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Constructivism is a theory of learning, which claims that stu-
dents construct knowledge rather than merely receive and
store knowledge transmitted by the teacher. Constructivism
has been extremely influential in science and mathematics
education, but much less so in computer science education
(CSE). This paper surveys constructivism in the context of
CSE, and shows how the theory can supply a theoretical ba-
sis for debating issues and evaluating proposals. An analysis
of constructivism in computer science education leads to two
claims: (a) students do not have an effective model of a com-
puter, and (b) computers form an accessible ontological real-
ity. The conclusions from these claims are that: (a) models
must be explicitly taught, (b) models must be taught before
abstractions, and (c) the seductive reality of the computer
must not be allowed to supplant construction of models.

The dominant theory of learning today is called constructivism. This
theory claims that knowledge is actively constructed by the student, not
passively absorbed from textbooks and lectures. Since the construction
builds recursively on knowledge that the student already has, each student
will construct an idiosyncratic version of knowledge. To the extent that
such knowledge is not identical with “standard” scientific knowledge, the
student is said to have misconceptions. Teaching techniques derived from
the theory of constructivism are supposed to be more successful than tradi-
tional techniques, because they explicitly address the inevitable process of
knowledge construction.
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Constructivism has been intensively studied by researchers of science
education (Glynn, Yeany & Britton, 1991) and mathematics education
(Davis, Maher, & Noddings, 1990; Ernest, 1994), to the extent that “radical
constructivism represents the state of the art in epistemological theories for
mathematics and science education’’ (Ernest, 1995, p. 475). However, there
has been much less work on constructivism in computer science education
(CSE).

This article is logically divided into two parts. The first part—after a
motivating example—is a survey of the theory of constructivism and its ap-
plication in science education. The second part of the article contains the
author’s analysis of the theory in the context of computer science and his
attempts to apply the theory to issues that are of current interest in CSE.

The discussion is concentrated within the framework of novice pro-
grammers, but constructivist principles are applicable at all levels of com-
puter science education. Given the rapid rate of change of software tools
and applications, most software engineers in industry and business are con-
tinually engaged in education: not only in formal training sessions, but
also—perhaps more importantly—in the development of manuals, interfac-
es, and help files. They will find the theory and its applications to be both
thought-provoking and relevant to their day-to-day work.

CSE (though not perhaps theoretical computer science) probably has
more in common with engineering education than with science education.
Readers with a background in engineering are invited to speculate about the
applicability of these analyses to their fields.

Previous Work

There is a large amount of literature on the psychology of program-
ming (Hoc, Green, Samurçay, & Gilmore, 1990; Soloway & Sphorer, 1989;
Mayer, 1988); in particular, researchers interested in teaching programming
to children or to nonmajors are often cognitive psychologists deeply im-
mersed in Piagetian principles. Occasionally, these researchers explicitly
acknowledge their commitment to constructivist principles (diSessa, Abel-
son, & Ploger, 1991, p. 12).

The literature on constructivism in CSE is in no way comparable with
the vast literature in mathematics and physics education. Even today, a
search of “constructivism” in the ACM Digital Library returns only a hand-
ful of papers. While many computer science educators have been influ-
enced by constructivism, only recently has this been explicitly discussed in
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published work (Boyle, 1996; Brandt, 1997; Gray, Boyle, & Smith, 1998;
Hadjerrouit, 1998).

Motivation

What You See Is What You Get (WYSIWYG) word processors are
considered to be the epitome of user-friendliness, because working with
them is supposed to be exactly analogous to writing with pen or pencil on a
sheet of paper—a routine familiar to everyone who has graduated from ele-
mentary school. But consider the following scenario. You type in the title of
your term paper, select the text and request boldface font. Unfortunately, as
you begin to type the text of the paper, it is also displayed in boldface font!
Your pre-existing knowledge of a WYSIWYG word processor is almost
certainly the metaphor of ordinary writing which consists of placing blobs
of ink sequentially, but arbitrarily, on a sheet of paper (Figure 1). This met-
aphor cannot furnish an explanation for the phenomenon you have encoun-
tered, so you become frustrated, anxious, and lose self-confidence.

Figure 1. What you (think you) see

Of course, the explanation is trivial: the word processor is not storing
blobs of ink, but symbols including implicit symbols for font changes and
for indicating the end of a line (Figure 2). Here we are arbitrarily using
HTML notation: <b>...</b> to delimit boldface font and <br> to indicate a
line break.) If your selection of the text fragment to change to boldface in-
cluded an invisible (!) line break character, text typed before the line break
will be mysteriously displayed in boldface.
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Figure 2. What you (really) get

The correct explanation of WYSIWYG should now be clear. What you
get is: (a) a data structure for storing text and formatting specifications, and
(b) a set of operations on that data structure. What you see is: (a) a render-
ing of the data structure on the screen, and (b) icons and menus to invoke
the operations. To learn how to use the word processor, you must: (a) cre-
ate a mental model of the data structure and the effect of each operation,
and (b) attribute to each icon and menu item a meaning as an operation.

Constructivism claims each individual necessarily creates cognitive
structures (models) when learning to use the word processor. Furthermore,
it claims that each individual will perform the construction differently, de-
pending on his or her preexisting knowledge, learning style and personality
traits. Hopefully, the construction is viable and the user can successfully use
the word processor. Unfortunately, but perhaps inevitably, many users con-
struct nonviable models.

Teaching how to do a task can be successful initially, but eventually
this knowledge will not be sufficient. As the example tries to show, a stu-
dent who only knows the procedure for changing from ordinary to boldface
font will be helpless when faced with this novel situation. The problem is
caused not by stupidity on the part of the novice, nor by incorrectly follow-
ing the instructions, but by a misconception that is attributable to the lack of
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a viable model that can explain the behavior of the word processor. The
teacher must guide the student in the construction of a viable model so that
new situations can be interpreted in terms of the model and correct respons-
es formulated.

The word-processor example illustrates two aspects of learning that are
characteristic of computer science. First, since computer science deals with
artifacts—programming languages and software, the creator of the artifact
employed a very detailed model and the learner must construct a similar,
though not necessarily identical, model. Second, knowledge is not open to
social negotiation. Given that the word processor is an extant artifact, you
cannot argue that its method of using fonts is incorrect, discriminatory, de-
meaning, or whatever. You may be able to choose another software pack-
age, or to request modifications in an existing one, but meanwhile you must
learn the existing reality. These two points will be extensively discussed in
the rest of the paper.

EPISTEMOLOGY AND CONSTRUCTIVISM

Educational Paradigms

An educational paradigm is composed of four components (Ernest,
1995):

l An ontology which is a theory of existence.
l An epistemology which is a theory of knowledge, both of knowledge

specific to an individual and of shared human knowledge.
l A methodology for acquiring and validating knowledge.
l A pedagogy which is a theory of teaching.

(See Scheffler (1965) for an introduction to epistemology in the framework
of education. Scheffler gives a slightly different decomposition; in particu-
lar, he includes evaluation: deciding what knowledge is reliable or important.)

This framework can be used to succinctly describe the classical educa-
tional paradigm:

l There is an ontological reality. Even though scientists accept the theories
of relativity and quantum mechanics, the Newtonian model of absolute
space and time is the model we generally use for reality. Furthermore,
we function as Platonist mathematicians who hold that mathematics has
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an existence independent of ourselves in which 2+2=4 is absolutely true.
l Epistemology is foundational. The truth is out there. We come to be-

lieve foundations—necessary truths such as 2+2=4 and empirical senso-
ry data—and then use valid forms of logical deduction to expand the ex-
tent of true knowledge.

l The mind is a clean slate that can be filled with knowledge. Once you
know enough facts and rules of inference, you can create new knowl-
edge by logical deduction. Carroll (1990) cites the legend of the Nurn-
berg Funnel which can be used to “pour” knowledge directly into the
learner’s head.

l Listening to lectures and reading books are the primary means of knowl-
edge transmission. Repetition (drill and practice) will ensure that the
knowledge is retained.

The constructivist paradigm is dramatically different:

l Ontological reality is either rejected or at best considered irrelevant.
Since we can never truly “know” anything, ontology cannot influence
our educational paradigm.

l The epistemology of constructivism is nonfoundationalist and fallible.
Absolute truth is unattainable, so there is no foundation of truth on
which to build. Even 2+2=4 is not a necessary truth (Barnes, Bloor, &
Henry, 1996, Chapter 7)! Knowledge is constructed by each individual
and thus necessarily fallible.

l Knowledge is acquired recursively: sensory data is combined with exist-
ing knowledge to create new cognitive structures, which are in turn the
basis for further construction. Knowledge is also created cognitively by
reflecting on existing knowledge. These concepts come from the semi-
nal work of Jean Piaget on the acquisition of knowledge by children;
Piaget’s work was instrumental in the development of constructivist the-
ories.

l Passive learning will likely fail, because each student brings a different
cognitive framework to the classroom, and each will construct new
knowledge in a different manner. Learning must be active: the student
must construct knowledge assisted by guidance from the teacher and
feedback from other students. Constructivists believe that effective
learning demands not just discovery of facts, but the construction of via-
ble mental models, and that teachers must actively guide the student in
this effort. The task of the teacher in the constructivist paradigm is sig-
nificantly more difficult than in the classical one, because guidance must
be based on the understanding of each student’s currently existing cog-
nitive structures.
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Note that constructivism does not reject classical means of instruction
such as lecturing and reading books. As Mason notes, tongue-in-cheek:
“Many educators espousing constructivism have been known to attend lec-
tures on constructivism, and even to have enjoyed them!’’ (Mason, 1994, p.
197). The problem is not the lecture itself, but the assumption that “students
know what the lecturer told them.” And Mason continues with the sugges-
tion that: “...when preparing a lecture, it is the fact of the imminent audi-
ence which enables the lecturer to contact the content in fresh ways, in a
state conductive to creativity and connection-finding.” (Mason, 1994, p.
198) The concept that the student is trying to construct a model from what
are, after all, only words is an appealing theoretical framework for an edu-
cator to use in assessing the success or failure of a lecture or other teaching
activity.

Conversely, constructivism in not coextensive with “modern” teaching
methods such as group projects, discovery learning and active tasks. These
methods are favored by constructivists only if they are designed to enable
the students’ to build a viable mental model based on pre-existing knowl-
edge. A hands-on activity is useless if “their hands are on, but their heads
are out’’ (Resnick, 1997, p. 28).

Constructivism does have a lot in common with discovery or inquiry
learning, where students are expected to discover knowledge by themselves
when placed in the appropriate situation. The benefits of discovery are
claimed to be:...“(1) the increase in intellectual potency, (2) the shift from
extrinsic to intrinsic rewards, (3) the learning of the heuristics of discover-
ing, and (4) the aid to conserving memory” (Bruner, 1962, p. 83).

Note that Bruner (1962, p. 85) seems to agree with the constructivist
viewpoint that unfettered discovery is not helpful; he distinguishes between
episodic empiricism, where the student accumulates unconnected facts, and
cumulative constructionism, where the discovery is organized.

Constructivists differ among themselves as to the relative importance
ascribed to the individual learner and to the group in constructing knowl-
edge; these variants are known as radical and social constructivism, respec-
tively. A discussion of the variants of constructivism is beyond the scope of
this article; see Ernest (1995), Phillips (1995).

Constructivism in Science Education

Studies have shown that relatively few students reach an acceptable
level of achievement in high-school science and mathematics (Duit, 1991).
Physics teachers seem to have the worst time, as students retain a naive the-
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ory of physics despite intensive instruction in Newtonian mechanics (Mc-
Closkey, 1983). For constructivists this is not surprising: everyone who has
ever thrown a ball—that is, everyone—knows that if you don’t keep apply-
ing force, an object in motion will eventually come to rest. Apparently,
these ideas are so entrenched that mere lectures and even experiments have
a difficult time evicting them. At most, a certain facility in manipulating
formulas is achieved, but this fails as soon as the student attempts to solve a
problem that requires deep understanding.

The discrepancy between performance and understanding has also been
noted in mathematics education:

The pupil’s fundamental problems with such ideas as negative or com-
plex numbers tend to be overlooked by the teacher mainly because the
latter’s own implicit beliefs make him or her oblivious to the possibili-
ty of somebody having a different ontological stance....Another cir-
cumstance that helps in concealing ontological difficulties is the fact
that a student may become quite skilful in manipulating concepts even
without reifying them. (Sfard, 1994, p. 268)

Physics educators are very receptive to constructivist principles. After
all, physicists have undergone two massive restructurings of their world
within a short period of history: from Aristotelian physics to Newtonian
physics and then to Einsteinian physics. One cannot fault them for their re-
luctance to believe that E=mc2 is an absolute truth. This openness is demon-
strated by their willingness to attribute to the student alternative frame-
works rather than misconceptions.

In fact, von Glasersfeld, a pioneer of constructivism, would never say
that something is wrong, because he does not believe in the possibility of
establishing universal truths. Instead, he says that concepts are viable “if
they prove adequate in the contexts in which they were created’’ (Glasers-
feld, 1995, p. 7). This is analogous to the use of the word in biology to de-
note an organism adapted to its environment. The box metaphor for vari-
ables, and the communications model of reference parameters (discussed
later) are simply nonviable, because they cause the student to fail on pro-
gramming tasks.

According to constructivism, a teacher cannot ignore the student’s ex-
isting knowledge; instead, he or she must question the student in order to
understand exactly what theory the student is currently using, and only then
attempt to guide the student to the “correct” theory. It is perhaps axiomatic
for a constructivist that students have consistent theories—they just happen
to be at variance with the (currently accepted) scientific theory.
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In most fields of science education including computer science, there is
a large body of research that catalogs misconceptions. A constructivist
would view a misconception not as a mistake, but as a logical construction
based on a consistent, though nonstandard theory, held by the student. Even
Matthews—who is critical of constructivism—is careful to point out that:
“It is with respect to [contemporary physics] that [students] have miscon-
ceptions, it is not with respect to the behavior of the natural world” (Mat-
thews, 1994, p. 133).

Merely listing misconceptions is fruitless; a misconception must be ac-
companied by a description of the underlying model that caused it, and by a
suggestion how to base the construction of a viable model on the existing
one. Smith III, diSessa, and Roschelle (1993) go so far as to claim that mis-
conceptions form the prior knowledge that is essential to the construction of
new knowledge!

It is important not to confuse the use of computers in science education
with the study of computer science. Computers are often seen as a tool to
increase the constructive content of science education. For example, Hat-
field (1991) considers programming, or more generally algorithmics, as
constructive. However, his article is essentially concerned with the contri-
bution of algorithmics to mathematical education, rather than to the con-
structivist aspects of computer science and programming. Similarly: “The
role of the computer activities is...to provide an experiential basis for all
other learning modes....the main point is spending the time and effort on the
problem, not solving it” (Leron & Dubinsky, 1995, p. 231, 236).

In CSE, the computer is not just providing an experiential basis, nor is
it creating a microworld (Harel & Papert, 1991) in order to facilitate con-
struction of knowledge in another domain. Instead, the students are learning
about computing itself—systems, algorithms, languages—and lessons from
the use of computers in other fields must be applied carefully.

Criticism of Constructivism

Before continuing, we must stress that that there is strong opposition to
constructivism. See the articles by Matthews, Nola, Phillips, and Ogborn in
the Special Issue on Philosophy and Constructivism in Science Education
(January 1997) of the journal Science & Education. The articles are also
available in Matthews (1998).

One critic writes vehemently: “If radical constructivism is post-episte-
mological then it is also pre-Copernican and adopts views of science similar
to those of the Inquisition that interviewed Galileo” (Nola, 1997b, p. 209).
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The criticism is not so much of the constructivist theory of learning, but
rather of extreme conclusions drawn from constructivist epistemology: “The
one-step argument from the psychological premise (1) ‘the mind is active in
knowledge acquisition,’ to the epistemological conclusion (2) ‘we cannot
know reality,’ is endemic in constructivist writing” (Matthews, 1994, p. 151).

Carried to the extreme, radical constructivism leads to solipsism, the
philosophical claim that the world is one’s own mental creation. In turn,
this can lead to a rejection of ethics: if the world is my own creation, why
should I care what happens to others? Boyle (1996, Section 6.4) takes radi-
cal constructivists to task for putting too much emphasis on an individual’s
cognition at the expense of the biological (Piaget) and social (Vygotsky)
foundations upon which cognition must be based.

Carried to the extreme, social constructivism leads to a view of science
as a merely political enterprise developed by entrenched elitist groups
whose sole purpose is to ensure their own survival. From the fallibility of
scientific knowledge, one slips into relativism of truth, and from the sociol-
ogy of scientific practice, into demands for empowerment detached from
any attempt at objective evaluation of scientific knowledge. The extreme
position is stated in the Edinburgh “strong programme” on the sociology of
knowledge (Bloor, 1991; Barnes et al., 1996); for criticism of this position
see the articles in Matthews (1998).

The essential question is whether being a constructivist requires an
epistemological commitment to empiricism and idealism (or social ideal-
ism), as opposed to rationalism and realism that seem to come more natural-
ly to scientists. This delicate question can perhaps be avoided by taking the
position of “pedagogical constructivists”:...“who concentrate solely on ped-
agogy, and improved classroom practices,....For [whom], the details of epis-
temological psychology are unimportant, and not worth disputing about”
(Matthews, 1997, p. 8).

Empirical Results in CSE

There is no question that many students find the study of computer sci-
ence extremely difficult, especially at elementary levels. Before proceeding
with a theoretical analysis, it is worthwhile to survey some results that dem-
onstrate the depth of the problem:

l Sleeman, Putnam, Baxter, & Kuspa (1988), Samurçay (1989), and Paz
(1996) found that the concept of variable is extremely difficult for stu-
dents. For example, students believe that a variable could simultaneous-
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ly contain two values, and that after executing A:=B, the variable B no
longer contains a value. The students have constructed a consistent mod-
el using the analogy of a box; the model just happens to be non-viable
for successful programming.

l Haberman and Ben-David Kolikant (2001) administered a test designed
to check the basic concepts of assignment, read, and write statements in
Pascal. Given the statements:

read(A,B);
read(B);
write(A,B,B);

many students are not at all sure what happens when you read twice to
the same variable or write twice from the variable. They find it difficult
to construct a model that identifies who is doing the reading and the
writing. Similarly, Samurçay (1989) claims that students’ models of
read(A)  may not include the assignment to the variable A.

l Madison (1995) used extensive interviews to elicit the internal model of
parameters (especially reference parameters) held by students in an in-
troductory course. The students were taught a communications model
for parameters, rather than a model of the implementation (copy and ref-
erence). The interviews demonstrated that students had constructed con-
sistent, but non-viable, models of the implementation of parameters.

l Similarly, Fleury (1991) discovered “student-constructed rules” for Pas-
cal parameters that were occasionally successful, but non-viable in the
general case.

l Deep misconceptions are not limited to elementary programming. Hol-
land, Griffiths, and Woodman (1997) show the extent of the misconcep-
tions held by students studying object-oriented programming. They
found inappropriate conflation of the concept of an object with other
concepts like variable, class, and textual representation.

l The difficulties that students have in elementary computer science stud-
ies are often attributed to the need to spend too much time on the syntax
of low-level procedural languages like Pascal and C. But similar phe-
nomena are encountered even when teaching Prolog, a language whose
syntax is about as simple as can be imagined. Taylor (1990) studied
novice Prolog programmers and found that students constructed models
that were not viable:

Prolog’s behavioral component is complex, and because its syntax is
noncommittal, learners are tempted to hallucinate onto it whatever
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they think appropriate, rather than referring to an interpretation based
upon underlying domain knowledge. (Taylor, 1990, p. 308)

l Algorithm and software visualization is an extremely active field of CSE
research. Yet Mulholland (1997) found that software visualization in it-
self does not necessarily help the student unless the visualization is
based on a careful analysis of the pedagogic task.

Constructivism in the Context of CSE

To what extent is constructivism applicable to CSE? According to con-
structivism, students construct knowledge by combining the experiential
world with existing cognitive structures. The author claims that the applica-
tion of constructivism to CSE must take into account two characteristics
that do not appear in natural sciences:

1. A (beginning) computer science student has no effective model of a
computer.

2. The computer forms an accessible ontological reality.

Effective model means a cognitive structure that the student can use to
make viable constructions of knowledge based upon sensory experiences
such as reading, listening to lectures and working with a computer. Accessi-
ble ontological reality means that a “correct” answer is easily accessible,
and moreover, successful performance requires that a normative model of this
reality must be constructed. The rest of this section expands on these claims.

The important word is effective. The naive theory of physics held by
students is clearly effective, as anyone who has seen professional ball play-
ers can testify. They have intuitive models that enable them to implicitly
calculate the forces required to achieve superb accuracy when throwing or
kicking a ball. Note that diSessa (1988) does not believe that students’ intuitive
concepts form a well-developed theory. Rather, he claims that they have a
large number of fragments called p-prims, short for phenomenological primi-
tives. This does not materially change the argument, as it is doubtful that intui-
tive knowledge about computers reaches even the level of diSessa’s p-prims.

The empirical results cited earlier (especially the work by Taylor
(1990)) show just as clearly that intuitive models of computers are doomed
to be non-viable. At most, the model is limited to the grossly anthropomor-
phic giant brain, hardly a useful metaphor when studying computer science.
Pea (1986) gives the name “superbug” to the idea that a “hidden mind”
within the programming language has intelligence.
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At the novice level, the claim is supported by many studies:

Even if no effort is made to present a view of what is going on ‘inside’
the learners will form their own. (duBoulay, 1989, p. 285)

... [we] attribute students’ fragile knowledge of programming in con-
siderable part to a lack of a mental model of the computer.... (Perkins,
Schwartz, & Simmons, 1988, p. 162)

... even after a full semester of Pascal, students’ knowledge of the con-
ceptual machine underlying Pascal can be very fuzzy. (Sleeman, Put-
nam, Baxter, & Kuspa, 1988, p. 251)

The lack of an effective, even if flawed, model of a computer can be a
serious obstacle to teaching computer science if we accept the claim by
Smith III et al. (1993) that prior knowledge, even in the form of misconcep-
tions, is essential to the construction of new knowledge.

Turning now to the question of ontological reality, the computer sci-
ence student is faced with immediate and brutal feedback on conclusions
drawn from his or her mental model. More graphically, alternative frame-
works cause bugs. Computer science is unlike school physics: the conse-
quences of misconceptions are exposed immediately, not when you get
your homework back a week later. Similarly, from the social viewpoint,
there is not much point negotiating models of the syntax or semantics of a
programming language.

This claim is based on the fact that almost all introductory computer
science instruction includes programming. If, as Dijkstra (1989) suggested,
we taught programs as mathematical objects that need not be executed on a
computer, the normal constructivist principles would apply. We could talk
about the viability of denotational semantics, or the social processes respon-
sible for the belief in the Church-Turing Thesis. If the latter were ever su-
perseded, we would experience a shock no less intense than that experi-
enced by physicists in the early twentieth-century. Clearly, since computer
science is unlikely to become a subject that is primarily theoretical, we must
generate the motivation to examine our teaching practices without the bene-
fit of an epistemological shock.

The claim cuts at the heart of constructivist epistemology, which is
nonfoundationalist and fallible. But the pedagogy of constructivism is rela-
tively independent of its epistemology. A physicist has no way of determin-
ing if E=mc2 is true, but few of us can resist the temptation to use a comput-
er if it helps us construct knowledge about a language or system. In fact,
one of the ultimate tests of your prowess as a computer programmer or soft-
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ware engineer comes when you have to deal with a bug in the underlying
hardware, operating system or language compiler. Since you have come to
look upon them as ontological reality—as arbiters of truth so to speak—it is
extremely difficult to diagnose a problem in the implementation of your
mental model, as opposed to a problem in your personal task such as writ-
ing a program.

APPLICATION OF CONSTRUCTIVISM IN CSE

Many phenomena of CSE can be explained by constructivism:

l The construction of even elementary computer science concepts is hap-
hazard, leading to frustration and to the perception that computer sci-
ence is hard. This is due to the fact that—in the absence of a viable pre-
existing model—models must be self-constructed from the ground up.

l Autodidactic programming experience is not necessarily correlated with
success in academic computer science studies. These students, like most
physics students, come with firmly held mental models that are not via-
ble for academic studies.

l Graphical user interfaces (GUI) are often touted as “intuitive” and “user-
friendly”, yet many people earn a comfortable living giving courses to
anxiety-ridden users. Icons, scroll bars and menus are merely represen-
tations, and seeing a representation alone contributes very little to the
construction of a model.

l The reality feedback obtained by working on a computer can be discour-
aging to students who prefer a more reflective or social style of learning.

In the rest of the article, constructivist principles will be applied to spe-
cific issues in CSE. To avoid misunderstanding, it is important to clarify
what is being claimed here. The author is not (necessarily) saying that one
approach is superior to another; rather, he is saying that certain conclusions
seem to follow directly from constructivist principles, so that if one accepts
constructivism—which you are not required to do of course—then one must
be willing to analyze his/her teaching methods in light of these conclusions.

GUI and WYSIWYG Angst

Turkle and Papert (1990) wax poetic on the virtues of icons. Yet an
icon is just a representation; it is useful only to the extent that the user can
construct a mental model of object being represented. The icon must under-
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go semiosis: “the process whereby something comes to stand for something
else, and thus acquires the status of a sign’’ (Husén & Postlethwaite, (1994)
p. 5411). Today’s software packages, both those intended for the general
public such as word processors and professional software such as integrated
development environments, display dozens of icons. From a semiotic point
of view, it may be true that that an icon is better than text, but from a con-
structivist point of view, what is important is the construction of the model
and not the sign that denotes it.

Icons are intuitive to the extent that the analogy between the object
shown and the object represented is perfect. But as Glynn (1991) shows,
analogies are rarely, if ever, perfect, so one must not lose patience with a
novice who has yet to construct a viable model of the underlying machine.
For example, consider an icon for the paste operation. The icon is two steps
removed from the operation. First, the icon must be deciphered as repre-
senting the word paste. (This first step can be skipped if paste is selected
from a menu.) Second, the word whose original meaning is “form a perma-
nent chemical bond between one item and another” must be related to the
operation “insert a copy of the material held in an internal buffer into the
current working document at the place pointed to by the cursor.” To under-
stand this operation, one must have a mental model that enables you to under-
stand the four concepts in this sentence. Even if the word “paste” is avoided, it
is hard to see how so many concepts can be contained within an icon.

WYSIWYG is another concept that could benefit from constructivist
analysis as we showed above. The relevance for CSE is this: courses, help
files, and tutorials must explicitly address the construction of a model, and
not limit themselves to behaviorist practices of the form “to do X, following
these steps.” It is a reasonable conjecture that document preparation sys-
tems with transparent models like LaTeX and HTML should engender less
anxiety among their users than WYSIWYG systems on complex tasks. If
the underlying model is not accessible, there is a genuine trepidation associ-
ated with trying out new or advanced features, for fear that the document
will be irrevocably trashed; with a transparent model you can easily insert
and then comment-out or remove the explicit commands. Many users of
WYSIWYG systems overcome the anxiety and eventually construct viable
models, but the anxiety returns as new features are tried or familiar ones
used in new contexts. Of course the claims in this paragraph are anecdotal
and need empirical verification.
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Explicitly Teach the Model

If the student does not bring a preconceived model to class, we must
ensure that a viable hierarchy of models is constructed and then refined as
learning progresses. This means that the model of a computer—CPU, mem-
ory, I/O peripherals—must be explicitly taught and discussed, not left to hap-
hazard construction and not glossed over with facile analogies. Furthermore,
the choice of language is not arbitrary (as is often claimed) because the “sim-
plicity and visibility of the notional machine can be spoiled by poor language
design or implementation’’ (du Boulay, O’Shea, & Monk, 1989, p. 436).

Teaching the model can be done using diagrams Mayer (1975) or
epistemic games—formalized procedures for constructing knowledge—
such as a model computer (Sherry, 1995) or a notional machine (duBoulay,
1989). Kieras and Bovair (1984) showed that a block diagram of an instru-
ment facilitates the learning of an operational procedure, and Mulholland
showed that software visualization (SV) of Prolog programs is most suc-
cessful if “there is a clear, simple mapping between the SV and the underly-
ing source code’’ (Mulholland, 1997). Based on observations of expert pro-
grammers and electronics engineers, Petre (1991) believes that declarative
reasoning does not really occur; instead, the experts reason operationally in
terms of an underlying machine.

An important question is: how detailed should a model be? Does an in-
troductory computer science student have to construct a model in terms of
the electronic properties of semiconductors?! The extent and fidelity of the
model that must be taught to the students can only be discovered from the
experience of teachers of the subject. Sherry’s model seems to be too de-
tailed; a better approach is demonstrated by Naps and Stenglein (1996) who
created a visualization of a specific concept—parameter passing. Much can
be done even with noncomputerized epistemic games. For example, take
three cheap calculators and attach them to a board (Figure 3), covering up
all the non-numeric keys except for ‘=’. Each calculator represents one vari-
able and it is possible to practice assignment statements without ever touch-
ing a programmable computer.
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Figure 3.  An epistemic game for studying variables

Don’t Start with Abstractions

The author’s conclusion that a model of the computer be explicitly
taught has implications for the teaching of object-oriented programming
(OOP) in introductory courses. The abstraction inherent in OOP is essential
as a way of forgetting detail, and software development would be impossi-
ble without abstraction, but it appears that there must be an object-oriented
paradox: how is it possible to forget detail that you never knew or even
imagined? If students find it difficult to construct a viable model of vari-
ables and parameters, why should we believe that they can construct a via-
ble model of an object such as a window object? Advocates of an objects-
first approach seem to be rejecting Piaget’s view that abstraction (or accom-
modation) follows assimilation.

Professional software engineers who use abstractions generally have a
fairly good idea of the underlying model. For example, few software engi-
neers have actually written programs for manipulating windows on a
screen. But even a general understanding of how images are represented in
the computer by bitmaps should be sufficient to enable the engineer to con-
struct a viable model.

The author appreciates the attractiveness of an objects-first approach;
the gap between the standard libraries (especially the GUI libraries) of a
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modern programming environment and the model of a computer is so great
that motivating beginners has become a serious problem. Furthermore, OOP
can be used to teach good software development practice from the begin-
ning because “OOP allows—even encourages—one to address the “big pic-
ture’’ by emphasizing a strategic approach to programming’’ (Dekker &
Hirshfeld, 1993, p.271).

Turkle and Papert go further and claim that OOP is: “... not only more
congenial to those who favor concrete approaches, but it also puts an intel-
lectual value on a way of thinking that is resonant with their own” (Turkle
& Papert, 1990, p. 155). This claim is strange, because the point of studying
OOP is to learn to create abstractions, not just to use existing concrete ob-
jects. The concreteness of reading and using objects is at most a stepping-
stone to modifying, extending, and defining them, as advocates of OOP are
careful to point out (Dekker & Hirshfeld, 1993).

Given these advantages of the objects-first approach, it cannot be dis-
missed out of hand; on the contrary, the trade-offs probably favor this ap-
proach. But if the constructivist viewpoint is valid, teachers of introductory
courses that use OOP should be very, very careful not to assume that the
students will construct the model that the instructor has, nor even to assume
that they will construct a viable model at all.

This viewpoint is supported by the literature on teaching OOP:

l While Adams (1996) opposes deferring the teaching of OOP until late in
the curriculum by which time it is difficult to cure students of the low-
level paradigms they have developed, neither does he believe that OOP
should be taught first when the students are not mature enough to master
the concepts involved:

CS1 novices do not have the cognitive framework to grasp the con-
cepts underlying object-oriented design, because they have no experi-
ence dealing with types and functions, much less classes, function
members or inheritance (Adams, 1996, p.79).

He advocates a middle road where objects are introduced early but only
after sufficient procedural programming has been learned to provide an
underlying mental model.

l Wolz and Conjura (1994) propose a three-tiered model for teaching in-
troductory computer science which includes mathematical theory (un-
usual but refreshing!), implementation and mechanical trivia. They re-
port that teaching OOP using C++ in CS2 is successful because students
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are able to build on previous knowledge learned from CS1: expressing
algorithms procedurally in Scheme. On the other hand, they claim that:
“There is no reason that students in a first course can’t learn to use [data
types such as queues, stacks, lists, trees and graphs] before learning how
they are implemented” (Wolz & Conjura, 1994, p.224).

From a constructivist point of view, one must evaluate the mental mod-
els these students construct; if they are non-viable, they can impede fur-
ther study.

l Holland et al., (1997) summarize students’ misconceptions in an intro-
ductory course that uses OOP. Many of these misconceptions are due to
conflation of concepts (object/variable, object/class) that can be attribut-
ed to the lack of an effective mental model. Based on experience in oth-
er disciplines of science education, cataloging and analyzing misconcep-
tions will not be sufficient to improve students’ understanding. Instead,
research must be done to identify the mental models that cause these
specific misconceptions, and guidelines must be developed so that
teachers can diagnose and correct the problems.

For an objects-first approach to work, teachers will have to develop
ways of explaining the underlying models without destroying the abstrac-
tions. My current belief is that introductory CSE should be based on the
functional or logic programming paradigm, not only because these languag-
es minimize mechanical trivia, but also (and primarily) because the underly-
ing models can be explained in relatively high-level, hardware-free terms.

Bricolage

Bricolage is a term coined by the anthropologist Claude Lévi-Strauss,
who used it in a derogatory sense for the “science of the concrete” in primi-
tive societies, as opposed to abstract European science. Turkle and Papert
(1990) transferred the concept to the context of learning to program, and
vehemently defend it as a learning style as valid as the normative “plan-
ning” style that we attempt to teach. This is consistent with a constructivist
view of education: different students will approach the construction of
knowledge in different ways, and the educational environment must be sup-
portive of these differences.

The manifestation of bricolage in computer science is endless debug-
ging: try it and see what happens. While we all practice a certain amount of



64 Ben-Ari

bricolage and while concrete thinking can be especially helpful—if not es-
sential—for students in introductory courses, bricolage is not an effective
methodology for professional programming, nor an effective epistemology
for dealing with the massive amount of detailed knowledge must be con-
structed and organized in levels of abstraction (cf., object-oriented pro-
gramming). The normative planning style called software engineering must
eventually be learned and practiced.

This belief is likely to be shared by anyone who has studied or worked
on non-deterministic systems involving concurrency, real-time or commu-
nications, subjects that are simply not amenable to bricolage and can be
mastered only through abstract techniques. Students who excel at bricolage
often cannot make the transition to master the thought patterns and methods
required by these systems. This claim has implications for counseling stu-
dents. If software development is ultimately about abstraction, a student in-
capable of or uncomfortable with abstract thought should be discouraged
from studying for the profession of software engineer.

Gender

Turkle and Papert (1990) published their article arguing for tolerance
of concrete thinking in a journal subtitled Women in Culture and Society,
and they chose two women to exemplify college students who are concrete
thinkers. Since the concrete way of thinking advocated by Turkle and Pap-
ert can only go so far in computer science, their coupling of a learning style
with a gender stereotype would lead to the unacceptable conclusion that
women are not suited for careers as computer scientists.

On the other hand, constructivism—especially social constructivism—
has much to say about the task of the teacher and the role of peers in educa-
tion, and the theory can contribute to the analysis of the well-documented
social difficulties faced by women in the computer science classroom and
laboratory.

Minimalism

Minimalism (Carroll, 1990, 1998) is an approach to instruction that
arose in the design of manuals for software documentation. It is apparently
little known outside of this community. (For a good introduction see Van
der Meij and Carroll (1998).) The minimalist approach to training and doc-
umentation can be summarized as follows:
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... (1) allowing learners to start immediately on meaningful realistic
tasks, (2) reducing the amount of reading and other passive activity in
training, and (3) helping to make errors and error recovery less trau-
matic and more pedagogically productive. (Carroll, 1990, p. 7)

Minimalism has much in common with constructivism as explicitly noted
by Van der Meij (1997, p. 7) and Carroll and Van der Meij (1998, p. 84):

l A preference for active learning to enable the student to construct men-
tal models.

l Recognition of the importance of pre-existing knowledge.
l The employment of the inevitable errors and misconceptions as a peda-

gogical device rather than as a symptom of failure.

Minimalism seems to part company with constructivism in its empha-
sis—even insistence—on eliminating conceptual material, or at least on de-
ferring it as long as possible:

It is quite common for training manuals to present a “welcome to the
system’’ preface, a conceptual model of how the system works, ...And
none of this, even in the end, does much to facilitate the user’s desire
to get started on meaningful activity. Rather, it obstructs this goal.
(Carroll, 1990, p. 80)

The success of minimalism has been empirically demonstrated in
straightforward training tasks such as learning to use a word processor. But
once the user needs to go beyond elementary tasks, the absence of a viable
mental model means that the user’s attempts to master advanced material
will be frustrating and lead to a reluctance to learn new concepts.

To test this conjecture, the author performed an experiment, which re-
quired the subjects to modify documents in Microsoft Word (Ben-Ari,
1999). The tasks were chosen to be easy if you understand the underlying
concepts, but quite difficult if you do not. The (sophisticated) subjects al-
most invariably used bricolage. They restricted themselves to elementary
techniques learned in a minimalist setting— behaviorist explanations from
colleagues—and made no attempt to investigate the concepts or even to use
the Help facility.

Some authors now claim that the dismissal of conceptual material by
naive minimalism was mistaken and some way must be found to strike a
balance. See the articles by Rosenbaum, Hackos, Redish, Farkas, and Drap-
er in the retrospective volume by Carroll (1998). For example: “...a manual
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must: Help users grasp the big picture of the product, that is, help users devel-
op a mental model that helps them predict what to do” (Redish, 1998, p. 240).

Given the empirically proven success of minimalism in the narrow
field of technical documentation, it would be interesting to explore a closer
integration of minimalist writing techniques with constructivist teaching
techniques.

Don’t Run to the Computer

Constructivism suggests that programming exercises should be delayed
until class discussion has enabled the construction of a good model of the
computer. Too often students become infatuated with the absolute ontology
supplied by the computer. Premature attempts to write programs lead to bri-
colage and delay the development of viable models. While formal methods
in CSE are extremely important, you need not go to the extreme that Dijk-
stra (1989) advocates and entirely give up compilation and execution of
programs. There is nothing wrong with experimentation and bricolage-style
debugging, as long as it supplements, rather than supplants, planning and
formal methods.

Unfortunately, CSE is heavily weighted on the side of bricolage. A
high-school course we are developing comes in for scathing criticism from
many students (and some teachers!) because we insist on “wasting time” on
algorithm development and analysis, instead of just getting on with writing
and debugging programs.

Laboratory Organization

One of the debates in CSE concerns the choice between closed labs—
where students work on assignments at an appointed time in a supervised
setting, and open labs—where students work on assignments whenever con-
venient. From a constructivist viewpoint, especially from a social construc-
tivist one, closed labs should be preferable, not only because they soften the
brutality of the interaction with the computer, but also because they facili-
tate the social interaction that is apparently necessary for successful con-
struction. In fact, Thweatt (1994) found empirical evidence for the superior-
ity of closed labs over open labs.

The type of problems assigned is also important; as opposed to mini-
malism’s emphasis on task performance, problems should encourage cogni-
tive operations such as reflection and exploration:
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Another common failing in lab design is to make every task so con-
strained and explicit that students never need to think about what tech-
niques to use...The production of an ill-structured problem is likely to
add an element of reality to the lab, and allows the students to have
their own Eureka!s about the underlying nature of the exercise.
(Fekete & Greening, 1996, pp. 295, 298)

Assessment

Performance on a test is a poor guide to the students’ construction of
the rich conceptual models of computer science. A student’s failure to con-
struct a viable model is a failure of the educational process, even if the fail-
ure is not immediately apparent. Furthermore, in the case of group work,
performance-based assessment can mask the misconceptions of individual
students. Ideally, constructivist-inspired assessment would be based on an
instructor’s observation and questioning of students engaged in an uncon-
strained activity such as a lab project. Unfortunately, this is almost always
impractical, and instructors must attempt to design written questions that
elicit information about the student’s mental model rather than about the
contents of his or her factual memory.

Implications for Research

In their book, Maykut and Morehouse (1994) claim that practitioners of
qualitative research must understand its philosophical underpinnings, which
are essentially constructivist in nature. The claim can be turned around: a
researcher working from a constructivist viewpoint should use qualitative
methods.

We are now starting to see more empirical research in CSE done using
qualitative methods (Madison, 1995; Mulholland, 1997). These techniques,
which elicit the internal structures of the student, are far more helpful than
research that measures performance alone and then draws conclusions on
the success of a technique.

As computer literacy becomes common, if not universal, students will
begin their academic studies with an effective model of a computer. Re-
search must be done to determine if these models are stepping-stones to the
construction of effective models, or obstacles like naive physics.
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A GUIDE FOR EDUCATORS

To summarize the article, here is a guide for educators on the practical
application of constructivism.

l Regardless of your teaching technique (lectures, labs, assignments), you
must articulate to yourself the cognitive change that you wish to bring
about in the students and structure the activity to achieve this aim. Mere-
ly transferring knowledge is not a meaningful aim.

l You must dig underneath your own expert knowledge to expose the pri-
or knowledge needed to construct a viable model of the material that
you are teaching. You must ensure that that the students have this prior
knowledge.

l In any particular course you will be teaching a specific level of abstrac-
tion; you must explicitly present a viable model one level beneath the
one you are teaching.

l When a student makes a mistake or otherwise displays a lack of under-
standing, you must assume that the student has a more-or-less consis-
tent, but non-viable, mental model. Your task as a teacher is to elicit this
model and guide the student in its modification.

l You must provide as much opportunity as possible for individual reflec-
tion (for example, analysis of errors) and social interaction (for example,
group labs). Clearly, each educator must decide how to apply these aph-
orisms in a concrete situation.

CONCLUSION

The author’s analysis of constructivism has led him to conclude that
the epistemology of computer science is significantly different than that of,
say, physics. Nevertheless, the basic tenet of the theory—that knowledge is
constructed by the student—applies to computer science, and its central im-
plication is that models must be explicitly taught.

Given the central place of constructivist learning theory and its influ-
ence on pedagogy, computer science educators should study the theory,
perform research, and analyze their educational proposals in terms of con-
structivism. Software and language designers should be guided by construc-
tivist principles; though the individuality of the construction by learners im-
plies that no system will ever be universally easy-to-learn, and we educators
must learn how to teach these extant artifacts.
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