipu-
lation, together with the modern threads of electronics
and electronic representation of information, that gave
birth to the discipline of computing.

We identified nine subareas of computing:

1. Algorithms and data structures
2. Programming languages
3. Architecture
4. Numerical and symbolic computation

16 Communications of the ACM Ianuary 1989 Volume 32 Number 1

Report

5. Operating systems
6. Software methodology and engineering
7. Databases and information retrieval
8. Artificial intelligence and robotics
9. Human-Computer communication

Each has an underlying unity of subject matter, a sub-
stantial theoretical component, significant abstractions,
and substantial design and implementation issues. The-
ory deals with the underlying mathematical develop-
ment of the subarea and includes supporting theory
such as graph theory, combinatorics, or formal lan-
guages. Abstraction (or modeling) deals with models of
potential implementations; the models suppress detail,
while retaining essential features, and provide means
for predicting future behavior. Design deals with the
process of specifying a problem, deriving requirements
and specifications, iterating and testing prototypes, and
implementing a system. Design includes the experi-
mental method, which in computing comes in several
styles: measuring programs and systems, validating hy-
potheses, and prototyping to extend abstractions to
practice.

Although software methodology is essentially con-
cerned with design, it also contains substantial ele-
ments of theory and abstraction. For this reason, we
have identified it as a subarea. On the other hand,
parallel and distributed computation are issues that
pervade all the subareas and all their components (the-
ory, abstraction, and design); they have been identified
neither as subareas nor as subarea components.

The subsequent numbered sections provide the de-
tails of each subarea in three parts-theory, abstrac-
tion, and design. The boundaries between theory and
abstraction, and between abstraction and design, are
necessarily fuzzy; it is a matter of personal taste where
some of the items go.

Our intention is to provide a guide to the discipline
by showing its main features, not a detailed map. It is
important to remember that this guide to the discipline
is not a plan for a course or a curriculum; it is merely a
framework in which a curriculum can be designed. It is
also important to remember that this guide to the disci-
pline is a snapshot of an organism undergoing constant
change. It will require reevaluation and revision at reg-
ular intervals.

1. ALGORITHMS AND DATA STRUCTURES
This area deals with specific classes of problems and
their efficient solutions. Fundamental questions in-
clude: For given classes of problems, what are the best
algorithms? How much storage and time do they re-
quire? What is the tradeoff between space and time?
What is the best way to access the data? What is
the worst case of the best algorithms? How well do
algorithms behave on average? How general are algo-
rithms-i.e., what classes of problems can be dealt with
by similar methods?

1.1 Theory
Major elements of theory in the area of algorithms and
data structures are:

1.

2.

3.

4.

5.

6.

7.
8.

Computability theory, which defines what machines
can and cannot do.
Computational complexity theory, which tells how
to measure the time and space requirements of com-
putable functions and relates a problem’s size with
the best- or worst-case performance of algorithms
that solve that problem, and provides methods for
proving lower bounds on any possible solution to a
problem.
Time and space bounds for algorithms and classes of
algorithms.
Levels of intractability: for example, classes of prob-
lems solvable deterministically in polynomially
bounded time (P-problems); those solvable nondeter-
ministically in polynomially bounded time (NP-
problems); and those solvable efficiently by parallel
machines (NC-problems).
Parallel computation, lower bounds, and mappings
from dataflow requirements of algorithms into com-
munication paths of machines.
Probabilistic algorithms, which give results correct
with sufficiently high probabilities much more effi-
ciently (in time and space) than determinate algo-
rithms that guarantee their results. Monte Carlo
methods.
Cryptography.
The supporting areas of graph theory, recursive
functions, recurrence relations, combinatorics, cal-
culus, induction, predicate and temporal logic, se-
mantics, probability, and statistics.

1.2 Abstraction
Major elements of abstraction in the area of algorithms
and data structures are

1. Efficient, optimal algorithms for important classes of
problems and analyses for best, worst, and average
performance.
Classifications of the effects of control and data
structure on time and space requirements for var-
ious classes of problems.
Important classes of techniques such as divide-and-
conquer, Greedy algorithms, dynamic programming,
finite state machine interpreters, and stack machine
interpreters.
Parallel and distributed algorithms; methods of parti-
tioning problems into tasks that can be executed in
separate processors.

1.3 Design
Major elements of design and experimentation in the
area of algorithms and data structures are:

1. Selection, implementation, and testing of algorithms
for important classes of problems such as searching,

January 1989 Volume 32 Number 1 Communications of the ACM 17

Report

sorting, random-number generation, and textual
pattern matching.

2. Implementation and testing of general methods
applicable across many classes of problems, such as
hashing, graphs, and trees.

3. Implementation and testing of distributed algorithms
such as network protocols, distributed data updates,
semaphores, deadlock detectors, and synchroniza-
tion methods.

4. Implementation and testing of storage managers such
as garbage collection, buddy system, lists, tables, and
p@w

6. Extensive experimental testing of heuristic algo-
rithms for combinatorial problems.

6. Cryptographic protocols that permit secure authen-
tication and secret communication.

2. PROGRAMMING LANGUAGES
This area deals with notations for virtual machines that
execute algorithms, with notations for algorithms and
data, and with efficient translations from high-level
languages into machine codes. Fundamental questions
include: What are possible organizations of the virtual
mach:ine presented by the language (data types, opera-
tions, control structures, mechanisms for introducing
new types and operations)? How are these abstractions
implemented on computers? What notation (syntax)
can be used effectively and efficiently to specify what
the computer should do?

2.1 Theory
Major elements of theory in the area of programming
languages are:

1. Formal languages and automata, including theories
of parsing and language translation.

2, Turing machines (base for procedural languages),
Post Systems (base for string processing languages),
X-calculus (base for functional languages).

3. Formal semantics: methods for defining mathemati-
cal models of computers and the relationships
among the models, language syntax, and implemen-
tation. Primary methods include denotational, alge-
braic, operational, and axiomatic semantics.

4. As supporting areas: predicate logic, temporal logic,
modern algebra and mathematical induction.

2.2 Abstraction
Major elements of abstraction in the area of program-
ming languages include:

1. Classification of languages based on their syntactic
and dynamic semantic models; e.g., static typing,
dynamic typing, functional, procedural, object-
oriented, logic, specification, message passing, and
dataflow.

2. Classification of languages according to intended
application area; e.g., business data processing, sim-
ulation, list processing, and graphics.

3. Classification of major syntactic and semantic
models for program structure; e.g., procedure hierar-
chies, functional composition, abstract data types,
and communicating parallel processes.

4. Abstract implementation models for each major type
of language.

5. Methods for parsing, compiling, interpretation, and
code optimization.

6. Methods for automatic generation of parsers, scan-
ners, compiler components, and compilers.

2.3 Design
Major elements of design and experimentation in the
area of programming languages are:

1.

2.

3.
4.

5.

6.

Specific languages that bring together a particular
abstract machine (semantics) and syntax to form a
coherent implementable whole. Examples: proce-
dural (COBOL, FORTRAN, ALGOL, Pascal, Ada, C),
functional (LISP), dataflow (SISAL, VAL), object-
oriented (Smalltalk, CLU), logic (Prolog), strings
(SNOBOL), and concurrency (CSP, Occam, Concur-
rent Pascal, Modula 2).
Specific implementation methods for partic:ular
classes of languages: run-time models, static and dy-
namic execution methods, typing checking, storage
and register allocation, compilers, cross compilers,
and interpreters, systems for finding parallelism in
programs.
Programming environments.
Parser and scanner generators (e.g., YACC, LEX),
compiler generators.
Programs for syntactic and semantic error checking,
profiling, debugging, and tracing.
Applications of programming-language methods to
document-processing functions such as c:reating
tables, graphs, chemical formulas, spreadsheets
equations, input and output, and data ha:ndling.
Other applications such as statistical processing.

3. ARCHITECTURE
This area deals with methods of organizing hardware
(and associated software) into efficient, relialble systems.
Fundamental questions include: What are good meth-
ods of implementing processors, memory, and commu-
nication in a machine? How do we design and control
large computational systems and convincingly demon-
strate that they work as intended despite errors and
failures? What types of architectures can efficiently
incorporate many processing elements that can work
concurrently on a computation? How do we measure
performance?

3.1 Theory
Major elements of theory in the area of architecture
are:

1. Boolean algebra.
2. Switching theory.

18 Communications of the ACh4 Januay 1989 Volume 32 Number 1

Report

3. Coding theory.
4. Finite state machine theory.
5. The supporting areas of statistics, probability,

queueing, reliability theory, discrete mathematics,
number theory, and arithmetic in different number
systems.

3.2 Abstraction
Major elements of abstraction in the area of architec-
ture are:

1,

2.

3.

4.
5.

6.

7.

8.

9.

Finite state machine and Boolean algebraic models
of circuits that relate function to behavior.
Other general methods of synthesizing systems from
basic components.
Models of circuits and finite state machines for com-
puting arithmetic functions over finite fields.
Models for data path and control structures.
Optimizing instruction sets for various models and
workloads.
Hardware reliability: redundancy, error detection,
recovery, and testing.
Space, time, and organizational tradeoffs in the
design of VLSI devices.
Organization of machines for various computational
models: sequential, dataflow, list processing, array
processing, vector processing, and message-passing.
Identification of design levels; e.g., configuration,
program, instruction set, register, and gate.

3.3 Design
Major elements of design and experimentation in the
area of architecture are:

1.

2.

3.

4.

5.

6.

7.

4.

Hardware units for fast computation; e.g., arithmetic
function units, cache.
The so-called von Neumann machine (the single-
instruction sequence stored program computer);
RISC and CISC implementations.
Efficient methods of storing and recording informa-
tion, and detecting and correcting errors.
Specific approaches to responding to errors: recov-
ery, diagnostics, reconfiguration, and backup proce-
dures.
Computer aided design (CAD) systems and logic sim-
ulations for the design of VLSI circuits. Production
programs for layout, fault diagnosis. Silicon compi-
lers.
Implementing machines in various computational
models; e.g., dataflow, tree, LISP, hypercube, vector,
and multiprocessor.
Supercomputers, such as the Cray and Cyber ma-
chines.

NUMERICAL AND SYMBOLIC COMPUTATION
This area deals with general methods of efficiently and 4. Symbolic manipulators, such as MACSYMA and RE-
accurately solving equations resulting from mathemati- DUCE, capable of powerful and nonobvious manipu-
cal models of systems. Fundamental questions include: lations, notably differentiations, integrations, and
How can we accurately approximate continuous or infi- reductions of expressions to minimal terms.

nite processes by finite discrete processes? How do we
cope with the errors arising from these approximations?
How rapidly can a given class of equations be solved for
a given level of accuracy? How can symbolic manipula-
tions on equations, such as integration, differentiation,
and reduction to minimal terms, be carried out? How
can the answers to these questions be incorporated into
efficient, reliable, high-quality mathematical software
packages?

4.1 Theory
Major elements of theory in the area of numerical and
symbolic computation are:

1. Number theory.
2. Linear algebra.
3. Numerical analysis.
4. Nonlinear dynamics.
5. The supporting areas of calculus, real analysis, com-

plex analysis, and algebra.

4.2 Abstraction
Major elements of abstraction in the area of numerical
and symbolic computation are:

Formulations of physical problems as models in con-
tinuous (and sometimes discrete) mathematics.
Discrete approximations to continuous problems. In
this context, backward error analysis, error propaga-
tion and stability in the solution of linear and non-
linear systems. Special methods in special cases,
such as Fast Fourier Transform and Poisson solvers.
The finite element model for a large class of prob-
lems specifiable by regular meshes and boundary
values. Associated iterative methods and conver-
gence theory: direct, implicit, multigrids, rates of
convergence. Parallel solution methods. Automatic
grid refinement during numerical integration.
Symbolic integration and differentiation.

4.3 Design
Major elements of design and experimentation in the
area of numerical and symbolic computation are:

1. High-level problem formulation systems such as
CHEM and WEB.

2. Specific libraries and packages for linear algebra,
ordinary differential equations, statistics, nonlinear
equations, and optimizations; e.g., LINPACK,
EISPACK, ELLPACK.

3. Methods of mapping finite element algorithms to
specific architectures-e.g., multigrids on hyper-
cubes.

January 1989 Volume 32 Number 1 Communications of the ACM 19

Report

5. OIPERATING SYSTEMS
This area deals with control mechanisms that allow
multiple resources to be efficiently coordinated in the
execution of programs. Fundamental questions include:
Whai. are the visible objects and permissible operations
at each level in the operation of a computer system?
For each class of resource (objects visible at some
level), what is a minimal set of operations that permit
their effective use? How can interfaces be organized so
that users deal only with abstract versions of resources
and not with physical details of hardware? What are
effective control strategies for job scheduling, memory
management, communications, access to software re-
sources, communication among concurrent tasks, relia-
bility, and security? What are the principles by which
systems can be extended in function by repeated appli-
cation of a small number of construction rules? How
should distributed computations be organized so that
many autonomous machines connected by a communi-
cation network can participate in a computation, with
the details of network protocols, host locations, band-
widths, and resource naming being mostly invisible?

5.1 Theory 7.
Major elements of theory in the area of operating sys-
tems are:

1.

2.
3.

4.
5.

Concurrency theory: synchronization, determinacy,
and deadlocks.
Scheduling theory, especially processor scheduling.
Program behavior and memory management theory,
inc:luding optimal policies for storage allocation.
Performance modeling and analysis.
The supporting areas of bin packing, probability,
queueing theory, queueing networks, communica-
tion and information theory, temporal logic, and
cryptography.

5.2 Abstraction
Major elements of abstraction in the area of operating
systems are:

1.

2.

3.

4.

5.

Abstraction principles that permit users to operate
on idealized versions of resources without concern
for physical details (e.g., process rather than proces-
sor, virtual memory rather than main-secondary
hierarchy, files rather than disks).
Binding of objects perceived at the user interface to
internal computational structures.
Models for important subproblems such as process
ma.nagement, memory management, job scheduling,
secondary storage management, and performance
analysis.
Models for distributed computation; e.g., clients and
servers, cooperating sequential processes, message-
passing, and remote procedure calls.
Models for secure computing; e.g., access controls,
authentication, and communication.

6. Networking, including layered protocols, naming,
remote resource usage, help services, and local net-
work protocols such as token-passing and shared
buses.

5.3 Design
Major elements of design and experimentation in the
area of operating systems are:

1.

2.

3.

4.
5.

6.

Prototypes of time sharing systems, automatic stor-
age allocators, multilevel schedulers, memory man-
agers, hierarchical file systems and other important
system components that have served as bases for
commercial systems.
Techniques for building operating system.s such as
UNIX, Multics, Mach, VMS, and MS-DOS.
Techniques for building libraries of utilities; e.g.,
editors, document formatters, compilers, linkers, and
device drivers.
Files and file systems.
Queueing network modeling and simulation pack-
ages to evaluate performance of real systems.
Network architectures such as ethernet, FDDI, token
ring nets, SNA, and DECNET.
Protocol techniques embodied in the Department of
Defense protocol suite (TCP/IP), virtual circuit pro-
tocols, internet, real time conferencing, and X.25.

6. SOFTWARE METHODOLOGY AND
ENGINEERING
This area deals with the design of programs and large
software systems that meet specifications and are safe,
secure, reliable, and dependable. Fundamental ques-
tions include: What are the principles behind the de-
velopment of programs and programming systems? How
does one prove that a program or system meets its spec-
ifications? How does one develop specifications that
do not omit important cases and can be anal.yzed for
safety? How do software systems evolve through dif-
ferent generations? How can software be designed for
understandability and modifiability?

6.1 Theory
Major elements of theory in the area of software meth-
odology and tools are:

1. Program verification and proof.
2. Temporal logic.
5. Reliability theory.
4. The supporting areas of predicate calculus, axio-

matic semantics, and cognitive psychology.

6.2 Abstraction
Major elements of abstraction in the area of software
methodology and tools are:

1. Specification methods, such as predicate trans-
formers, programming calculi, abstract data types,
and Floyd-Hoare axiomatic notations.

2. Methodologies such as stepwise refinement, modular

20 Communications of the ACM January 1989 Volume 32 Number 1

3.

4.

5.
6.

7.

8.

design, modules, separate compilation, information-
hiding, dataflow, and layers of abstraction.
Methods for automating program development; e.g.,
text editors, syntax-directed editors, and screen edi-
tors.
Methodologies for dependable computing; e.g., fault
tolerance, security, reliability, recovery, N-version
programming, multiple-way redundancy, and check-
pointing.
Software tools and programming environments.
Measurement and evaluation of programs and sys-
tems.
Matching problem domains through software sys-
tems to particular machine architectures.
Life cycle models of software projects.

6.3 Design
Major elements of design and experimentation in the
area of software methodology and tools are:

1.

2.

3.

4.

5.

Specification languages (e.g., PSL 2, IMA JO), config-
uration management systems (e.g., in Ada APSE),
and revision control systems (e.g., RCS, SCCS).
Syntax directed editors, line editors, screen editors,
and word processing systems.
Specific methodologies advocated and used in prac-
tice for software development; e.g., HDM and those
advocated by Dijkstra, Jackson, Mills, or Yourdon.
Procedures and practices for testing (e.g., walk-
through, hand simulation, checking of interfaces be-
tween modules, program path enumerations for test
sets, and event tracing), quality assurance, and proj-
ect management.
Software tools for program development and debug-
ging, profiling, text formatting, and database manip-
ulation.

6. Specification of criteria levels and validation proce-
dures for secure computing systems, e.g., Depart-
ment of Defense.

7.
8.

Design of user interfaces.
Methods for designing very large systems that are
reliable, fault tolerant, and dependable.

7. DATABASE AND INFORMATION RETRIEVAL
SYSTEMS
This area deals with the organization of large sets of
persistent, shared data for efficient query and update.
Fundamental questions include: What modeling con-
cepts should be used to represent data elements and
their relationships? How can basic operations such as
store, locate, match, and retrieve be combined into ef-
fective transactions? How can these transactions inter-
act effectively with the user? How can high-level quer-
ies be translated into high-performance programs?
What machine architectures lead to efficient retrieval
and update? How can data be protected against unau-
thorized access, disclosure, or destruction? How can
large databases be protected from inconsistencies due
to simultaneous update? How can protection and per-

Report

formance be achieved when the data are distributed
among many machines? How can text be indexed and
classified for efficient retrieval?

7.1 Theory
Major elements of theory in the area of databases and
information retrieval systems are:

1.
2.
3.

Relational algebra and relational calculus.
Dependency theory.
Concurrency theory, especially serializable transac-
tions, deadlocks, and synchronized updates of multi-
ple copies.

4. Statistical inference.
5. Sorting and searching.
6. Performance analysis
7. As supporting theory: cryptography.

7.2 Abstraction
Major elements of abstraction in the area of databases
and information retrieval systems are:

1.

2.

3.

4.

5.

6.

7.

Models for representing the logical structure of data
and relations among the data elements, including
the relational and entity-relationship models.
Representations of files for fast retrieval, such as
indexes, trees, inversions, and associative stores.
Methods for assuring integrity (consistency) of the
database under updates, including concurrent up-
dates of multiple copies.
Methods for preventing unauthorized disclosure or
alteration and for minimizing statistical inference.
Languages for posing queries over databases of dif-
ferent kinds (e.g., hypertext, text, spatial, pictures,
images, rule-sets). Similarly for information retrieval
systems.
Models, such as hypertext, which allow documents
to contain text at multiple levels and to include
video, graphics, and voice.
Human factors and interface issues.

7.3 Design
Major elements of design in the area of database and
information retrieval systems are:

1. Techniques for designing databases for relational,
hierarchical, network, and distributed implementa-
tions.

2. Techniques for designing database systems such as
INGRES, System R, dBase III, and DB-2.

3. Techniques for designing information retrieval sys-
tems such as LEXIS, Osiris, and Medline.

4. Design of secure database systems.
5. Hypertext systems such as NLS, NoteCards, Interme-

dia, and Xanadu.
6. Techniques to map large databases to magnetic disk

stores.
7. Techniques for mapping large, read-only databases

onto optical storage media-e.g., CD/ROM and
WORMS.

January 1989 Volume 32 Number 1 Communications of the ACM 21

Report

8. AIRTIFICIAL INTELLIGENCE AND ROBOTICS
This area deals with the modeling of animal and hu-
man (intelligent) behavior. Fundamental questions in-
clude: What are basic models of behavior and how do
we build machines that simulate them? To what extent
is intelligence described by rule evaluation, inference,
deduction, and pattern computation? What is the ulti-
mate performance of machines that simulate behavior
by these methods? How are sensory data encoded so
that similar patterns have similar codes? How are
motor codes associated with sensory codes? What are
architectures for learning systems, and how do those
systems represent their knowledge of the world?

8.1 Theory
Major elements of theory in the area of artificial intelli-
gence and robotics are:

1.
2.
3.
4.

5.

6.

Logic; e.g., monotonic, nonmonotonic, and fuzzy.
Conceptual dependency.
Cognition.
Syntactic and semantic models for natural language
understanding.
Kinematics and dynamics of robot motion and world
models used by robots.
The supporting areas of structural mechanics, graph
theory, formal grammars, linguistics, philosophy,
and psychology.

8.2 Abstraction
Major elements of abstraction in the area of artificial
intelligence and robotics are:

1.

2.

3.

4.

5.

6.

7.

Knowledge representation (e.g., rules, frames, logic)
and methods of processing them (e.g., deduction,
inference).
Models of natural language understanding and natu-
ral language representations, including phoneme
representations; machine translation.
Speech recognition and synthesis, translation of text
to speech.
Reasoning and learning models; e.g., uncertainty,
nonmonotonic logic, Bayesian inference, beliefs.
Heuristic search methods, branch and bound, con-
trol search.
Machine architectures that imitate biological sys-
tems, e.g., neural networks, connectionism, sparse
distributed memory.
Models of human memory, autonomous learning,
and other elements of robot systems.

8.3 Design
Major elements of design and experimentation in artifi-
cial intelligence and robotics include:

1. Techniques for designing software systems for logic
programming, theorem proving, and rule evaluation.

2. Techniques for expert systems in narrow domains
(e.g., Mycin, Xcon) and expert system shells that can
be programmed for new domains.

3. Implementations of logic programming (e.g,
PROLOG).

4. Natural language understanding systems (e.g., Mar-
gie, SHRDLU, and preference semantics).

5. Implementations of neural networks and sparse dis-
tributed memories.

6. Programs that play checkers, chess, and other games
of strategy.

7. Working speech synthesizers, recognizers.
8. Working robotic machines, static and mobile.

9. HUMAN-COMPUTER COMMUNICATION
This area deals with the efficient transfer of informa-
tion between humans and machines via various
human-like sensors and motors, and with information
structures that reflect human conceptualizations. Fun-
damental questions include: What are efficient methods
of representing objects and automatically creating pic-
tures for viewing? What are effective methods for re-
ceiving input or presenting output? How ca:n the risk of
misperception and subsequent human error be mini-
mized? How can graphics and other tools be used to
understand physical phenomena through information
stored in data sets?

9.1 Theory
Major elements of theory in human-computer commu-
nication are:

1. Geometry of two and higher dimensions including
analytic, projective, affine, and computational
geometries.

2. Color theory.
3. Cognitive psychology.
4. The supporting areas of Fourier analysis, linear alge-

bra, graph theory, automata, physics, and analysis.

9.2 Abstraction
Major elements of abstraction in the area of human-
computer communication are:

1.

2.
3.
4.
5.

Algorithms for displaying pictures including meth-
ods for smoothing, shading, hidden lines, ray tracing,
hidden surfaces, transparent surfaces, shadows,
lighting, edges, color maps, representations by
splines, rendering, texturing, antialiasing, coherence,
fractals, animation, representing pictures as hierar-
chies of objects.
Models for computer-aided design (CAD).
Computer representations of physical objects.
Image processing and enhancement methods.
Man-machine communication, including psycholog-
ical studies of modes of interaction that reduce hu-
man error and increase human productivity.

22 Comnamications of the ACM January 1989 Volume 32 Number 1

Report

9.3 Design 4.
Major elements of design and experimentation in the
area of human-computer communication are:

Implementation of graphics algorithms on various
graphics devices, including vector and raster dis-
plays and a range of hardcopy devices.
Design and implementation of experimental graphics
algorithms for a growing range of models and phe-
nomena.
Proper use of color graphics for displays; accurate
reproduction of colors on displays and hardcopy
devices.

5.

6.

7.
6.

Graphics standards (e.g., GKS, PHIGS, VDI), graphics
languages (e.g., PostScript), and special graphics
packages (e.g., MOGLI for chemistry).
Implementation of various user interface techniques
including direct manipulation on bitmapped devices
and screen techniques for character devices.
Implementation of various standard file interchange
formats for information transfer between differing
systems and machines.
Working CAD systems.
Working image enhancement systems (e.g., at JPL for
pictures received from space probes).

ACKNOWLEDGMENTS

Many people generously provided written comments in response to drafts of this report. Although it was not possible to
accommodate every comment in detail, we did take every comment into account in revising this report. We are grateful to the
following people for sending us their comments:

Paul Abrahams Richard Epstein
J. Mack Adams Frank Friedman
Robert Aiken C. W. Gear
Donald Bagert Robert Glass
Alan Biermann Nice Habermann
Frank Boesch Judy Hankins
Richard Botting Charles Kelemen
Albert Briggs, Jr. Ken Kennedy
Judy Brown Elliot Koffman
Rick Carlson Barry Kurtz
Thomas Cheatham Doris Lidtke
Neal Coulter Michael Loui
Steve Cunningham Paul Luker
Verlynda Dobbs Susan Merritt
Caroline Eastman John Motil

REFERENCES
1. Abelson, H., and Sussman, G. Structure and interpretation of Computer

Programs. MIT Press, Cambridge, Mass., 1985.
2. Arden. B., ed. See What Can Be Automated? Report of the NSF Com-

puter Science and Engineering Research Study (COSERS). MIT
Press, Cambridge, Mass., 1980.

J. Paul Myers
Bob Noonan
Alan Perks
Jesse Poore
Terrence Pratt
Jean Rogers
Jean Sammet
Mary Shaw
J. W. Smith
Dennis Smolarski
Ed Upchurch
Garret White
Gio Wiederhold
Stuart Zweben

3. Denning, P. What is computer science? Am. Sci. 73 (Jan.-Feb. X985),
16-19.

4. Flares, F., and Graves, M. Education. (working paper available from
Logonet, Inc., 2200 Powell Street, 11th Floor, Emeryville. Calif.
94608.)

5. Newell, A., Perlis, A., and Simon, H. What is computer science? Sci.
157 (1967),1373-1374. (reprinted in Abacus 4, 4 (Summer 1987), 32.)

January 1989 Volume 32 Number 1 Communications of the ACM 23

