Worked Examples and their use in Computer
Science

Ben Skudder

I. INTRODUCTION

We examine some of the literature around worked-
examples. We show how worked examples have been
used in fields like engineering, statistics and program-
ming, and suggest it’s implication and possible benefits
for use in Computer Science education.

II. WHAT ARE WORKED EXAMPLES?

According to [6] “Worked-out examples typically con-
sist of a problem formulation, solution steps, and the final
answer itself”. A problem is presented, accompanied
with step-by-step instructions which lead to the solution.
These are usually textual but may include pictures,
diagrams or animations. Students are expected to study
the worked example and from it learn how they might
apply it to similar problems.

III. HOW ARE THEY SUPPOSED TO WORK?

The studies usually use Cognitive Load Theory (CLT)
as their theoretical background. According to CLT hu-
mans have a limited working memory, where only a
few bits of information can be processed at one time.
Humans also have a long-term memory with a much
larger capacity. Long-term memory consists of a set of
schemas, and with practice can automatically be recalled
and applied with minimal impact on working memory.
The aim of learning in this framework is to help students
form appropriate schemas which can be used to solve
familiar and novel problems.

Much of the more modern literature distinguishes
between different types of cognitive loads the most
common being extraneous (ECL) and germane (GCL).
ECL is the cognitive load caused by activities which do
not assist with the formation of schemas, and GCL is
the cognitive load caused by those that do. Many studies
aim to expand on previous uses of worked examples by
decreasing ECL or increasing GCL.

IV. WAYS OF PRESENTING WORKED EXAMPLES

The ways of presenting worked examples include:

a) Examples only: where students just study pro-
vided worked examples. An example of it’s use is in [11].
The provision of examples over giving problems to solve
is supposed to reduce ECL and direct student’s attention
to the relationships between different problem steps, and
students can construct relevant problem-solving schemas
around it. Problem-solving with no guidance, however,
requires a large cognitive load for novices, but all the
effort goes to finding an answer rather than schema
formation.

b) Example-problem blocks: A block of worked
examples of various types are provided to study, then
a set of related problems are given which students are
expected to solve. [3] examines the use of example-
problem blocks. The provision of problems to solve as
well as examples is supposed to motivate students to
apply and practice what they’ve learned from examples,
which helps foster schema formation and automatic
processing.

c) Example-problem pairs: One of the most com-
mon ways of presenting worked examples, where each
example is paired with a problem similar to the example
for students to complete. Students alternate between
studying a worked example and solving a related prob-
lem. [11], [3], [10], [6] provide examples of their use.
This is supposed to foster learning better than example-
problem blocks, as students can better select and recall
the most relevant example (i.e. the one just studied) to
relate the problem to when they are given one directly
after the other. Separating them will make it harder
to recall the relevant example to relate to the current
problem.

d) Faded worked examples: A complete worked
example is presented, then another worked example
with one step missing is presented, and students are
expected to fill in the missing step. They are presented
with a series of worked examples, with an extra step
removed each time, until a student is presented with
just a problem to solve. The most common orders for
fading steps are known as forward fading - where steps
are removed starting from the beginning, and backwards
fading - where steps are removed from the end first.
[10], [6], [9], [2] show examples of these techniques.



According to [10] and [4], as a student gains expertise
from studying worked examples, the benefits of studying
them over problem solving disappears, as partial schema
formation means that the elements that were once a
source of GCL become a source of ECL. At this point
problem-solving elicits GCL rather than ECL. To ease
this transition, faded worked examples begin with a fully
worked example, but as they study it and gain expertise
steps are removed to encourage a manageable amount
of problem solving, fostering GCL. By the end of the
fading sequence, students will have studied many of the
worked example steps and will be able to problem solve
on their own.

These basic forms of presenting worked examples are
often augmented with other techniques, such as:

e) Subgoal labeling: A technique where groups of
steps are given a label, to help organize the informa-
tion into a meaningful structure. This is presented in
[5]. According to [5] subgoal labels allow students to
focus on groups of steps rather than individual steps,
giving them fewer problem-solving steps to consider
and, reducing cognitive load. The highlighted structure
given by subgoals is also supposed to assist with schema
formation, or provide “mental model frameworks” to
internally explain how problems are solved.

f) Self explanation prompts: Self-explanation is a
process some learners undergo when provided with a
worked examples. Students who try to explain to them-
selves the reasons for a step or set of steps in an example
were found to learn more than those who don’t [6],
so self-explanation prompts are designed to elicit such
self-explanations. Self-explanation prompts can be in the
form of asking students to justify a step or choosing what
principle a particular step is invoking. According to the
more recent CLT such prompts when employed correctly
would be a source of GCL.

V. HOwW WELL DO THEY WORK?

The benchmark for evaluating worked examples is
usually some form of problem solving. Problem solving
usually requires a student to solve a problem, and are told
when they’ve successfully provided a solution. Usually
a set of questions is given, and some of these questions
are swapped for worked examples people in the problem
solving condition solve all the questions, and people in
the examples condition study several examples and solve
some problems.

They are also often evaluated for their ability to
promote near transfer and far transfer. Near transfer
is the ability of students to solve questions which are
isomorphic to the ones they saw in their training phase,
whereas far transfer it the ability for students to solve

novel problems which use many of the same skills
from the training phase, but in a different sequence or
with some of the learned techniques requiring minor
modifications.

We explore some of the evidence behind the aforemen-
tioned categories of worked examples, some of which are
taken from the domain of programming.

A. The expertise reversal effect

[4] demonstrate instances where providing worked
examples can hinder learning for people who have
some expertise in the domain compared to those who
are novices. For novices worked examples directs their
attention to important features of the problem and help in
forming relevant problem-solving schemas. This is a bet-
ter use of their cognitive resources than problem solving,
which requires extensive search of the problems space
which imposes a heavy cognitive load, none of which is
related to schema formation (in the CLT framework, it’s
a heavy source of ECL but not GCL). However someone
with some expertise already has partial or full schemas
in long-term memory for them worked examples are
redundant, and having to analyze them is a source of
ECL rather than GCL. They cite examples of trades
apprentices, students working with databases and other
experiments where people with more experience fail to
gain any benefit from worked examples, unlike novices.
In these studies, as novices’ expertise increases, they
learn more from problem solving rather than studying
examples.

B. Examples only

[11] compare worked examples on their own, exam-
ple problem pairs, problem example pairs and problem
solving on its own for teaching high school students to
diagnose a faulty electrical circuit.

In studies examined before, they found example-only
study improved learning and transfer over traditional
problem-solving techniques, and the same was found in
[11].

They found example-only and example-problem pairs
to work more effectively than the other conditions.
Students reported lower mental effort and scored better
results upon testing than those in the other conditions.
No difference was found between example-only and
example-problem pairs. This contradicts what CLT might
predict, because presumably having to solve a problem
as well as examining a worked example would motivate
a student to engage more with the learning process i.e.
providing a source of GCL. They suggest that the tasks
were so few and the training phase so short (30 minutes)



that with a longer training phase with more tasks there
might be an observable difference.

C. Example-problem blocks

[3] compared using example-problem blocks, exam-
ple problem pairs, alternating similar problem-solving
task, and blocks of problem-solving tasks.

The tasks were 6 pairs of LISP programming ques-
tions, to solve after having gained some familiarity with
LISP before the experiment proper started. Each pair
tested the same skills, with one being the source problem
and the other target. The idea was that the source
provided a chance to initially learn to solve the problem,
and the target allowed them to practice the techniques
learned from the source. For the example-problem pairs
and block conditions source problems were swapped for
a worked example. In the block conditions, sources were
separated from targets whereas in the pair conditions
targets immediately followed sources.

Example-problem blocks were the worst preforming
group in posttests. They spent as much time studying
source examples as the example-pair group, and spent
more time on the target problems. They suggested that
difficulty in remembering the examples once they met the
equivalent problem would hinder later problem solving,
and that if students are unable to recall the appropriate
example, the benefit of studying them over problem solv-
ing disappears. Indeed, both the problem-solving groups
performed better than example-problem blocks group,
suggesting the extra practice and fine-tuning afforded to
the problem-solving block group outweighed the benefits
of having worked examples. The example-problem pairs
were the best performing group on posttests.

D. Example-problem pairs

As mentioned, [11] compared worked examples on
their own, example problem pairs, problem example
pairs and problem solving, and found example-only an
example-problem pairs to work more effectively than the
other conditions, and example-only and example pairs
performed similarly, for reasons already suggested.

As mentioned, [3] compared example-problem pairs
to example-problem blocks and alternating or blocked
problem solving. The best performing group in posttests
were the example-problem condition, who spent as much
time studying examples as the blocked examples group.

[10] explores research comparing backwards and
forwards fading with example-problem pairs. Previous
research found the fading conditions in three experiments
(one backwards for statistics problems, the other forward
for physics problems, and another with both forward and

backward fading) performed more accurately on posttests
with regards to near transfer problems, though not far
transfer problems. Students also produced fewer errors
during learning. This suggests fading may offer better
learning outcomes in a shorter amount of time for near-
transfer tasks than example-problem pairs.

[6] explores the use of backwards fading with and
without self-explanation prompts, compared to example-
problem pairs with and without prompts for solving
statistics problems. Under the equivalent prompt or no
prompt conditions, backwards fading resulted in higher
posttest results than example-problem pairs on both near
and far transfer problems. An explanation of the effects
of self explanation prompts is given later.

E. Faded worked examples

Asides from the research above from [10], which
compared both backwards and forwards fading favorably
to example-problem pairs, [10] conducted their own
experiment to explore whether the sequence of fading
affected near and far transfer more than the types of
steps removed. In their two experiments no difference
was found in learning outcomes or errors during learning.
Previous research had also suggested that backwards
fading worked would produce better results than forward
fading on near transfer items. However, their own exper-
iments did not confirm this. Their results also suggested
that students learn most about those steps which are
faded. The implication is that the learning activities
elicited by removing steps focuses students on those area.
For this reason, they suggest the earlier results must be
attributed to the learning material they used and the type
of the steps removed. The backward procedure removed
those steps that may be ’prerequisites’ or otherwise
helped students learn principles which were helpful for
earlier steps. Doing it the other way means they would
not learn the important principles first, which would
hinder subsequent learning.

As mentioned above, [6] found that backwards fading
resulted in higher posttest results than example-problem
pairs on both near and far transfer problems.

[9] compares forward fading and backward fading.
Those who used forward fading were found to outper-
form those using backwards fading. They suggest this
has to do with the ease of the material they were learning.
Having studied the first example, they may have gained
all the initial knowledge they needed. According to the
expertise reversal effect, if a student already has some
expertise in the area, further learning is better gained by
problem-solving and techniques like worked examples
may hinder or decrease subsequent performance. This is



because for an expert, studying a worked example is a
source of ECL rather than GCL, and problem-solving
promotes GCL for those with some expertise in the
targeted domain. Because forward-fading gets students to
start problem-solving as the first, rather than the last step,
the early problem-solving may have benefited students as
opposed to those who had to wait until the final step to
problem-solve.

FE. Self-explanation prompts

[6] cites research with mixed results on the effects of
activities designed to illicit self explanations. It has been
suggested that self-explanations are a source of GCL
helping students to from schemas around the materials
they’re learning, rather than e.g. just memorizing a set
of steps to a solution. Experiments where students were
prompted by an online tool to fill in templates for self-
explanations , or where students were encouraged to
write their own self-explanations as comments, failed to
increase learning gains consistently. Another study found
self-explanation prompts during the problem solving
phase rather than during example study received positive
results on learning.

In their own study into solving statistics problems, [6]
prompted students with a set of principles a given step
in the worked examples may be drawing from. Students
were expected to choose one of the principles, and this
was expected to foster self-explanations. Students in the
self-explanation groups performed better on posttests for
near and far transfer problem than those not prompted
in the equivalent fading or example-pair groups not
prompter. No extra time was required to achieve this
result. The results for self-explanation prompts with
backwards fading were replicated for university and high
school students.

G. Subgoal labeling

[5] studied the use of subgoal labeling in video
demonstrations and instructional material for creating
mobile applications. In the subgoal conditions, the steps
in the demonstration video and instructional material
were labeled with subgoals grouping several steps into
a cohesive group.

In posttests participants in the subgoal group better
identified subgoals necessary to complete a solution
whether or not they complete it correctly or not. They
also were more likely to correctly complete the sub-
goals necessary for the assessments. Overall the sub-
goal condition outperformed their counterpart on both
assessments immediately after training and assessments
one week later. They did so spending less time on the

assessments, and were less likely to drag out blocks in
the assessments.

H. Summary

The evidence suggests certain worked example tech-
niques (primarily example-problem pairs and faded
worked examples) are an improvement over standard
problem solving techniques, in terms of learning time
and performance on near transfer tests in novices.

Though not all research indicates it is successful in
easy or low effort tasks, when the student is not a novice
in the domain the worked example target, it does appear
to indicate faded worked examples in particular improve
performance and decrease learning time on near transfer
tasks, and techniques such as self-explanation prompts
may promote far transfer as well if applied appropriately.

Since this research are on well structured domains
like statistics, physics and programming, and given the
well structured nature of Computer Science, much of this
research provides promising avenues for teaching Com-
puter Science. Research in adopting e.g. faded worked
examples with self explanation prompts in teaching
Computer Science as in [6] may yield positive results.
As [10] suggests learning may improve if the correct
sequence of fading is chosen, research into what steps
should be faded first for a given problem would also help
us understand how faded worked examples could most
effectively be employed.

VI. EXAMPLES IN COMPUTER SCIENCE

There is not a lot of research into worked examples in
Computer Science. Early research into CLT drew upon
work in teaching LISP (e.g. [1]), where it was observed
that students would rely heavily on provided examples
as opposed to instructional texts. Much of the worked
example literature rely on the results of these studies,
but nonetheless worked examples have not been well
explored or used in Computer Science education, as [8]
and [7] observed. We’ve explained some examples of
work in this area in Computer Science ( [3], [5]).

One promising paper providing a framework to study
or implement faded worked examples in Compuetr sci-
ence is “Suggestions for Graduated Exposure to Pro-
gramming Concepts Using Fading Worked Examples”
[2], which we examine.

A. Suggestions for Graduated Exposure to Programming
Concepts Using Fading Worked Examples

[2] provide a set of suggestions for implementing
faded worked examples for an introductory course in
C++ programming.



They decompose the task of programming in to com-
ponents whose cognitive load they claim can be ade-
quately managed. Their decomposition is based on two
parts: the abstract algorithmic dimensions and the associ-
ated concrete programming constructs. The algorithmic
dimensions they identify are design, implementation and
semantics (the meaning of supplied code). The semantic
dimension is divided in three, into assertion (students
should be able to state true statements about the code at
various point of execution), execution (given an input,
provide the output) and verification (be able to test
the code). The programming constructs chosen were
selection, iteration and subroutine calls. Each of these
would be taught in pairs (design of a selection algorithm,
implementation of an iterative algorithm etc.), with the
learning of each pair supported by sets of faded worked
examples.

The provide concrete fully worked examples for all of
the design-construct and implementation-construct pairs,
and provide an example of semantic-assert and semantic
for selection algorithm. They’re suggestions have yet to
be tested, but it does provide a concrete example for
how faded worked examples could be used in Computer
Science.

However, they could do with a greater justification of
the use of backwards fading. Though backwards fading
is often found to work well on reducing learning time or
improving near transfer compared to some alternatives,
[10] suggests this is an artifact of the teaching mate-
rials people use rather than something inherent in the
backwards sequencing. The sequencing if fading could
be examined to see which steps may be prerequisites for
understanding other steps - [10] suggests these kinds of
steps should be removed first.

Also, they suggest using ’ASSERTS’ during the se-
mantic part of training. This is designed to get students
to assert what is known about certain parts of code in
the form of code comment. This is motivated by the
same principals motivating the use of self-explanation
prompts in [6]. However, their explanations of how they
will teach students to provide such assertions on their is
light though their example does have an explicit process
for coming up with assertions for selection, will this
be helpful on problems which do not follow he same
format?

As mentioned earlier, the research on self-explanation
prompts is not unanimous. [6] suggests the interface
allowing students to write down self-explanations may
have an effect on whether it will be effective, and the
prompts they provide in their own experiment require
students to make choices from a list, rather than gener-
ating them on their own. This requires a low amount of

activity from students. The scaffolding provided means
they won’t have to come up with assertions from scratch
like in some previous studies, but the suggested *AS-
SERTS’ require a little more than picking options from
a list. They themselves state “Including ASSERTS can
be challenging for a student. However, the payoff is
promising” [6]. What makes it challenging, and will this
be too much for a novice or struggling student? Will the
challenge be too great a source of ECL, negating the
self-explanation effects like in some earlier studies cited
in [6]? A greater examination on this point is required,
both theoretical and empirical.

However, all in all, this paper still provides a clear
framework for using and testing faded worked examples
in Computer Science. Such techniques could straight-
forwardly be exteded to other C derived languages like
C, Java or Cf, or any kind of imperative or procedural
language. Other constructs or dimension of programming
could be considered too.

REFERENCES

[1] John R. Anderson, Robert Farrell, and Ron Sauers. Learning
to program in lisp. Cognitive Science, 8(2):87 — 129, 1984.

[2] Simon Gray, Caroline St. Clair, Richard James, and Jerry
Mead. Suggestions for graduated exposure to programming
concepts using fading worked examples. In Proceedings of the
third international workshop on Computing education research,
ICER °07, pages 99-110, New York, NY, USA, 2007. ACM.

[3] J. Gregory, Gregory Trafton, and J. Reiser. The contributions
of studying examples and solving problems to skill acquisition,
1993.

[4] PaulChandler PaulSweller John Kalyuga, SlavaAyres. The
expertise reversal effect. Educational Psychologist, 38(1):23
— 31, 2003.

[5] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone.
Subgoal-labeled instructional material improves performance
and transfer in learning to develop mobile applications. In
Proceedings of the ninth annual international conference on
International computing education research, ICER ’12, pages
71-78, New York, NY, USA, 2012. ACM.

[6] R.Mason and G. Cooper. Transitioning from studying examples
to solving problems: Effects of self-explanation prompts and
fading worked-out steps. ournal of Educational Psychology,
95(4):pp. 774-783, 2003.

[71 R. Mason and G. Cooper. Why the bottom 10implication for
introductory programming courses. In M. de Raadt and A. Car-
bone, editors, Australasian Computing Education Conference
(ACE2012), volume 123 of CRPIT, pages 187-196, Melbourne,
Australia, 2012. ACS.

[8] Jeroen J.G. Van Merrinboer and Fred G.W.C. Paas. Automation
and schema acquisition in learning elementary computer pro-
gramming: Implications for the design of practice. Computers
in Human Behavior, 6(3):273 — 289, 1990.

[9] R. Moreno, M. Reisslein, and G.M. Delgoda. Toward a funda-
mental understanding of worked example instruction: Impact of
means-ends practice, backward/forward fading, and adaptivity.
Frontiers in Education, Annual, 0:5-10, 2006.



(10]

(1]

Alexander Renkl, Robert K. Atkinson, and Cornelia S. Grosse.
How fading worked solution steps works - a cognitive load
perspective. Instructional Science, 32(1-2):59-82, 2004. Date
revised - 2010-09-01; Language of summary - English; Pages
- 59-82; ProQuest ID - 811266033; Last updated - 2011-11-
07; Corporate institution author - Renkl, Alexander; Atkinson,
Robert K; Grosse, Cornelia S; DOI - OB-ccf31al7-cdea-457b-
a734mfgefd108; 13660440; 0020-4277; 1573-1952.

Tamara van Gog, Liesbeth Kester, and Fred Paas. Effects
of worked examples, example-problem, and problem-example
pairs on novices learning. Contemporary Educational Psychol-
ogy, 36(3):212 — 218, 2011.



