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It is ACM’s 42nd year and an old debate continues. Is 
computer science a science? An engineering discipline? 
Or merely a technology, an inventor and purveyor of 
computing commodities? What is the intellectual sub- 
stance of the discipline? Is it lasting, or will it fade 
within a generation? Do core curricula in computer 
science and engineering accurately reflect the field? 
How can theory and lab work be integrated in a com- 
puting curriculum? Do core curricula foster compe- 
tence in computing? 

We project an image of a technology-oriented disci- 
pline whose fundamentals are in mathematics and 
engineering-for example, we represent algorithms as 
the most basic objects of concern and programming and 
hardware design as the primary activities. The view 
that “computer science equals programming” is espe- 
cially strong in most of our current curricula: the intro- 
ductory course is programming, the technology is in 
our core courses, and the science is in our electives. 
This view blocks progress in reorganizing the curricu- 
lum and turns away the best students, who want a 
greater challenge. It denies a coherent approach to 
making experimental and theoretical computer science 
integral and harmonious parts of a curriculum. 

Those in the discipline know that computer science 
encompasses far more than programming-for example, 
hardware design, system architecture, designing operat- 
ing system layers, structuring a database for a specific 
application, and validating models are all part of the 
discipline, but are not programming. The emphasis on 
programming arises from our long-standing belief that 
programming languages are excellent vehicles for gain- 
ing access to the rest of the field, a belief that limits our 
ability to speak about the discipline in terms that reveal 
its full breadth and richness. 
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The field has matured enough that it is now possible 
to describe its intellectual substance in a new and com- 
pelling way. This realization arose in discussions 
among the heads of the Ph.D.-granting departments of 
computer science and engineering in their meeting in 
Snowbird, Utah, in July 1984. These and other similar 
discussions prompted ACM and the IEEE Computer 
Society to form task forces to create a new approach. 
In the spring of 1985, ACM President Adele Goldberg 
and ACM Education Board Chairman Robert Aiken ap- 
pointed this task force on the core of computer science 
with the enthusiastic cooperation of the IEEE Computer 
Society. At the same time, the Computer Society 
formed a task force on computing laboratories with the 
enthusiastic cooperation of the ACM. 

We hope that the work of the core task force, embod- 
ied in this report, will produce benefits beyond the 
original charter. By identifying a common core of sub- 
ject matter, we hope to streamline the processes of de- 
veloping curricula and model programs in the two soci- 
eties. The report can be the basis for future discussions 
of computer science and engineering as a profession, 
stimulate improvements in secondary school courses in 
computing, and can lead to a greater widespread appre- 
ciation of computing as a discipline. 

Our goal has been to create a new way of thinking 
about the field. Hoping to inspire general inquiry into 
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the nature of our discipline, we sought a framework, 
not a prescription; a guideline, not an instruction. We 
invite you to adopt this framework and adapt it to your 
own situation. 

We are pleased to present a new intellectual frame- 
work for our discipline and a new basis for our 
curricula. 

CHARTER OF THE TASK FORCE 
The task force was given three general charges: 

1. Present a description of computer science that em- 
phasizes fundamental questions and significant ac- 
complishments. The definition should recognize that 
the field is constantly changing and that what is said 
is merely a snapshot of an ongoing process of growth. 

2. Propose a teaching paradigm for computer science 
that conforms to traditional scientific standards, 
emphasizes the development of competence in the 
field, and harmoniously integrates theory, experi- 
mentation, and design. 

3. Give a detailed example of an introductory course 
sequence in computer science based on the curricu- 
lum model and the disciplinary description. 

We immediately extended our task to encompass both 
computer science and computer engineering, because 
we concluded that no fundamental difference exists be- 
tween the two fields in the core material. The differ- 
ences are manifested in the way the two disciplines 
elaborate the core: computer science focuses on analy- 
sis and abstraction; computer engineering on abstrac- 
tion and design. The phrase discipline of computing is 
used here to embrace all of computer science and 
engineering. 

Two important issues are outside the charter of this 
task force. First, the curriculum recommendations in 
this report deal only with the introductory course se- 
quence. It does not address the important, larger ques- 
tion of the design of the entire core curriculum, and 
indeed the suggested introductory course would be 
meaningless without a new design for the rest of the 
core. Second, our specification of an introductory 
course is intended to be an example of an approach to 
introduce students to the whole discipline in a rigorous 
and challenging way, an “existence proof” that our def- 
inition of computing can be put to work. We leave it to 
individual departments to apply the framework to de- 
velop their own introductory courses that meet local 
needs. 

PARADIGMS FOR THE DISCIPLINE 
The three major paradigms, or cultural styles, by which 
we approach our work provide a context for our defini- 
tion of the discipline of computing. The first paradigm, 
theory, is rooted in mathematics and consists of four 
steps followed in the development of a coherent, valid 
theory: 

(1) characterize objects of study (definition); 
(2) hypothesize possible relationships among them 

(theorem); 

(3) determine whether the relationships are true 
(proof); 

(4) interpret results. 

A mathematician expects to iterate these steps (e.g., 
when errors or inconsistencies are discovered. 

The second paradigm, abstraction (modeling), is rooted 
in the experimental scientific method and consists of 
four stages that are followed in the investigation of a 
phenomenon: 

(1) form a hypothesis; 
(2) construct a model and make a prediction; 
(3) design an experiment and collect data; 
(4) analyze results. 

A scientist expects to iterate these steps (e.g., when a 
model’s predictions disagree with experimental evi- 
dence). Even though “modeling” and “experimentation” 
might be appropriate substitutes, we have chosen the 
word “abstraction” for this paradigm because this usage 
is common in the discipline. 

The third paradigm, design, is rooted in engineering 
and consists of four steps followed in the construction 
of a system (or device) to solve a given problem: 

(1) state requirements; 
(2) state specifications; 
(3) design and implement the system; 
(4) test the system. 

An engineer expects to iterate these steps (e.g., when 
tests reveal that the latest version of the system does 
not satisfactorily meet the requirements). 

Theory is the bedrock of the mathematical sciences: 
applied mathematicians share the notion that science 
advances only on a foundation of sound mathematics. 
Abstraction (modeling) is the bedrock of the natural 
sciences: scientists share the notion that scientific prog- 
ress is achieved primarily by formulating hypotheses 
and systematically following the modeling process to 
verify and validate them. Likewise, design is the bed- 
rock of engineering: engineers share the notion that 
progress is achieved primarily by posing problems and 
systematically following the design process to construct 
systems that solve them. Many debates about the rela- 
tive merits of mathematics, science, and engineering 
are implicitly based on an assumption that one of the 
three processes (theory, abstraction, or design) is the 
most fundamental. 

Closer examination, however, reveals that in com- 
puting the three processes are so intricately intertwined 
that it is irrational to say that any one is fundamental. 
Instances of theory appear at every stage of abstraction 
and design, instances of modeling at every s,tage of the- 
ory and design, and instances of design at every stage of 
theory and abstraction. 

Despite their inseparability, the three paradigms are 
distinct from one another because they represent sepa- 
rate areas of competence. Theory is concerned with the 
ability to describe and prove relationships among ob- 
jects. Abstraction is concerned with the ability to use 
those relationships to make predictions that can be 
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compared with the world. Design is concerned with the 
ability to implement specific instances of those relation- 
ships and use them to perform useful actions. Applied 
mathematicians, computational scientists, and design 
engineers generally do not have interchangeable skills. 

Moreover, in computing we tend to study computa- 
tional aids that support people engaged in information- 
transforming processes. On the design side, for exam- 
ple, sophisticated VLSI design and simulation systems 
enable the efficient and correct design of microcir- 
cuitry, and programming environments enable the 
efficient design of software. On the modeling side, su- 
percomputers evaluate mathematical models and make 
predictions about the world, and networks help dissem- 
inate findings from scientific experiments. On the the- 
ory side, computers help prove theorems, check the 
consistency of specifications, check for counterexam- 
ples, and demonstrate test cases. 

Computing sits at the crossroads among the central 
processes of applied mathematics, science, and engi- 
neering. The three processes are of equal-and funda- 
mental-importance in the discipline, which is a 
unique blend of interaction among theory, abstraction, 
and design. The binding forces are a common interest 
in experimentation and design as information trans- 
formers, a common interest in computational support of 
the stages of those processes, and a common interest in 
efficiency. 

THE ROLE OF PROGRAMMING 
Many activities in computing are not programming-for 
example, hardware design, system architecture, operat- 
ing system structure, designing a database application, 
and validating models-therefore the notion that “com- 
puter science equals programming” is misleading. What 
is the role of programming in the discipline? In the 
curriculum? 

Clearly programming is part of the standard practices 
of the discipline and every computing major should 
achieve competence in it. This does not, however, im- 
ply that the curriculum should be based on program- 
ming or that the introductory courses should be pro- 
gramming courses. 

It is also clear that access to the distinctions of any 
domain is given through language, and that most of the 
distinctions of computing are embodied in program- 
ming notations. Programming languages are useful tools 
for gaining access to the distinctions of the discipline. 
We recommend, therefore, that programming be a part 
of the competence sought by the core curriculum, and 
that programming languages be treated as useful vehi- 
cles for gaining access to important distinctions of 
computing. 

A DESCRIPTION OF COMPUTING 
Our description of computing as a discipline consists 
of four parts: (1) requirements; (2) short definition; 
(3) division into subareas; and (4) elaboration of suba- 
reas. Our presentation consists of four passes, each 
going to a greater level of detail. 

What we say here is merely a snapshot of a changing 

and dynamic field. We intend this to be a “living defini- 
tion,” that can be revised from time to time to reflect 
maturity and change in the field. We expect revisions 
to occur most frequently in the details of the subareas, 
occasionally in the list of subareas, and rarely in the 
short definition. 

Requirements 
There are many possible ways to formulate a definition. 
We set five requirements for ours: 

1. It should be understandable by people outside the 
field. 

2. It should be a rallying point for people inside the 
field. 

3. It should be concrete and specific, 
4. It should elucidate the historical roots of the disci- 

pline in mathematics, logic, and engineering. 
5. It should set forth the fundamental questions and 

significant accomplishments in each area of the 
discipline. 

In the process of formulating a description, we consid- 
ered several other previous definitions and concluded 
that a description meeting these requirements must 
have several levels of complexity. The other definitions 
are briefly summarized here. 

In 1967, Newell, Perlis, and Simon [5] argued that 
computer science is the study of computers and the 
major phenomena that surround them, and that all the 
common objections to this definition could just as well 
be used to demonstrate that other sciences are not sci- 
ence. Despite their eloquence, too many people view 
this as a circular definition that seems flippant to out- 
siders. It is, however, a good starting point because 
the definition we present later can be viewed as an 
enumeration of the major phenomena surrounding 
computers. 

A slightly more elaborate version of this idea was 
recently used by the Computing Sciences Accreditation 
Board (CSAB), which said, “Computer science is the 
body of knowledge concerned with computers and 
computation. It has theoretical, experimental, and de- 
sign components and includes (1) theories for under- 
standing computing devices, programs, and systems; 
(2) experimentation for the development and testing of 
concepts; (3) design methodology, algorithms, and tools 
for practical realization; and (4) methods of analysis for 
verifying that these realizations meet requirements.” 

A third definition is, “Computer science is the study 
of knowledge representations and their implementa- 
tions.” This definition suffers from excessive abstrac- 
tion and few people would agree on the meaning of 
knowledge representation. A related example that suf- 
fers the same fate is, “Computer science is the study of 
abstraction and the mastering of complexity,” a state- 
ment that also applies to physics, mathematics, or 
philosophy. 

A final observation comes from Abelson and Suss- 
man, who say, “The computer revolution is a revolu- 
tion in the way we think and in the way we express 
what we think. The essence of this change is the emer- 
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gence of what might best be called procedural espiste- 
mology-the study of the structure of knowledge from 
an imperative point of view, as opposed to the more 
decla:rative point of view taken by classical mathemati- 
cal subjects. Mathematics provides a framework for 
dealing precisely with notions of ‘what is.’ Computation 
provides a framework for dealing precisely with notions 
of ‘how to’ [I].” 

Short Definition 
The d.iscipline of computing is the systematic study of 
algorithmic processes that describe and transform infor- 
mation: their theory, analysis, design, efficiency, imple- 
mentation, and application. The fundamental question 
underlying all of computing is, “What can be (effi- 
ciently) automated?” 

Division into Subareas 
We grappled at some length with the question of divid- 
ing the discipline into subareas. We began with a pref- 
erence for a small number of subareas, such as model 
versu.s implementation, or algorithm versus machine. 
However, the various candidates we devised were too 
abstract, the boundaries between divisions were too 
fuzzy, and most people would not have identified com- 
fortably with them. 

Then we realized that the fundamentals of the disci- 
pline are contained in three basic processes-theory, 
abstraction, and design-that are used by the discipli- 
nary subareas to accomplish their goals. Thus, a de- 
scription of the discipline’s subareas and their relation 
to these three basic processes would be useful. To qual- 
ify as a subarea, a segment of the discipline must satisfy 
four criteria: 

(I) underlying unity of subject matter; 
(2) substantial theoretical component; 
(3) significant abstractions; 
(4) important design and implementation issues. 

Moreover, we felt that each subarea should be identi- 
fied with a research community, or set of related com- 
munities, that sustains its own literature. 

Theory includes the processes for developing 
the underlying mathematics of the subarea. These 
processes are supported by theory from other areas. For 
example, the subarea of algorithms and data structures 
contains complexity theory and is supported by graph 
theory. Abstraction deals with modeling potential im- 
plementations. These models suppress detail while re- 
taining essential features; they are amenable to analysis 
and provide means for calculating predictions of the 
modeled system’s behavior. Design deals with the proc- 
ess of specifying a problem, transforming the problem 
statement into a design specification, and repeatedly 
inventing and investigating alternative solutions until a 
reliable, maintainable, documented, and tested design 
that meets cost criteria is achieved. 

We discerned nine subareas that cover the field: 

1. Algorithms and data structures 
2. Programming languages 

3. Architecture 
4. Numerical and symbolic computation 
5. Operating systems 
6. Software methodology and engineering 
7. Database and information retrieval systems 
8. Artificial intelligence and robotics 
9. Human-computer communication 

Elaboration of Subareas 
To present the content of the subareas, we found it 
useful to think of a 9 x 3 matrix, as shown in Figure 1. 
Each row is associated with a subarea, and theory, ab- 
straction, and design each define a column. 

Each square of the matrix will be filled in with spe- 
cific statements about that subarea component; these 
statements will describe issues of concern and signifi- 
cant accomplishments. 

Certain affinity groups in which there is scientific 
literature are not shown as subareas because they are 
basic concerns throughout the discipline. For example, 
parallelism surfaces in all subareas (there are parallel 
algorithms, parallel languages, parallel architectures, 
etc.) and in theory, abstraction, and design. !Similar con- 
clusions hold for security, reliability, and performance 
evaluation. 

Computer scientists will tend to associate with the 
first two columns of the matrix, and computer engi- 
neers with the last two. The full description of comput- 
ing, as specified here, is given in the appendix. 

CURRICULUM MODEL 

Competence in the Discipline 
The goal of education is to develop compete:nce in a 
domain. Competence, the capability for effective action 

1 Algorithms and data 
structures 

Theory Abstraction Design 

2 Programming languages 

3 Architecture 

4 Numerical and symbolic 
computation 

5 Operating systems 

6 Software methodology and 
engineering 

7 Databases and information 
retrieval 

8 Artificial intelligence and 
robotics 

9 Human-computer 
communication 

FIGURE 1. Definition Matrix for the Computing Discipline 
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is an assessment of individual performance against the 
standard practices of the field. The criteria for assess- 
ment are grounded in the history of the field. The edu- 
cational process that leads to competence has five steps: 
(1) motivate the domain; (2) demonstrate what can be 
accomplished in the domain; (3) expose the distinctions 
of the domain; (4) ground the distinctions in history; 
and (5) practice the distinctions [4]. 

This model has interesting implications for curricu- 
lum design. The first question it leads to is, In what 
areas of computing must majors be competent? There 
are two broad areas of competence: 

1. Discipline-Oriented Thinking: The ability to invent 
new distinctions in the field, leading to new modes 
of action and new tools that make those distinctions 
available for others to use. 

2. Tool Use: The ability to use the tools of the field for 
effective action in other domains. 

We suggest that discipline-oriented thinking is the pri- 
mary goal of a curriculum for computing majors, and 
that majors must be familiar enough with the tools to 
work effectively with people in other disciplines to help 
design modes of effective action in those disciplines. 

The inquiry into competence reveals a number of 
areas where current core curricula in computing is 
inadequate. For example, the historical context of the 
computing field is often deemphasized, leaving many 
graduates ignorant of computing history and destined to 
repeat its mistakes. Many computing graduates wind up 
in business data processing, a domain in which most 
computing curricula do not seek to develop compe- 
tence; whether computing departments or business de- 
partments should develop that competence is an old 
controversy. Discipline-oriented thinking must be based 
on solid mathematical foundations, yet theory is not an 
integral part of most computing curricula. The standard 
practices of the computing field include setting up and 
conducting experiments, contributing to team projects, 
and interacting with other disciplines to support their 
interests in effective use of computing, but most curric- 
ula neglect laboratory exercises, team projects, or inter- 
disciplinary studies. 

The question of what results should be achieved by 
computing curricula has not been explored thoroughly 
in past discussions, and we will not attempt a thorough 
analysis here. We do strongly recommend that this 
question be among the first considered in the design of 
new core curricula for computing. 

Lifelong Learning 
The curriculum should be designed to develop an ap- 
preciation for learning which graduates will carry with 
them throughout their careers. Many courses are de- 
signed with a paradigm that presents “answers” in a 
lecture format, rather than focusing on the process of 
questioning that underlies all learning. We recommend 
that the follow-on committee consider other teaching 
paradigms which involve processes of inquiry, an ori- 
entation to using the computing literature, and the 

development of a commitment to a lifelong process of 
learning. 

INTRODUCTORY SEQUENCE 
In this curriculum model, the motivation and demon- 
stration of the domain must precede instruction and 
practice in the domain. The purpose of the introductory 
course sequence is precisely this. The principal areas of 
computing-in which majors must develop compe- 
tence-must be presented to students with sufficient 
depth and rigor that they can appreciate the power of 
the areas and the benefits from achieving competence 
in them. The remainder of the curriculum must be 
carefully designed to systematically explore those 
areas, exposing new concepts and distinctions, and 
giving students practice in them. 

We therefore recommend that the introductory 
course consist of regular lectures and a closely coordi- 
nated weekly laboratory. The lectures should empha- 
size fundamentals; the laboratories technology and 
know-how. 

This model is traditional in the physical sciences and 
engineering: lectures emphasize enduring principles 
and concepts while laboratories emphasize the tran- 
sient material and skills relating to the current technol- 
ogy. For example, lectures would discuss the design 
and analysis of algorithms, or the organization of net- 
work protocols in functional layers. In the correspond- 
ing laboratory sessions, students would write programs 
for algorithms analyzed in lecture and measure their 
running times, or instal and test network interfaces and 
measure their packet throughputs. 

Within this recommendation, the first courses in 
computer science would not only introduce program- 
ming, algorithms, and data structures, but introduce 
material from all the other subdisciplines as well. 
Mathematics and other theory would be well integrated 
into the lectures at appropriate points. 

We recommend that the introductory course contain 
a rigorous, challenging survey of the whole discipline. 
The physics model, exemplified by the Feynman Lec- 
tures in Physics, is a paradigm for the introductory 
course we envisage. 

We emphasize that simply redesigning the introduc- 
tory course sequence following this recommendation 
without redesigning the entire undergraduate curricu- 
lum would be a serious mistake. The experience of 
physics departments contains many lessons for comput- 
ing departments in this regard. 

Prerequisites 
We assume that computing majors have a modest back- 
ground in programming in some language and some 
experience with computer-based tools such as word 
processors, spreadsheets, and databases. Given the 
widening use of computers in high schools and at 
home, it might seem that universities could assume 
that most incoming students have such a background 
and provide a “remedial” course in programming for 
the others. We have found, however, that the assump- 
tion of adequate high school preparation in program- 
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ming is quite controversial and there is evidence that 
adequate preparation is rare. We therefore recommend 
that c:omputing departments offer an introduction to 
programming and computer tools that would be a pre- 
requisite (or corequisite) for the introductory courses. 
We further recommend that departments provide an 
advanced placement procedure so that students with 
adequate high school preparation can bypass this 
course. 

Formal prerequisites and corequisites in mathematics 
are more difficult to state and will depend on local 
circumstances. However, accrediting boards in comput- 
ing require considerable mathematics, including dis- 
crete mathematics, differential and integral calculus, 
and probability and statistics. These requirements are 
often exceeded in the better undergraduate programs. 
In our description of a beginning computing curricu- 
lum, we have spelled out in some detail what mathe- 
matics is applicable in each of the nine identified areas 
of computing. Where possible we have displayed the 
required mathematical background for each of the 
teaching modules we describe. This will allow individ- 
ual departments to synchronize their own mathemati- 
cal requirements and courses with the material in the 
modules. In some cases it may be appropriate to intro- 
duce appropriate underlying mathematical topics as 
needed for the development of particular topics in com- 
puting. In general, we recommend that students see 
applications of relevant mathematics as early as possi- 
ble in their computing studies. 

Modular Organization 
The introductory sequence should bring out the under- 
lying unity of the field and should flow from topic to 
topic in a pedagogically natural way. It would therefore 
be inadequate to organize the course as a sequence of 
nine sections, one for each of the subareas; such a map- 
ping would appear to be a hodge-podge, with difficult 
transitions between sections. An ordering of topics that 
meet these requirements is: 

Fundamental algorithm concepts 
Computer organization (“von Neumann”) 
Mathematical programming 
Data structures and abstraction 
Limits of computability 
Operating systems and security 
Distributed computing and networks 
Models in artificial intelligence 
File and database systems 
Parallel computation 
Human interface 

We have grouped the topics into 11 modules. Each 
module includes challenging material representative of 
the subject matter without becoming a superficial sur- 
vey of every aspect or topic. Each module draws mate- 
rial from several squares of the definition matrix as 
appropriate. As a result, many modules will not corre- 
spond one-to-one with rows of the definition matrix. 
For example, the first module in our example course is 

entitled Fundamental Algorithm Concepts. It covers the 
role of formalism and theory, methods in programming, 
programming concepts, efficiency, and specific algo- 
rithms, draws information from the first, second, 
fourth, and sixth rows of the definition matrix and 
deals only with sequential algorithms. Later modules, 
on Distributed Computing and Networks, and on Paral- 
lel Computation, extend the material in the first mod- 
ule and draw new material from the third and fifth 
rows of the definition matrix. 

As a general approach, each module contains lectures 
that cover the required theory and most abstractions. 
Theory is generally not introduced until it is: needed. 
Each module is closely coupled with laboratory ses- 
sions, and the nature of the laboratory assignments is 
included with the module specifications. Our specifica- 
tion is drawn up for a three-semester course sequence 
containing 42 lectures and 35 scheduled laboratory ses- 
sions per semester. Our specification is not included 
here, but is in the full report. 

We reemphasize that this specification is intended 
only to be an example of a mapping from the discipli- 
nary description to an introductory course sequence, 
not a prescription for all introductory courses. Other 
approaches are exemplified by existing introductory 
curricula at selected colleges and universities. 

LABORATORIES 
We have described a curriculum that separates princi- 
ples from technology while maintaining coh.erence be- 
tween the two. We have recommended that lectures 
deal with principles and laboratories with technology, 
with the two being closely coordinated. 

The laboratories serve three purposes: 

Laboratories should demonstrate how principles cov- 
ered in the lectures apply to the design, implementa- 
tion, and testing of practical software and hardware. 
They should provide concrete experiences that help 
students understand abstract concepts. These experi- 
ences are essential to sharpen students’ intuition 
about practical computing, and to empha.size the in- 
tellectual effort in building correct, efficient com- 
puter programs and systems. 
Laboratories should emphasize processes leading to 
good computing know-how. They should emphasize 
programming, not programs; laboratory techniques; 
understanding of hardware capabilities; correct use 
of software tools; correct use of documentation; and 
proper documentation of experiments and projects. 
Many software tools will be required on host com- 
puters to assist in constructing, controlling, and 
monitoring experiments on attached subsystems; the 
laboratory should teach proper use of these tools: 
Laboratories should introduce experimental meth- 
ods, including use and design of experiments, soft- 
ware and hardware ‘monitors, statistical #analysis of 
results, and proper presentation of findings. Students 
should learn to distinguish careful experiments from 
casual observations. 
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To meet these goals, laboratory work should be care- 
fully planned and supervised. Students should attend 
labs at specified times, nominally three hours per week. 
Lab assignments should be planned, and written de- 
scriptions of the purposes and methodology of each 
experiment should be given to the students. The depth 
of description should be commensurate with students’ 
prior lab experience: more detail is required in early 
laboratories. Lab assignments should be carried out un- 
der the guidance of a lab instructor who ensures that 
each student follows correct methodology. 

2. Hardware and software must be fully maintained, 
Malfunctioning equipment will frustrate students 
and interfere with learning. Appropriate staff must 
be available to maintain the hardware and software 
used in the lab. The situation is analogous to labora- 
tories in other disciplines. 

The labs associated with the introductory courses 
will require close supervision and should contain well- 
planned activities. This implies that more staff will be 
required per student for these laboratories than for 
more advanced ones. 

The lab problems should be coordinated with mate- 
rial in the lecture parts of the course. Individual lab 
problems in general will deal with combinations of 
hardware and software. Some lab assignments empha- 
size technologies and tools that ease the software devel- 
opment process. Others emphasize analyzing and 
measuring existing software or comparing known algo- 
rithms. Others emphasize program development based 
on principles learned in class. 

3. Full functionality is important. (This includes ade- 
quate response time on shared systems.) Restricting 
students to small subsets of a language or system 
may be useful in initial contacts, but the restrictions 
should be lifted as the students progress. 

4. Good programming tools are needed. Compilers get a 
lot of attention, but other programming tools are 
used as often. In UNIX systems, for example, stu- 
dents should use editors like emacs and learn to use 
tools like the shell, grep, awk, and make. Storage 
and processing facilities must be sufficient to make 
such tools available for use in the lab. 

5. Adequate support for hardware and instrumentation 
must be provided. Some projects may require stu- 
dents to connect hardware units together, take 
measurements of signals, monitor data paths, and 
the like. A sufficient supply of small parts, connec- 
tors, cables, monitoring devices, and test instruments 
must be available. 

Laboratory assignments should be self-contained in 
the sense that an average student should be able to 
complete the work in the time allocated. Laboratory 
assignments should encourage students to discover and 
learn things for themselves. Students should be re- 
quired to maintain a proper lab book documenting ex- 
periments, observations, and data. Students should also 
be required to maintain their software and to build 
libraries that can be used in later lab projects. 

We expect that, in labs as in lectures, students will 
be assigned homework that will require using com- 
puters outside the supervised realm of a laboratory. In 
other words, organized laboratory sessions will supple- 
ment, not replace, the usual programming and other 
written assignments. 

The IEEE Computer Society Task Force on Goal Ori- 
ented Laboratory Development has studied this subject 
in depth. Their report includes a discussion of the re- 
sources (i.e., staff and facilities) needed for laboratories 
at all levels of the curriculum. 

ACCREDITATION 
This work has been conducted with the intent that 
example courses be consistent with current guidelines 
of the Computing Sciences Accreditation Board (CSAB). 
The details of the mapping of this content to CSAB 
guidelines does not fall within the scope of this com- 
mittee. 

In a substantial number of labs dealing with program 
development, the assignment should be to modify or 
complete an existing program supplied by the instruc- 
tor. This forces the student to read well-written pro- 
grams, provides experience with integration of soft- 
ware, and results in a larger and more satisfying 
program for the student. 

CONCLUSION 

Computing technology constantly changes. It is diffi- 
cult, therefore, to give a detailed specification of the 
hardware systems, software systems, instruments, and 
tools that ought to be in a laboratory. The choice of 
equipment and staffing in laboratories should be guided 
by the following principles: 

This report has been designed to provoke new thinking 
about computing as a discipline by exhibiting the disci- 
pline’s content in a way that emphasizes the funda- 
mental concepts, principles, and distinctions. It has also 
suggested a redesign of the core curriculum according 
to an education model used in other disciplines: dem- 
onstrating the existence of useful distinctions followed 
by practice that develops competence. The method is 
illustrated by a rigorous introductory course that puts 
the concepts and principles into the lectures and tech- 
nology into closely coordinated laboratories. 

1. Laboratories should be equipped with up-to-date 
systems and languages. Programming languages have 
a significant effect on shaping a student’s view of 
computing. Laboratories should deploy systems that 
encourage good habits in students; it is especially 
important to avoid outdated systems (hardware and 
software) in core courses. 

A department cannot simply replace its current intro- 
ductory sequence with the new one; it must redesign 
the curriculum so that the new introduction is part of a 
coherent whole. For this reason, we recommend that 
the ACM establish a follow-on committee to complete 
the redesign of the core curriculum. 

Many practical problems must be dealt with before a 
new curriculum model can become part of the field. 
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For example, 

1. Faculties will need to redesign their curricula based 
on a new conceotual formulation. 

4. Teaching assistants and faculty are not familiar with 
the new view. 

5. Good high school preparation in computing is rare. 

2. No textbooks or educational materials based on the We recognize that many of our recommendations are 
fra.mework proposed here are currently available. challenging and will require substantial work to imple- 

3. Most departments have inadequate laboratories, ment. We are convinced that the improvements in 
facilities, and materials for the educational task computing education from the proposals here are worth 
suggested here. the effort, and invite you to join us in achieving them. 

APPENDIX 

A DEFINITION OF COMPUTING AS A DISCIPLINE 

Computer science and engineering is the systematic 
study of algorithmic processes-their theory, analysis, 
design, efficiency, implementation, and application- 
that describe and transform information. The funda- 
mental question underlying all of computing is, What 
can be (efficiently) automated [Z, 31. This discipline was 
born in the early 1940s with the joining together of 
algorithm theory, mathematical logic, and the inven- 
tion of the stored-program electronic computer. 

The roots of computing extend deeply into mathe- 
matics and engineering. Mathematics imparts analysis 
to the field; engineering imparts design. The discipline 
embraces its own theory, experimental method, and 
engineering, in contrast with most physical sciences, 
which are separate from the engineering disciplines 
that apply their findings (e.g., chemistry and chemical 
engineering principles). The science and engineering 
are inseparable because of the fundamental interplay 
between the scientific and engineering paradigms 
within the discipline. 

For several thousand years, calculation has been a 
principal concern of mathematics. Many models of 
physical phenomena have been used to derive equa- 
tions .whose solutions yield predictions of those phe- 
nomena-for example, calculations of orbital trajecto- 
ries, weather forecasts, and fluid flows. Many general 
methods for solving such equations have been de- 
vised-for example, algorithms for systems of linear 
equations, differential equations, and integrating func- 
tions. For almost the same period, calculations that aid 
in the design of mechanical systems have been a princi- 
pal concern of engineering. Examples include algo- 
rithms for evaluating stresses in static objects, calculat- 
ing momenta of moving objects, and measuring 
distances much larger or smaller than our immediate 
perception. 

One product of the long interaction between engi- 
neering and mathematics has been mechanical aids for 
calculating. Some surveyors’ and navigators’ instru- 
ments date back a thousand years. Pascal and Leibniz 
built arithmetic calculators in the middle 1600s. In the 
183Os, Babbage conceived of an “analytical engine” that 
could mechanically and without error evaluate loga- 
rithms, trigonometric functions, and other general 
arithmetic functions. His machine, never completed, 
served as an inspiration for later work. In the 192Os, 

Bush constructed an electronic analog computer for 
solving general systems of differential equations. In the 
same period, electromechanical calculating machines 
capable of addition, subtraction, multiplicati.on, divi- 
sion, and square root computation became available. 
The electronic flip-flop provided a natural bridge from 
these machines to digital versions with no moving 
parts. 

Logic is a branch of mathematics concerned with cri- 
teria of validity of inference and formal principles of 
reasoning. Since the days of Euclid, it has been a tool 
for rigorous mathematical and scientific argument. In 
the 19th century a search began for a universal system 
of logic that would be free of the incompletenesses ob- 
served in known deductive systems. In a complete sys- 
tem, it would be possible to determine mechanically 
whether any given statement is either true or false. In 
1931, Godel published his “incompleteness theorem,” 
showing that there is no such system. In the late 193Os, 
Turing explored the idea of a universal computer that 
could simulate any step-by-step procedure of any other 
computing machine. His findings were similar to 
Godel’s: some well-defined problems cannot be solved 
by any mechanical procedure. Logic is important not 
only because of its deep insight into the limits of auto- 
matic calculation, but also because of its ins:ight that 
strings of symbols, perhaps encoded as numbers, can be 
interpreted both as data and as programs. 

This insight is the key idea that distinguishes the 
stored program computer from calculating machines. 
The steps of the algorithm are encoded in a machine 
representation and stored in the memory for later de- 
coding and execution by the processor. The machine 
code can be derived mechanically from a higher-level 
symbolic form, the programming language. 

It is the explicit and intricate intertwining of the an- 
cient threads of calculation and logical symb’ol manipu- 
lation, together with the modern threads of electronics 
and electronic representation of information, that gave 
birth to the discipline of computing. 

We identified nine subareas of computing: 

1. Algorithms and data structures 
2. Programming languages 
3. Architecture 
4. Numerical and symbolic computation 
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5. Operating systems 
6. Software methodology and engineering 
7. Databases and information retrieval 
8. Artificial intelligence and robotics 
9. Human-Computer communication 

Each has an underlying unity of subject matter, a sub- 
stantial theoretical component, significant abstractions, 
and substantial design and implementation issues. The- 
ory deals with the underlying mathematical develop- 
ment of the subarea and includes supporting theory 
such as graph theory, combinatorics, or formal lan- 
guages. Abstraction (or modeling) deals with models of 
potential implementations; the models suppress detail, 
while retaining essential features, and provide means 
for predicting future behavior. Design deals with the 
process of specifying a problem, deriving requirements 
and specifications, iterating and testing prototypes, and 
implementing a system. Design includes the experi- 
mental method, which in computing comes in several 
styles: measuring programs and systems, validating hy- 
potheses, and prototyping to extend abstractions to 
practice. 

Although software methodology is essentially con- 
cerned with design, it also contains substantial ele- 
ments of theory and abstraction. For this reason, we 
have identified it as a subarea. On the other hand, 
parallel and distributed computation are issues that 
pervade all the subareas and all their components (the- 
ory, abstraction, and design); they have been identified 
neither as subareas nor as subarea components. 

The subsequent numbered sections provide the de- 
tails of each subarea in three parts-theory, abstrac- 
tion, and design. The boundaries between theory and 
abstraction, and between abstraction and design, are 
necessarily fuzzy; it is a matter of personal taste where 
some of the items go. 

Our intention is to provide a guide to the discipline 
by showing its main features, not a detailed map. It is 
important to remember that this guide to the discipline 
is not a plan for a course or a curriculum; it is merely a 
framework in which a curriculum can be designed. It is 
also important to remember that this guide to the disci- 
pline is a snapshot of an organism undergoing constant 
change. It will require reevaluation and revision at reg- 
ular intervals. 

1. ALGORITHMS AND DATA STRUCTURES 
This area deals with specific classes of problems and 
their efficient solutions. Fundamental questions in- 
clude: For given classes of problems, what are the best 
algorithms? How much storage and time do they re- 
quire? What is the tradeoff between space and time? 
What is the best way to access the data? What is 
the worst case of the best algorithms? How well do 
algorithms behave on average? How general are algo- 
rithms-i.e., what classes of problems can be dealt with 
by similar methods? 

1.1 Theory 
Major elements of theory in the area of algorithms and 
data structures are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

Computability theory, which defines what machines 
can and cannot do. 
Computational complexity theory, which tells how 
to measure the time and space requirements of com- 
putable functions and relates a problem’s size with 
the best- or worst-case performance of algorithms 
that solve that problem, and provides methods for 
proving lower bounds on any possible solution to a 
problem. 
Time and space bounds for algorithms and classes of 
algorithms. 
Levels of intractability: for example, classes of prob- 
lems solvable deterministically in polynomially 
bounded time (P-problems); those solvable nondeter- 
ministically in polynomially bounded time (NP- 
problems); and those solvable efficiently by parallel 
machines (NC-problems). 
Parallel computation, lower bounds, and mappings 
from dataflow requirements of algorithms into com- 
munication paths of machines. 
Probabilistic algorithms, which give results correct 
with sufficiently high probabilities much more effi- 
ciently (in time and space) than determinate algo- 
rithms that guarantee their results. Monte Carlo 
methods. 
Cryptography. 
The supporting areas of graph theory, recursive 
functions, recurrence relations, combinatorics, cal- 
culus, induction, predicate and temporal logic, se- 
mantics, probability, and statistics. 

1.2 Abstraction 
Major elements of abstraction in the area of algorithms 
and data structures are 

1. Efficient, optimal algorithms for important classes of 
problems and analyses for best, worst, and average 
performance. 
Classifications of the effects of control and data 
structure on time and space requirements for var- 
ious classes of problems. 
Important classes of techniques such as divide-and- 
conquer, Greedy algorithms, dynamic programming, 
finite state machine interpreters, and stack machine 
interpreters. 
Parallel and distributed algorithms; methods of parti- 
tioning problems into tasks that can be executed in 
separate processors. 

1.3 Design 
Major elements of design and experimentation in the 
area of algorithms and data structures are: 

1. Selection, implementation, and testing of algorithms 
for important classes of problems such as searching, 
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sorting, random-number generation, and textual 
pattern matching. 

2. Implementation and testing of general methods 
applicable across many classes of problems, such as 
hashing, graphs, and trees. 

3. Implementation and testing of distributed algorithms 
such as network protocols, distributed data updates, 
semaphores, deadlock detectors, and synchroniza- 
tion methods. 

4. Implementation and testing of storage managers such 
as garbage collection, buddy system, lists, tables, and 
p@w 

6. Extensive experimental testing of heuristic algo- 
rithms for combinatorial problems. 

6. Cryptographic protocols that permit secure authen- 
tication and secret communication. 

2. PROGRAMMING LANGUAGES 
This area deals with notations for virtual machines that 
execute algorithms, with notations for algorithms and 
data, and with efficient translations from high-level 
languages into machine codes. Fundamental questions 
include: What are possible organizations of the virtual 
mach:ine presented by the language (data types, opera- 
tions, control structures, mechanisms for introducing 
new types and operations)? How are these abstractions 
implemented on computers? What notation (syntax) 
can be used effectively and efficiently to specify what 
the computer should do? 

2.1 Theory 
Major elements of theory in the area of programming 
languages are: 

1. Formal languages and automata, including theories 
of parsing and language translation. 

2, Turing machines (base for procedural languages), 
Post Systems (base for string processing languages), 
X-calculus (base for functional languages). 

3. Formal semantics: methods for defining mathemati- 
cal models of computers and the relationships 
among the models, language syntax, and implemen- 
tation. Primary methods include denotational, alge- 
braic, operational, and axiomatic semantics. 

4. As supporting areas: predicate logic, temporal logic, 
modern algebra and mathematical induction. 

2.2 Abstraction 
Major elements of abstraction in the area of program- 
ming languages include: 

1. Classification of languages based on their syntactic 
and dynamic semantic models; e.g., static typing, 
dynamic typing, functional, procedural, object- 
oriented, logic, specification, message passing, and 
dataflow. 

2. Classification of languages according to intended 
application area; e.g., business data processing, sim- 
ulation, list processing, and graphics. 

3. Classification of major syntactic and semantic 
models for program structure; e.g., procedure hierar- 
chies, functional composition, abstract data types, 
and communicating parallel processes. 

4. Abstract implementation models for each major type 
of language. 

5. Methods for parsing, compiling, interpretation, and 
code optimization. 

6. Methods for automatic generation of parsers, scan- 
ners, compiler components, and compilers. 

2.3 Design 
Major elements of design and experimentation in the 
area of programming languages are: 

1. 

2. 

3. 
4. 

5. 

6. 

Specific languages that bring together a particular 
abstract machine (semantics) and syntax to form a 
coherent implementable whole. Examples: proce- 
dural (COBOL, FORTRAN, ALGOL, Pascal, Ada, C), 
functional (LISP), dataflow (SISAL, VAL), object- 
oriented (Smalltalk, CLU), logic (Prolog), strings 
(SNOBOL), and concurrency (CSP, Occam, Concur- 
rent Pascal, Modula 2). 
Specific implementation methods for partic:ular 
classes of languages: run-time models, static and dy- 
namic execution methods, typing checking, storage 
and register allocation, compilers, cross compilers, 
and interpreters, systems for finding parallelism in 
programs. 
Programming environments. 
Parser and scanner generators (e.g., YACC, LEX), 
compiler generators. 
Programs for syntactic and semantic error checking, 
profiling, debugging, and tracing. 
Applications of programming-language methods to 
document-processing functions such as c:reating 
tables, graphs, chemical formulas, spreadsheets 
equations, input and output, and data ha:ndling. 
Other applications such as statistical processing. 

3. ARCHITECTURE 
This area deals with methods of organizing hardware 
(and associated software) into efficient, relialble systems. 
Fundamental questions include: What are good meth- 
ods of implementing processors, memory, and commu- 
nication in a machine? How do we design and control 
large computational systems and convincingly demon- 
strate that they work as intended despite errors and 
failures? What types of architectures can efficiently 
incorporate many processing elements that can work 
concurrently on a computation? How do we measure 
performance? 

3.1 Theory 
Major elements of theory in the area of architecture 
are: 

1. Boolean algebra. 
2. Switching theory. 
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3. Coding theory. 
4. Finite state machine theory. 
5. The supporting areas of statistics, probability, 

queueing, reliability theory, discrete mathematics, 
number theory, and arithmetic in different number 
systems. 

3.2 Abstraction 
Major elements of abstraction in the area of architec- 
ture are: 

1, 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

Finite state machine and Boolean algebraic models 
of circuits that relate function to behavior. 
Other general methods of synthesizing systems from 
basic components. 
Models of circuits and finite state machines for com- 
puting arithmetic functions over finite fields. 
Models for data path and control structures. 
Optimizing instruction sets for various models and 
workloads. 
Hardware reliability: redundancy, error detection, 
recovery, and testing. 
Space, time, and organizational tradeoffs in the 
design of VLSI devices. 
Organization of machines for various computational 
models: sequential, dataflow, list processing, array 
processing, vector processing, and message-passing. 
Identification of design levels; e.g., configuration, 
program, instruction set, register, and gate. 

3.3 Design 
Major elements of design and experimentation in the 
area of architecture are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

4. 

Hardware units for fast computation; e.g., arithmetic 
function units, cache. 
The so-called von Neumann machine (the single- 
instruction sequence stored program computer); 
RISC and CISC implementations. 
Efficient methods of storing and recording informa- 
tion, and detecting and correcting errors. 
Specific approaches to responding to errors: recov- 
ery, diagnostics, reconfiguration, and backup proce- 
dures. 
Computer aided design (CAD) systems and logic sim- 
ulations for the design of VLSI circuits. Production 
programs for layout, fault diagnosis. Silicon compi- 
lers. 
Implementing machines in various computational 
models; e.g., dataflow, tree, LISP, hypercube, vector, 
and multiprocessor. 
Supercomputers, such as the Cray and Cyber ma- 
chines. 

NUMERICAL AND SYMBOLIC COMPUTATION 
This area deals with general methods of efficiently and 4. Symbolic manipulators, such as MACSYMA and RE- 
accurately solving equations resulting from mathemati- DUCE, capable of powerful and nonobvious manipu- 
cal models of systems. Fundamental questions include: lations, notably differentiations, integrations, and 
How can we accurately approximate continuous or infi- reductions of expressions to minimal terms. 

nite processes by finite discrete processes? How do we 
cope with the errors arising from these approximations? 
How rapidly can a given class of equations be solved for 
a given level of accuracy? How can symbolic manipula- 
tions on equations, such as integration, differentiation, 
and reduction to minimal terms, be carried out? How 
can the answers to these questions be incorporated into 
efficient, reliable, high-quality mathematical software 
packages? 

4.1 Theory 
Major elements of theory in the area of numerical and 
symbolic computation are: 

1. Number theory. 
2. Linear algebra. 
3. Numerical analysis. 
4. Nonlinear dynamics. 
5. The supporting areas of calculus, real analysis, com- 

plex analysis, and algebra. 

4.2 Abstraction 
Major elements of abstraction in the area of numerical 
and symbolic computation are: 

Formulations of physical problems as models in con- 
tinuous (and sometimes discrete) mathematics. 
Discrete approximations to continuous problems. In 
this context, backward error analysis, error propaga- 
tion and stability in the solution of linear and non- 
linear systems. Special methods in special cases, 
such as Fast Fourier Transform and Poisson solvers. 
The finite element model for a large class of prob- 
lems specifiable by regular meshes and boundary 
values. Associated iterative methods and conver- 
gence theory: direct, implicit, multigrids, rates of 
convergence. Parallel solution methods. Automatic 
grid refinement during numerical integration. 
Symbolic integration and differentiation. 

4.3 Design 
Major elements of design and experimentation in the 
area of numerical and symbolic computation are: 

1. High-level problem formulation systems such as 
CHEM and WEB. 

2. Specific libraries and packages for linear algebra, 
ordinary differential equations, statistics, nonlinear 
equations, and optimizations; e.g., LINPACK, 
EISPACK, ELLPACK. 

3. Methods of mapping finite element algorithms to 
specific architectures-e.g., multigrids on hyper- 
cubes. 
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5. OIPERATING SYSTEMS 
This area deals with control mechanisms that allow 
multiple resources to be efficiently coordinated in the 
execution of programs. Fundamental questions include: 
Whai. are the visible objects and permissible operations 
at each level in the operation of a computer system? 
For each class of resource (objects visible at some 
level), what is a minimal set of operations that permit 
their effective use? How can interfaces be organized so 
that users deal only with abstract versions of resources 
and not with physical details of hardware? What are 
effective control strategies for job scheduling, memory 
management, communications, access to software re- 
sources, communication among concurrent tasks, relia- 
bility, and security? What are the principles by which 
systems can be extended in function by repeated appli- 
cation of a small number of construction rules? How 
should distributed computations be organized so that 
many autonomous machines connected by a communi- 
cation network can participate in a computation, with 
the details of network protocols, host locations, band- 
widths, and resource naming being mostly invisible? 

5.1 Theory 7. 
Major elements of theory in the area of operating sys- 
tems are: 

1. 

2. 
3. 

4. 
5. 

Concurrency theory: synchronization, determinacy, 
and deadlocks. 
Scheduling theory, especially processor scheduling. 
Program behavior and memory management theory, 
inc:luding optimal policies for storage allocation. 
Performance modeling and analysis. 
The supporting areas of bin packing, probability, 
queueing theory, queueing networks, communica- 
tion and information theory, temporal logic, and 
cryptography. 

5.2 Abstraction 
Major elements of abstraction in the area of operating 
systems are: 

1. 

2. 

3. 

4. 

5. 

Abstraction principles that permit users to operate 
on idealized versions of resources without concern 
for physical details (e.g., process rather than proces- 
sor, virtual memory rather than main-secondary 
hierarchy, files rather than disks). 
Binding of objects perceived at the user interface to 
internal computational structures. 
Models for important subproblems such as process 
ma.nagement, memory management, job scheduling, 
secondary storage management, and performance 
analysis. 
Models for distributed computation; e.g., clients and 
servers, cooperating sequential processes, message- 
passing, and remote procedure calls. 
Models for secure computing; e.g., access controls, 
authentication, and communication. 

6. Networking, including layered protocols, naming, 
remote resource usage, help services, and local net- 
work protocols such as token-passing and shared 
buses. 

5.3 Design 
Major elements of design and experimentation in the 
area of operating systems are: 

1. 

2. 

3. 

4. 
5. 

6. 

Prototypes of time sharing systems, automatic stor- 
age allocators, multilevel schedulers, memory man- 
agers, hierarchical file systems and other important 
system components that have served as bases for 
commercial systems. 
Techniques for building operating system.s such as 
UNIX, Multics, Mach, VMS, and MS-DOS. 
Techniques for building libraries of utilities; e.g., 
editors, document formatters, compilers, linkers, and 
device drivers. 
Files and file systems. 
Queueing network modeling and simulation pack- 
ages to evaluate performance of real systems. 
Network architectures such as ethernet, FDDI, token 
ring nets, SNA, and DECNET. 
Protocol techniques embodied in the Department of 
Defense protocol suite (TCP/IP), virtual circuit pro- 
tocols, internet, real time conferencing, and X.25. 

6. SOFTWARE METHODOLOGY AND 
ENGINEERING 
This area deals with the design of programs and large 
software systems that meet specifications and are safe, 
secure, reliable, and dependable. Fundamental ques- 
tions include: What are the principles behind the de- 
velopment of programs and programming systems? How 
does one prove that a program or system meets its spec- 
ifications? How does one develop specifications that 
do not omit important cases and can be anal.yzed for 
safety? How do software systems evolve through dif- 
ferent generations? How can software be designed for 
understandability and modifiability? 

6.1 Theory 
Major elements of theory in the area of software meth- 
odology and tools are: 

1. Program verification and proof. 
2. Temporal logic. 
5. Reliability theory. 
4. The supporting areas of predicate calculus, axio- 

matic semantics, and cognitive psychology. 

6.2 Abstraction 
Major elements of abstraction in the area of software 
methodology and tools are: 

1. Specification methods, such as predicate trans- 
formers, programming calculi, abstract data types, 
and Floyd-Hoare axiomatic notations. 

2. Methodologies such as stepwise refinement, modular 
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3. 

4. 

5. 
6. 

7. 

8. 

design, modules, separate compilation, information- 
hiding, dataflow, and layers of abstraction. 
Methods for automating program development; e.g., 
text editors, syntax-directed editors, and screen edi- 
tors. 
Methodologies for dependable computing; e.g., fault 
tolerance, security, reliability, recovery, N-version 
programming, multiple-way redundancy, and check- 
pointing. 
Software tools and programming environments. 
Measurement and evaluation of programs and sys- 
tems. 
Matching problem domains through software sys- 
tems to particular machine architectures. 
Life cycle models of software projects. 

6.3 Design 
Major elements of design and experimentation in the 
area of software methodology and tools are: 

1. 

2. 

3. 

4. 

5. 

Specification languages (e.g., PSL 2, IMA JO), config- 
uration management systems (e.g., in Ada APSE), 
and revision control systems (e.g., RCS, SCCS). 
Syntax directed editors, line editors, screen editors, 
and word processing systems. 
Specific methodologies advocated and used in prac- 
tice for software development; e.g., HDM and those 
advocated by Dijkstra, Jackson, Mills, or Yourdon. 
Procedures and practices for testing (e.g., walk- 
through, hand simulation, checking of interfaces be- 
tween modules, program path enumerations for test 
sets, and event tracing), quality assurance, and proj- 
ect management. 
Software tools for program development and debug- 
ging, profiling, text formatting, and database manip- 
ulation. 

6. Specification of criteria levels and validation proce- 
dures for secure computing systems, e.g., Depart- 
ment of Defense. 

7. 
8. 

Design of user interfaces. 
Methods for designing very large systems that are 
reliable, fault tolerant, and dependable. 

7. DATABASE AND INFORMATION RETRIEVAL 
SYSTEMS 
This area deals with the organization of large sets of 
persistent, shared data for efficient query and update. 
Fundamental questions include: What modeling con- 
cepts should be used to represent data elements and 
their relationships? How can basic operations such as 
store, locate, match, and retrieve be combined into ef- 
fective transactions? How can these transactions inter- 
act effectively with the user? How can high-level quer- 
ies be translated into high-performance programs? 
What machine architectures lead to efficient retrieval 
and update? How can data be protected against unau- 
thorized access, disclosure, or destruction? How can 
large databases be protected from inconsistencies due 
to simultaneous update? How can protection and per- 
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formance be achieved when the data are distributed 
among many machines? How can text be indexed and 
classified for efficient retrieval? 

7.1 Theory 
Major elements of theory in the area of databases and 
information retrieval systems are: 

1. 
2. 
3. 

Relational algebra and relational calculus. 
Dependency theory. 
Concurrency theory, especially serializable transac- 
tions, deadlocks, and synchronized updates of multi- 
ple copies. 

4. Statistical inference. 
5. Sorting and searching. 
6. Performance analysis 
7. As supporting theory: cryptography. 

7.2 Abstraction 
Major elements of abstraction in the area of databases 
and information retrieval systems are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Models for representing the logical structure of data 
and relations among the data elements, including 
the relational and entity-relationship models. 
Representations of files for fast retrieval, such as 
indexes, trees, inversions, and associative stores. 
Methods for assuring integrity (consistency) of the 
database under updates, including concurrent up- 
dates of multiple copies. 
Methods for preventing unauthorized disclosure or 
alteration and for minimizing statistical inference. 
Languages for posing queries over databases of dif- 
ferent kinds (e.g., hypertext, text, spatial, pictures, 
images, rule-sets). Similarly for information retrieval 
systems. 
Models, such as hypertext, which allow documents 
to contain text at multiple levels and to include 
video, graphics, and voice. 
Human factors and interface issues. 

7.3 Design 
Major elements of design in the area of database and 
information retrieval systems are: 

1. Techniques for designing databases for relational, 
hierarchical, network, and distributed implementa- 
tions. 

2. Techniques for designing database systems such as 
INGRES, System R, dBase III, and DB-2. 

3. Techniques for designing information retrieval sys- 
tems such as LEXIS, Osiris, and Medline. 

4. Design of secure database systems. 
5. Hypertext systems such as NLS, NoteCards, Interme- 

dia, and Xanadu. 
6. Techniques to map large databases to magnetic disk 

stores. 
7. Techniques for mapping large, read-only databases 

onto optical storage media-e.g., CD/ROM and 
WORMS. 
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8. AIRTIFICIAL INTELLIGENCE AND ROBOTICS 
This area deals with the modeling of animal and hu- 
man (intelligent) behavior. Fundamental questions in- 
clude: What are basic models of behavior and how do 
we build machines that simulate them? To what extent 
is intelligence described by rule evaluation, inference, 
deduction, and pattern computation? What is the ulti- 
mate performance of machines that simulate behavior 
by these methods? How are sensory data encoded so 
that similar patterns have similar codes? How are 
motor codes associated with sensory codes? What are 
architectures for learning systems, and how do those 
systems represent their knowledge of the world? 

8.1 Theory 
Major elements of theory in the area of artificial intelli- 
gence and robotics are: 

1. 
2. 
3. 
4. 

5. 

6. 

Logic; e.g., monotonic, nonmonotonic, and fuzzy. 
Conceptual dependency. 
Cognition. 
Syntactic and semantic models for natural language 
understanding. 
Kinematics and dynamics of robot motion and world 
models used by robots. 
The supporting areas of structural mechanics, graph 
theory, formal grammars, linguistics, philosophy, 
and psychology. 

8.2 Abstraction 
Major elements of abstraction in the area of artificial 
intelligence and robotics are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Knowledge representation (e.g., rules, frames, logic) 
and methods of processing them (e.g., deduction, 
inference). 
Models of natural language understanding and natu- 
ral language representations, including phoneme 
representations; machine translation. 
Speech recognition and synthesis, translation of text 
to speech. 
Reasoning and learning models; e.g., uncertainty, 
nonmonotonic logic, Bayesian inference, beliefs. 
Heuristic search methods, branch and bound, con- 
trol search. 
Machine architectures that imitate biological sys- 
tems, e.g., neural networks, connectionism, sparse 
distributed memory. 
Models of human memory, autonomous learning, 
and other elements of robot systems. 

8.3 Design 
Major elements of design and experimentation in artifi- 
cial intelligence and robotics include: 

1. Techniques for designing software systems for logic 
programming, theorem proving, and rule evaluation. 

2. Techniques for expert systems in narrow domains 
(e.g., Mycin, Xcon) and expert system shells that can 
be programmed for new domains. 

3. Implementations of logic programming (e.g, 
PROLOG). 

4. Natural language understanding systems (e.g., Mar- 
gie, SHRDLU, and preference semantics). 

5. Implementations of neural networks and sparse dis- 
tributed memories. 

6. Programs that play checkers, chess, and other games 
of strategy. 

7. Working speech synthesizers, recognizers. 
8. Working robotic machines, static and mobile. 

9. HUMAN-COMPUTER COMMUNICATION 
This area deals with the efficient transfer of informa- 
tion between humans and machines via various 
human-like sensors and motors, and with information 
structures that reflect human conceptualizations. Fun- 
damental questions include: What are efficient methods 
of representing objects and automatically creating pic- 
tures for viewing? What are effective methods for re- 
ceiving input or presenting output? How ca:n the risk of 
misperception and subsequent human error be mini- 
mized? How can graphics and other tools be used to 
understand physical phenomena through information 
stored in data sets? 

9.1 Theory 
Major elements of theory in human-computer commu- 
nication are: 

1. Geometry of two and higher dimensions including 
analytic, projective, affine, and computational 
geometries. 

2. Color theory. 
3. Cognitive psychology. 
4. The supporting areas of Fourier analysis, linear alge- 

bra, graph theory, automata, physics, and analysis. 

9.2 Abstraction 
Major elements of abstraction in the area of human- 
computer communication are: 

1. 

2. 
3. 
4. 
5. 

Algorithms for displaying pictures including meth- 
ods for smoothing, shading, hidden lines, ray tracing, 
hidden surfaces, transparent surfaces, shadows, 
lighting, edges, color maps, representations by 
splines, rendering, texturing, antialiasing, coherence, 
fractals, animation, representing pictures as hierar- 
chies of objects. 
Models for computer-aided design (CAD). 
Computer representations of physical objects. 
Image processing and enhancement methods. 
Man-machine communication, including psycholog- 
ical studies of modes of interaction that reduce hu- 
man error and increase human productivity. 
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9.3 Design 4. 
Major elements of design and experimentation in the 
area of human-computer communication are: 

Implementation of graphics algorithms on various 
graphics devices, including vector and raster dis- 
plays and a range of hardcopy devices. 
Design and implementation of experimental graphics 
algorithms for a growing range of models and phe- 
nomena. 
Proper use of color graphics for displays; accurate 
reproduction of colors on displays and hardcopy 
devices. 

5. 

6. 

7. 
6. 

Graphics standards (e.g., GKS, PHIGS, VDI), graphics 
languages (e.g., PostScript), and special graphics 
packages (e.g., MOGLI for chemistry). 
Implementation of various user interface techniques 
including direct manipulation on bitmapped devices 
and screen techniques for character devices. 
Implementation of various standard file interchange 
formats for information transfer between differing 
systems and machines. 
Working CAD systems. 
Working image enhancement systems (e.g., at JPL for 
pictures received from space probes). 
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