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Abstract— Fragmented IP traffic is a poorly understood
component of the overall mix of traffic on the Internet.
Many assertions about the nature and extent of fragmented
traffic are anecdotal rather than empirical. In this paper
we examine the causes and attributes of measured fragment
traffic, in particular, the effects of NFS, streaming media,
networked video games, tunneled traffic, and the prevalence
of packet fragmentation due to improperly configured ma-
chines.

To understand the prevalence, causes, and effects of frag-
mented IP traffic, we have collected and analyzed seven
multi-day traces from four sources. These sources include
a university commodity access link, two highly aggregated
commercial exchange points, and a local NAP. Although
there is no practical method of ascertaining whether any
data provide a representative sample of all Internet traffic,
we include data sources that cover several different types
of WANs with traffic from commercial entities, educational
and research institutions, and large government facilities.

The dominant causes of fragmentation are streaming me-
dia and tunneled traffic. Although rumored to be the main
impetus for IP packet fragmentation, NFS is not among the
top ten causes.

Keywords—fragmentation, fragment, measurement, traf-
fic measurement, TCP/IP

I. INTRODUCTION

The Internet protocol (IP) was designed to facilitate
communication between heterogenous networks. It serves
as a least-common-denominator protocol that allows com-
puters differing in architectures, operating systems, and
applications, connected by varying routes, paths, and pro-
tocols, to exchange information. IP must be able to han-
dle differences in maximum sizes of transmitted packets
on dissimilar networks. While it is trivial to move pack-
ets from a network with a smaller MTU (maximum trans-
mission unit) to a network with a larger MTU, the reverse
is challenging. To overcome this obstacle the IPv4 pro-
tocol performs fragmentation: a router breaks the data-
gram up into smaller individual pieces called fragments.
Each fragment has its own IP header, which is a replica
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of the original datagram header. Thus each fragment has
the same identification, protocol, source IP address, and
destination IP address as the original IP packet. To distin-
guish fragments and allow correct reassembly, the offset
field of each fragment contains the distance, measured in
8-byte units, between the beginning of the original data-
gram and the beginning of that particular fragment. The
first fragment by definition has its offset set to 0, the sec-
ond fragment has as its offset value the payload size of
the first fragment, and so on. All of the fragments ex-
cept the last have the ‘more fragments’ bit set so that the
destination host waits to receive all of the fragments be-
fore reassembling them into the original IP datagram. The
size of each fragment usually corresponds to the size of
the MTU of the subsequent link minus the length of the
header that is added to each fragment. After disassembly
of the original datagram, fragments are sent out into the
network and are routed independently towards their des-
tination. By providing an automatic intranetwork mech-
anism for handling disparate MTU sizes, IP allows end
hosts to exchange traffic with no explicit knowledge about
the path between them.

In their 1987 paper “Fragmentation Considered Harm-
ful,” Kent and Mogul [1] established that packet fragmen-
tation is a suboptimal method of handling packets as they
traverse a network. Although current technology miti-
gates some of the described problems with consumption
of bandwidth, packet switching, and CPU resources, the
overall argument that fragmentation is detrimental remains
valid. The adverse effects of fragmentation on network
performance and infrastructure continue to negatively im-
pact wide area transport. First, an intermediate router must
perform the fragmentation. The router must process the
fragment with its main CPU, rather than utilizing the spe-
cialized hardware in a line card, commonly called the “fast
path”. This CPU-intensive operation may impair the abil-
ity of the fragmenting router to efficiently process non-
fast-path traffic. The additional fragmented packets in-
crease the load on all routers and networks between the
initial router and the end host. Finally, once the frag-
ments reach their destination they must be reassembled
by the end host. The loss of any fragment causes the
destination host to drop the entire packet. This in turn
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Fig. 1. Composition of a fragment series.

forces the source host to repeat transmission of a datagram
that will likely be fragmented once again. Researchers
have shown that in certain specific, controlled circum-
stances fragmentation can improve performance [2]; how-
ever, those observations do not apply to backbone links.
Despite widespread advances in the intervening thirteen
years, IP packet fragmentation is still “considered harm-
ful”.

Since the work of Kent and Mogul, many untested hy-
potheses about the causes and effects of fragmented IP
traffic have come to be treated as fact. Foremost is the
assertion that fragmented traffic no longer exists. Others
in the networking community accept the existence of frag-
mented traffic on LANs, but believe its scope does not ex-
tend to backbone links. Further common beliefs include
that only UDP traffic is fragmented, that NFS is the source
of all fragmented packet traffic, that fragmented IP traffic
on the whole is decreasing, and that certain misconfigura-
tions are causing an increase in fragmented traffic. These
beliefs as a group are not tenable, since several are mutu-
ally exclusive (e.g. the overall volume of fragmented traf-
fic cannot be simultaneously increasing and decreasing).
While one recent publication suggests that IP packet frag-
mentation is increasing [3], all other fragment folklore has
no basis in current network measurement.

IP packet fragmentation continues to play a small but vi-
tal role in facilitating communication between hosts on the
Internet. The proliferation of protocols that send packets
with different MTUs necessitates a system flexible enough
to accommodate these variations. IP packet fragmentation
increases the robustness and efficacy of IP as a universal
protocol. In this paper, we examine the character and ef-
fects of fragmented IP traffic as monitored on highly ag-
gregated Internet links.

The paper is organized as follows: Section II defines ter-
minology we use to describe fragmented traffic. Sources
of data and our methodologies for analysis are presented
in Section III. In Section IV we present our results charac-
terizing fragmented traffic. Finally, Section V summarizes
the current effects of fragmented traffic on the monitored
links.

II. TERMINOLOGY

This section introduces the terminology used in our dis-
cussion of IP packet fragmentation. Several of these terms
are illustrated in Figure 1.

As described in RFC 1191 [4], the Path MTU is the
smallest MTU of all of the links on a path from a source
host to a destination host. In the context of this paper, val-
ues observed for a Path MTU reflect the smallest MTU of
all links between the source and the passive monitor.

We define an original datagram as an IP datagram that
will be fragmented because its size exceeds the MTU of
the next link on its path to its destination. Packet fragment,
or simply fragment, refers to a packet containing a portion
of the payload of an original datagram. While for the pur-
poses of this paper, the terms packet and datagram are syn-
onymous, we will use original datagram and packet frag-
ment in the interest of clarity. A fragment series, or simply
series, is the ordered list (as monitored on the network) of
fragments derived from a single original datagram.

The size of the series will be used to refer to the total
number of bytes in the series, while the length of the series
describes the number of fragments in the series. A data
segment is a portion of the original packet payload that
becomes the payload of a single fragment.

The first fragment is the packet containing the original
IP header and the first data segment of the payload of the



original datagram. The last fragment is the packet contain-
ing the last portion of the payload of the original datagram.
Because fragments can be transmitted in any order and be-
cause packets can be reordered as they pass through a net-
work, the first observed and last observed fragments do not
necessarily contain the first and last segments of the pay-
load of the original datagram (respectively), and are thus
not necessarily the first or last fragment of the series.

The first fragment is frequently equal in size to the
largest fragment in each series. The largest fragment size
is greater than or equal to the size of the other fragments
in the series. Similarly, the last fragment is not always
the smallest fragment in a series. So the smallest fragment
size is less than or equal to the other fragment sizes in a
series. RFC 791 [5] does not specify how fragments must
be sized, other than that the payload of all of the non-last
fragments must be a multiple of 8 bytes in length.

Because the IP protocol permits networks to drop, du-
plicate, or reorder packets, the individual fragment packets
for a single original datagram may not arrive at the destina-
tion in transmission order. We define a series as complete
when the fragmented packets monitored provide sufficient
coverage of the original data segment to allow reconstruc-
tion of the transmitted datagram (i.e. reordering or dupli-
cation may have occurred, but no fragments are missing).
Conversely an incomplete series (Figure 2) does not have
sufficient information to reconstruct the original datagram;
some part of the payload never reached our monitor.
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Fig. 2. Example incomplete series.
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Fig. 3. Example in-order series.

A series is in-order (Figure 3) if the fragments are ob-
served arriving sequentially; i.e., we never monitor a frag-
ment with an offset lower than its predecessors. Con-
versely, a series is considered in reverse-order (Figure 4) if
its fragments have offsets that never increase. A computer
producing in-order series transmits data segment 1 through
data segment N, while a computer producing reverse-order
series transmits data segment N through data segment 1.

Only one fragment needs to be delivered out of order for
us to observe a reverse-order two-fragment series. How-
ever, we cannot necessarily correlate the order in which we
received the packet fragments and the order in which they
were transmitted by the fragmenting router, since the frag-
ments can be reordered by the network. For longer series,
it is less probable that an exact reversal of the fragment or-
der occurs in the the network than it is that the ordering is
due to reverse-order transmission.

I
P
h
e
a
d
e
r

I
P
h
e
a
d
e
r

I
P
h
e
a
d
e
r

I
P
h
e
a
d
e
r

Fragment 1 Fragment 2 Fragment 3 Fragment 4

data
segment

4

data
segment

3

data
segment

2

data
segment

1

Fig. 4. Example reverse-order series.

A series contains a duplicate (Figure 5) if at least two of
its fragments cover the exact same portion of the original
payload.
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Fig. 5. Example duplicate series.

An overlapping series (Figure 6) has at least two frag-
ment packets that contain overlapping portions of the orig-
inal payload when the two fragments are not duplicates.
Conversely, a non-overlapping series has no overlapping
fragments. Note that the ‘teardrop’ denial of service at-
tack [6][7] sends large fragments that are overlapping ex-
cept for a single byte, thereby exhausting buffer resources
in certain fragment reassembly implementations.

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Fig. 6. Example overlapping series.

We define a correct series (Figure 7) as a series that is
complete, with no overlapping or duplicated fragments.
Any order of fragment arrival is acceptable in a correct
series.



Dataset Length Characteristics
Start Time (UTC) Duration (hours) Packets (kpkts) Bytes (MB) Src Hosts1

CERF-IN Fri Mar 9 02:01 252.00 2,797,266 1,439,570 2,745,493
CERF-OUT Fri Mar 9 02:01 252.00 3,394,283 1,559,170 37,242
SDNAP Fri Mar 9 01:36 259.58 1,073,321 646,677 328,094
MAEWEST-1 Fri Mar 9 01:35 75.00 5,307,429 2,203,614 1,277,423
MAEWEST-2 Tue Mar 13 02:12 132.00 8,991,449 3,963,302 1,691,880
AIX-1 Fri Mar 9 01:38 58.00 8,781,881 3,281,324 2,684,104
AIX-2 Mon Mar 12 04:35 49.00 8,070,586 3,743,040 2,478,624

TABLE I
DATASETS USED IN STUDY – MARCH, 2001
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Fig. 7. Example correct series. Note that this series is not in-
order.

III. METHODOLOGY

Measurement Sites

Data sets for this study were collected from three differ-
ent locations, summarized in Table I. The first data source
for this study was a link at MAE-west. We used an Apptel
Point OC12 card [8] to collect traffic exchanged by cus-
tomers that peer at MAE-west. No intra-customer traffic is
observed at this location. Traffic across SDNAP, a regional
exchange point located in San Diego, California, was the
second data source for this paper. We used libpcap [9]
and an off-the-shelf 100Mbit ethernet card to monitor this
traffic. Using a FORE ATM OC3 card [10], we monitored
the commodity access link that connects the University of
California, San Diego campus (including such entities as
the San Diego Supercomputer Center and the Scripps In-
stitute of Oceanography) to CERFnet. At our final loca-
tion, traffic was collected from a link between Ames Inter-
net Exchange (AIX) and MAE-west, using a WAND DAG
OC3 card [11].

The numbers of unique source hosts for each data set
(shown in Table I) were limited to hosts that sent at least 3
packets over the lifetime of the trace. This filtering was ap-
plied to provide a more accurate count of the actual num-
ber of hosts transmitting across the link, since the MAE-
west data sets contained at least one random source Denial
of Service attack.

1Unique IP source addresses that sent at least 3 packets over the trace
lifetime.

Traffic Monitoring

Due to the high volume of traffic at some of the mea-
surement sites, a specialized tool, crl frag capture,
collected the data for this study. crl frag capture
relies on the CoralReef [12] software suite for header cap-
ture, interval handling and data aggregation. We gleaned
only packet headers; we attempted no analysis of the pay-
load portion of each packet. We organized the data we
collected into hour-long intervals for post-processing. We
collected four types of data:

frags.pcap — a full header trace in libpcap [9] format
containing only fragmented traffic packets (either offset >

0 or ‘more fragments’ bit set).
src ip.t2 — an aggregated table of non-fragmented traf-
fic containing the number of packets and bytes seen per
source IP address.
proto ports folded.t2 — an aggregated table of non-
fragmented traffic with the number of packets and bytes
seen per 3-tuple of IP protocol, source port, and destina-
tion port. Since a significant amount of monitored traf-
fic travels between a well known port and an ephemeral
port, additional aggregation was done for commonly oc-
curring ports to keep the tuple table size from exceeding
memory space on the machine. A list of 19 ports2 was
chosen from preliminary studies of non-fragmented traffic
on these links. For each packet with a source or destina-
tion matching one of these common ports, the ephemeral
port is set to 0, causing all traffic for each of these 19 ser-
vices to fall into only 19 entries in our tuple table. This
method maintains the port that matches the traffic to a spe-
cific application, while discarding the dynamically gen-
erated, meaningless port. Additionally, all ports above
32767 were bucketed as 32768, since the ports in this range

2Specific ports in aggregation application order: 80, 53, 25, 443,
27015, 110, 113, 37, 20, 119, 5000, 6112, 6667, 6688, 6699, 6970,
8888, 9000, 27005.



are typically dynamically allocated and we found in pre-
liminary studies that no well known ports above 32767 had
a significant volume of traffic.
length.t2 — a table of non-fragmented traffic aggregated
by the number of packets and bytes seen with each IP
packet size.

The collection of full header traces for non-fragmented
traffic was not feasible due to the high volume of traffic
on the monitored links. Furthermore, partitioning of the
data into independent tables for source IP address, proto-
col/ports, and packet length obscures the original relation-
ships between these fields.

Fragment Processing

For an in-depth analysis of IP packet fragmentation,
constituent fragments from each original datagram were
assembled into a fragment series. Fragments were sepa-
rated into discrete series using the identification, protocol,
source IP address and destination IP address fields, since
those fields uniquely define fragments of an original data-
gram. The payload of the original packet was not recon-
structed, since the offset and size of each fragment are
sufficient to infer the basic properties of fragmented traf-
fic.
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The grouping of fragments into series is sensitive to the
chosen reassembly timeout. On one hand, we wish to pro-
vide sufficient time for all fragments in each series to be
monitored even with significant network delays. However,
we also need to account for the possibility of a wraparound
of the IP ID field. While we would not ordinarily expect
the IP ID field to wrap in a short period of time, there are
a few cases in which we do monitor duplicate IP ID fields
from a single host in a short period of time. For example,
we observed tunnel ingress points that generated sufficient
traffic to wrap their IP ID fields in only a few minutes. If

the timeout is too lengthy, the likelihood of incorrectly as-
signing fragments from disparate original datagrams into
the same fragments series increases. As shown in Figure 8,
the number of duplicate fragments in each series (which
can be an indicator of IP ID wraparound) increases across
tested fragment series timeouts. Conversely, the number of
incomplete series decreases with increasing timeout mag-
nitude. Because there exists no point at which erroneous
duplicates are minimized while complete series are max-
imized, we have chosen to use a timeout of 15 seconds,
as it is the maximum advisable delay before reassembly
recommended in RFC 791 [5].

Application Mapping

To discern which applications and services produce the
most fragmented traffic, we map the protocol, source port
and destination port fields of each IP packet header to a
named application by choosing the first matching rule from
an ordered collection of protocol/port patterns. For this
study, we used CAIDA’s passive monitor report generator
application list.3 The list contained 92 application to port
mappings, including common well known ports from the
IANA port assignment list [13], as well as emerging mul-
timedia, file sharing, and video game applications (such as
RealAudio, Quake, Napster, eDonkey2000, and FastTrack
(KaZaA)). For example, traffic to and from ports 80 and
8080 are classified as WWW traffic, while connections to
port 21 are classified as FTP data. Because passive FTP
utilized dynamically allocated ports, we cannot distinguish
it using well-known ports. As described in Section IV-D,
we were able to use control traffic to identify almost all
applications using ephemeral ports.

IV. RESULTS

A. Overall trends in Fragmented Traffic

Table II shows the percentage of fragmented and non-
fragmented traffic found in each data set. We observed
hosts sending both fragmented traffic and non-fragmented
traffic, so the host percentages may total more than 100%.
Although the overall volume of fragmented traffic was
small, it was also highly variable. Figure 9 shows the vari-
ance in the number of fragmented packets, number of bytes
carried in fragmented packets, and number of hosts send-
ing fragmented traffic.

The non-fragmented traffic measured by both the AIX
and MAE-west monitors demonstrated diurnal cycles. The
traffic at SDNAP does not share the strongly cyclical na-

3The mapping code and application/port list used in this study (from
CoralReef 3.5.2), as well as the current CAIDA list, can be obtained
from the authors or by emailing coral-info@caida.org.



Trace Fragmented Non-Fragmented
Pkts(%) Bytes(%) Hosts1(%) Pkts(%) Bytes(%) Hosts1(%)

CERF-IN 0.675 1.556 0.042 99.325 98.444 99.989
CERF-OUT 0.742 1.283 0.177 99.258 98.717 100.000

SDNAP 0.069 0.090 0.023 99.931 99.910 99.998
MAEWEST-1 0.534 1.459 0.174 99.466 98.541 99.994
MAEWEST-2 0.578 1.573 0.183 99.422 98.427 99.996

AIX-1 0.269 0.835 0.172 99.731 99.165 99.973
AIX-2 0.250 0.590 0.162 99.750 99.410 99.974

TABLE II
PREVALENCE OF FRAGMENTED AND NON-FRAGMENTED IP TRAFFIC

0

2

4

6

8

10

12

AIX-1
AIX-2

MAEWEST-1
MAEWEST-2

SDNAP
CERF-IN

CERF-OUT

%
 b

yt
es

 

(a) Traffic by bytes

0

1

2

3

4

5

6

7

AIX-1
AIX-2

MAEWEST-1
MAEWEST-2

SDNAP
CERF-IN

CERF-OUT

%
 p

ac
ke

ts

 

(b) Traffic by packets

0

0.05

0.1

0.15

0.2

0.25

AIX-1
AIX-2

MAEWEST-1
MAEWEST-2

SDNAP
CERF-IN

CERF-OUT

%
 h

os
ts

 

(c) Unique hosts

Fig. 9. Percentage of fragmented traffic by (a) bandwidth, (b) packets, or (c) unique hosts for 1 hour intervals for each trace. The
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ture of traffic at the other two locations, although it does
show a daily decrease in traffic late at night (Pacific Stan-
dard Time). Figure 10 shows time series plots of the
non-fragmented traffic. Note that Figures 10(e) and 10(f)
do not exclude random source Denial of Service attacks.
These attacks produce spikes in the number of hosts gen-
erating traffic with no periodic temporal patterns [14].

B. Classification of Fragmented Traffic

Fragment series can be categorized by the order in
which the monitor received their constituent packets. Ta-
ble III shows the breakdown of all series based on the fol-
lowing attributes (as defined in Section II): correct, com-
plete, in-order, reverse-order, overlapping, and duplicate.
Of all series, 98.3% are complete, meaning they contain
sufficient information to reconstruct the original datagram.
Correct series (Figure 7) account for 98.2% of all series.
Of complete series, 90.4% are in-order (Figure 3) and
7.9% are reverse-order (Figure 4). 0.1% of all complete
series are either overlapping (Figure 6) or duplicate (Fig-
ure 5) series; both are attributes that impede exact deter-
mination of ordering. Of all complete series, 0.002% have
overlapping fragments and 0.15% contain duplicates.

Of all monitored series, 1.6% are correct series that
were neither in-order nor reverse-order; they were likely
reordered in transit. In May 2000, Paxson et al [15] ob-
served that approximately 0.3% of all packets arrive out of
order. Thus it appears that fragmented traffic has a greater
probability of being reordered by the network than non-
fragmented traffic. However, we have no way to quan-
tify the overall frequency of out-of-order non-fragmented
packets in our data sets so we cannot test this hypothesis.

Reverse-order series are not problematic; in fact, they
can actually be beneficial since a host receiving a reverse-
order series can use the fragment length and offset fields of
the first received packet to immediately allocate correctly
sized buffers, rather than growing or chaining buffers as
subsequent fragments arrive.

C. Characteristics of Fragment Traffic

To clearly portray the characteristics of fragmented traf-
fic, we use graphs generated from data collected at the
Ames Internet Exchange because they demonstrate the ba-
sic properties of fragmented IP traffic as observed on all
links studied. We analyzed the size (in bytes) of moni-
tored fragment series, the number of fragments in each se-
ries, the sizes of the largest and smallest fragments in each
series, and the effects of fragments larger than 1500 bytes.
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Fig. 12. Enlargement of 0-3000 byte range of the number of
bytes transmitted per correct series for trace AIX-2. Note
this includes the bytes in all of the IP headers for each frag-
ment.

Bytes per Fragment Series (Figure 11)

The size of the payload carried by each fragment series
is highly variable. It has a random component similar to
distributions of packet size in general, with a band between
1520 and 1636 bytes per fragment series. Tunneled traffic
is a major cause of fragment series in this size range. The
source host sends these original datagrams at 1500 bytes
– the MTU of Ethernet (and many other link types) – and
then they have between 1 and 4 additional IP (or other)
headers prepended at the tunnel ingress point. This band-
ing effect and the prevalence of original datagram sizes
around 1500 bytes can be seen in Figure 12, an enlarge-
ment of the 0-3000 byte range of Figure 11. The most fre-
quently occurring series size across all of the data sets was
1572 bytes. We observe a background, relatively uniform
distribution of packet sizes that stretches across series size
graphs. In this case, series with total sizes between 597 and
around 4,000 bytes occurred with a uniform frequency of
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Fig. 10. Average hourly bandwidth (a,b), packets (c,d), and unique hosts (e,f) for non-fragmented traffic.



Category Occurrence
Correct Complete In-Order Reverse Overlap Duplicate # Series % Series

YES YES YES - - - 56,411,943 89.
YES YES - YES - - 4,936,210 7.8
YES YES - - - - 1,028,327 1.6

- - YES YES - - 653,167 1.0
- - YES - - - 339,362 0.53
- YES - - - YES 89,288 0.14
- - - YES - - 69,627 0.11
- - - - - - 17,626 0.028
- - YES YES - YES 990 0.0016
- YES - - YES YES 974 0.0015

TABLE III
TOP SERIES KINDS FROM ALL SERIES
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Fig. 13. Cumulative distribution of fragmented and non-
fragmented bytes in each IP packet for trace AIX-2. For
fragmented traffic this includes the bytes in all of the IP
headers for each series.

approximately one hundred series per size. A background
level of approximately 10 series spanned the range from
4,000 bytes to 10,000 bytes.

Figure 13 shows the overall packet size distribution
for this data set, including both fragmented and non-
fragmented traffic. All packet sizes above 30 bytes occur
at a frequency in excess of 100,000 packets. The most fre-
quently occurring packet size was 40 bytes with 2.69 bil-
lion packets, followed by 1500 bytes at 1.49 billion packets
and 576 bytes with 514 million packets.

Figure 12 shows evidence of fragmentation caused by
MTU misconfiguration. We monitored a total of 93 series
less than 256 bytes. While two of these series appeared to
be deliberate optimizations for slow links, the majority ap-
pear to be errors. Indeed, the smallest series, at 92 bytes,
had only 52 bytes of payload. The overhead for this series,
40 bytes, is nearly as large the size of the payload. An ad-

ditional 252 series are considered ‘poorly configured’ be-
cause they have series lengths less than 576 bytes. While
in a few instances (e.g., routers handling predominantly
voice over IP traffic) a low MTU is an optimal configura-
tion, MTUs lower than 576 bytes are generally evidence of
mistaken or misguided configuration.

Some end hosts that make modem connections via SLIP
set low MTUs for their dial-up link; however, an MTU
of 576 is often sufficient to preserve interaction even dur-
ing large file transfers. The additional overhead incurred
should be considered whenever a smaller MTU is chosen:
7% of 576 byte TCP packets is used by headers necessary
for delivery of the packet, while 16% of 256 byte pack-
ets and 31% of 128 byte packets constitute overhead. To
deliver the payload of a 576 byte TCP packet, three 256
byte packets (generating 80 extra bytes) or seven 128 byte
packets (generating 240 extra bytes) are necessary.

One phenomenon we often observe in series size his-
tograms is a large original datagram occurring at a fre-
quency disproportionate to its size. These spikes appear to
be a transient property of the traffic on each link; they vary
in datagram size and magnitude of occurrence over time on
the same link, and also vary across wide-area network lo-
cations. This data set contains two easily identifiable man-
ifestations of this phenomenon: 14,087 fragment series of
60828 bytes and 39,114 series of 65888 bytes. Because
these large datagrams occur on all links monitored, we will
make note of the effects of these occurrences throughout
the following sections. Both of these sets of large series
are ICMP echo requests and thus may have been “ping of
death” attacks1 [16].

1Machines running older versions of many Operating Systems can be
crashed by sending them a ping packet larger than 65,535 bytes. Be-
cause few protocols allow packets that large, the “ping of death” packet



These fragment series have the following compositions:
Each 60828 byte fragment series consists of 40 frag-

ments of 1500 bytes followed by 1 fragment of 828 bytes,
with original datagram length of 60028 bytes. In this case
800 bytes of overhead (60828 - 60028) were caused by the
40 additional IP headers needed to transmit the series.

Each 65888 byte fragment series consists of 43 frag-
ments of 1500 bytes followed by 1 fragment of 1388 bytes,
with original datagram length of 65028 bytes. In this case
860 bytes of overhead (65888 - 65028) were the result of
the 43 additional IP headers needed to transmit the series.

Fragments per Fragment Series (Figure 14)
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Fig. 14. Number of fragment packets for correct series for trace
AIX-2.

Fragment series are typically two fragments in length.
A high number of two-fragment series is consistent with a
high volume of tunneled fragmented traffic, since this se-
ries length accounts for original datagrams that range from
just exceeding the MTU of the next link to forty bytes (for
the next packet header) less than double the MTU of the
next link:

MTU < datagram ≤ (2 ∗MTU)− 40

This spike in two-fragment series in Figure 14 is gen-
erally followed by decreasing numbers of packets with in-
creasing length of the series. We often observe a pairing
of even and odd lengths that results in a step-like decrease
in the frequency of occurrence of long fragment series.
This behavior can be seen in the pairs (4,5), (6,7), (10,11),
(14,15), (21,22), (23,24), and (25,26).

We observed an unusually large number of forty-one
and forty-four fragment series at AIX because of the un-
usual frequency of packets of lengths 60028 and 65028
bytes, respectively. These packets were broken up into

typically arrives as a fragment series, is reassembled by the target ma-
chine into the original 65,535 byte packet, and then crashes the target
machine

1500-byte fragments with one oddly sized leftover frag-
ment.

Largest Fragment Size Distribution (Figure 15)
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Fig. 15. Largest fragment size for correct series for trace AIX-2.

The size of the largest fragment found in a fragment se-
ries is indicative of the MTU of the link provoking frag-
mentation. Typically the first fragment in a fragment se-
ries has this maximum size, but this is not universally true.
We identified in the AIX and MAE-west data a total of
237,263 two-fragment series in which the smallest frag-
ment was received first, with the largest trailing. While
only 7.8% of the total correct fragment series were trans-
mitted in reverse order, we cannot make the assumption
that the first fragment of each series is always the largest.

The same misconfigurations that were apparent in the
bytes per fragment series graph are visible here: it is un-
likely that a packet would need to be fragmented to a size
less than 576 bytes as it travels towards an exchange point.
However, there are no observable artifacts of the 60028 or
65028 original datagram phenomena in this graph. All of
those anomalies result in 1500 byte largest fragments, and
since 1500 is by far the most common largest fragment
size, the anomalies are not visible in the largest fragment
size distribution.

Many of the largest fragments occur at sizes easily pre-
dicted from the MTUs of common link types. Table IV
shows the largest fragment size per series seen across all
data sets. 1500 bytes is by far the most common largest
fragment size; it is the maximum packet size for Ethernet
networks. Ethernet networks using LLC/SNAP, in accor-
dance with RFC 1042 [17] produce 1492 byte IP packets.
DEC Gigaswitch traffic results in packets of length 1484
bytes. 572 bytes is a widely used PPP MTU and also re-
sults from usage of the default 576 byte transmission size.
According to RFC 791 [5] and RFC 879 [18], the largest
size packet that a host is required to accept is 576 bytes.



Protocol Fragmented Non-Fragmented
Name Number Pkts(%) Bytes(%) Pkts(%) Bytes(%)

UDP 17 0.30 0.80 12. 3.7
IPENCAP 4 0.061 0.11 0.12 0.039
ESP (IPSEC) 50 0.014 0.025 0.28 0.28
ICMP 1 0.044 0.14 1.9 0.45
TCP 6 0.0076 0.018 85. 94.
GRE 47 0.0051 0.0088 0.18 0.13
IPIP 94 0.0043 0.0074 0.033 0.021
AH (IPSEC) 51 0.0018 0.0032 0.053 0.042
IGMP 2 0.0015 0.0020 0.0004 <0.0001
AX.25 93 <0.0001 <0.0001 0.0045 0.0014

TABLE V
PROTOCOL BREAKDOWN FOR FRAGMENTED AND NON-FRAGMENTED IP TRAFFIC. PERCENTAGES ARE OF TOTAL TRAFFIC.

Fragment Size (bytes) Series(%)

1500 79.
1484 18.
1492 1.0
572 0.96
1496 0.37
1356 0.15
1396 0.10
124 0.093
764 0.081
1452 0.055

TABLE IV
TOP TEN LARGEST FRAGMENTS FROM CORRECT SERIES

Therefore when Path MTU discovery fails or is not imple-
mented, packets are sent at a size less than or equal to 576
bytes. Note that for IPv6, the minimum MTU of any link
must be 1280 bytes [19].

The default packet size of 576 bytes results in frag-
ments of 572 bytes because the length of the payload of
each fragment packet except the last must be divisible by
eight. This size requirement is based on the design of the
IP packet header that specifies that the offset field holds the
position of each fragment within the original datagram in
eight-byte units[5]. The size of the entire fragment is the
sum of the length of the IP header and the payload. Since
IP options rarely occur, the IP headers of these fragments
are 20 bytes in length [3]. Therefore, the entire packet size
for non-last fragments is 20 + N ∗ 8 for some N . The
largest valid fragment packet size less than or equal to the
default transmission size of 576 bytes is 572 bytes. Such
a packet would consist of 20 bytes of IP header and 69

eight-byte units of fragment payload.
Many large fragment sizes evince configuration errors.

This is evidence for the utility of Path MTU Discovery,
since there is no “safe” transmission size at which a host
can send packets to prevent fragmentation without an un-
acceptable increase in per-packet overhead.

The Effects of Fragments Larger than 1500 Bytes

As we have seen in the previous graphs, the most fre-
quently occurring original datagram sizes shape the char-
acteristics of their resulting fragments. Fragment traffic at
MAE-west is unusual in that a common largest fragment
size for this link is 4348 bytes, rather than the usual sizes
smaller than 1500 bytes. The MAE-west location moni-
tored for this study is an ATM link, and the MTU for IP
over ATM is 9180 bytes [20][21]. Fragments larger than
1500 bytes are more likely to be fragmented again before
they reach their destination than smaller fragments.

D. Fragmented Traffic Protocols and Applications

This section examines the services, protocols and appli-
cations that contribute to fragmented traffic.

Services Causing Fragmentation

While many hypothesize that NFS causes all of the frag-
mented traffic on LANs and backbone networks, in our
data streaming media and tunneled traffic are the domi-
nant cause of IP packet fragmentation.

Streaming media accounts for 53% of all fragmented
traffic. A single application in this group, Microsoft Media
Player, is responsible for the 52% of all fragmented traffic.
The use of a protocol that utilizes Path MTU Discovery
could significantly reduce the impact of this application
on packet fragmentation.



The other major culprit, fragmented tunneled traffic,
consists of IP packets sized at the MTU of their local net-
work which were then tunneled, causing the addition of at
least one additional IP header. For example, a 1500 byte
packet with a 20 byte IP header added as it is tunneled via
IPENCAP results in a 1520 byte datagram that exceeds
the MTU of the subsequent link, and is fragmented into a
1500 byte first fragment and a 40 byte second fragment.
This fragmentation is entirely preventable – an end host
that is known to send traffic through an IP tunnel could
set the MTU of the interface associated with the tunnel
to 1480 bytes, rather than 1500. This would reduce the
switching load resulting from the tunneled traffic by 98.7%
– the machine would generate an extra packet for only ev-
ery seventy-fifth packet sent, rather than requiring a second
packet for every original datagram sent from the machine.

Path MTU discovery should allow the end host to dis-
cover an MTU that minimizes fragmentation of its tun-
neled traffic. However, 98.98% of the fragmented IPEN-
CAP traffic monitored on the link between UCSD and
CERFnet in the course of this study consisted of an IP
packet with its Don’t Fragment bit set, encapsulated by
an IP header with no Don’t Fragment bit. The end host be-
lieves that it is correctly performing Path MTU Discovery,
and is oblivious to the fact that packets it sends through the
tunnel are fragmented.

To prevent unnecessary fragmentation, implementations
of tunneling protocols need to perform Path MTU dis-
covery between the tunnel ingress point and the tunnel
egress point and correctly forward ICMP “datagram too
big” messages back to source hosts [22]. As the use of
tunneling protocols becomes increasingly widespread, in-
creased fragmentation caused by improperly implemented
tunneling software may cause performance problems.

Tunneled traffic is not a local area network phe-
nomenon. The combination of IPENCAP, IPIP, GRE,
and UDP-L2TP accounts for 22% of all fragment series
– the second largest single cause of fragmentation. None
of these protocols currently implement any form of Path
MTU discovery. NFS accounts for only 0.1% of wide-area
network fragment series. The most frequently fragmented
protocol is IGMP – some 78% of IGMP packets are frag-
ments. However, since IGMP accounts for only 0.0004%
of all measured packets, this fact is of purely academic im-
port.

As shown in Table VI, UDP accounts for more frag-
mented packets than any other protocol – 68.3% of frag-
mented traffic. Fragmented ICMP traffic consists primar-
ily (98.1%) of echo requests and replies, although a small
but significant number of timestamp requests were also
monitored. Path MTU Discovery successfully limits the

Protocol Fragmented
Name Pkts(%) Bytes(%) Series(%)

UDP 68. 72. 70.
IPENCAP 14. 9.7 19.
ESP (IPSEC) 3.2 2.3 4.4
ICMP 10. 12. 2.1
TCP 1.7 1.6 2.0
GRE 1.2 0.79 1.6
IPIP 0.97 0.67 1.0
AH (IPSEC) 0.40 0.29 0.54
IGMP 0.33 0.18 0.024
AX.25 0.0009 0.0001 0.0011

TABLE VI
PROTOCOL BREAKDOWN FOR FRAGMENTED TRAFFIC.

SERIES COLUMN IS FOR CORRECT SERIES ONLY.

Protocol Non-Fragmented
Name Pkts(%) Bytes(%)

UDP 12. 3.8
IPENCAP 0.12 0.040
ESP (IPSEC) 0.28 0.28
ICMP 1.9 0.45
TCP 85. 95.
GRE 0.18 0.13
IPIP 0.033 0.021
AH (IPSEC) 0.053 0.043
IGMP 0.0004 <0.0001
AX.25 0.0045 0.0015

TABLE VII
PROTOCOL BREAKDOWN FOR NON-FRAGMENTED TRAFFIC.

amount of TCP traffic that is fragmented; however, its
effects are not quite as ubiquitous as some might claim.
More than three million packets over the course of a week,
0.009% of the total TCP traffic, consisted of fragmented
packets. Fragmented TCP traffic does exist on highly ag-
gregated links.

TCP Applications (Table VIII)

50.8% of fragmented TCP series are composed of
SMTP packets. Two peer-to-peer file-sharing applications,
Napster and Gnutella, account for a total of 5.3% of frag-
mented TCP traffic, despite being a larger portion of non-
fragmented traffic. However, we only identify Napster
and Gnutella traffic on the most commonly used ports.
Because Gnutella servers and, to a lesser extent, Nap-
ster servers often use alternate ports (typically to circum-



TCP Application Series(%)

SMTP 51.
FTP DATA 36.
HTTP 4.8
NAPSTER DATA 4.7
Unclassified TCP 2.8
GNUTELLA 0.60
X11 0.066
BGP 0.019
SSH 0.017
KERBEROS 0.0079

TABLE VIII
TOP TCP APPLICATIONS FROM CORRECT FRAGMENT

SERIES

vent blocks intended to impede use of these applications),
we underestimate, perhaps significantly, the prevalence
of both fragmented and non-fragmented peer-to-peer file-
sharing application use.

ICMP Application Series(%)

Echo Request 61.
Echo Reply 37.
Timestamp Request 1.8
Port Unreachable 0.039
TTL Expired – Reassembly 0.0041
Host Unreachable 0.0028
Frag Needed But “DF” Set 0.0020
Type 69, Code 0 0.0003
TTL Expired – Transit 0.0001

TABLE IX
TOP ICMP APPLICATIONS FROM CORRECT FRAGMENT

SERIES

ICMP Applications (Table IX)

The majority (98%) of ICMP traffic observed was as-
sociated with echo request and reply. 13% of ICMP echo
requests were series of 65888 bytes (previously discussed
in Section IV-C). The 1.8% of fragmented ICMP traffic
which was a timestamp request appears to have been ei-
ther a misconfiguration or denial of service attack. An
ICMP timestamp request packet is normally 20 bytes plus
the IP header and thus should never be larger than 80 bytes.
The observed fragmented ICMP timestamp traffic predom-
inantly used payloads of 5013 bytes with less than 1%
using 4013 and 7513 bytes. In some instances multiple
source hosts were sending the the same type of 5013 byte

ICMP timestamp messages to the same destination, sug-
gesting a denial of service attack.

UDP Applications (Tables X and XI)

UDP Application Series(#) Series(%)

MS MEDIA 6,461,564 82.
UNKNOWN 1,370,495 17.
ASHERONS 12,132 0.15
TALK 12,057 0.15
ISAKMP 7,543 0.095
BIFF 5,871 0.074
DAYTIME 4,067 0.051
POINTCAST 4,038 0.051
ICU II 3,030 0.038
NFS 3,027 0.038

TABLE X
THE TOP TEN UDP APPLICATIONS USING EPHEMERAL

PORTS.

Ninety-eight percent of all fragmented UDP traffic oc-
curs on dynamically allocated ports. To identify the ap-
plications associated with traffic on these ephemeral ports,
we must match these ambiguous fragments with control
traffic on known ports. However, because our initial study
did not include a packet-level trace of unfragmented traf-
fic, we collected 16 hours (including business hours) of
TCP, UDP, and ICMP flow data from our MAEWEST,
UCSD, and SDNAP taps on February 26, 2002. The dis-
tribution of applications in this follow-up study was sim-
ilar to that of the traces used in the earlier study. Specif-
ically, Unclassified UDP traffic accounted for 93.11% of
all observed UDP traffic, a reduction of 5% from the previ-
ous study. The utilization of a few applications, including
the games Quake, Doom, and Halflife, Microsoft’s Media
Player, and AOL increased, otherwise the overall distribu-
tion of applications remained the same.

At each location, we built a tuple table based upon the
source IP address, destination IP address, protocol, and
ports of each measured flow. We identified UDP flows
with fragmented packets and extracted all other flows in-
volving the same source and destination IP that occurred
within 120 seconds of the fragmented flow. We explored
the effect of the timeout window size on the number of
matched and unmatched fragment series. We chose 120
seconds as the window size for this study because it min-
imizes unmatched fragment series while minimizing mul-
tiple matches for each fragment series.

When we generated multiple matches for a single un-
known UDP series despite tuning the window size, we at-



tempted to determine which of the matches was the most
likely control stream for the fragments. We removed du-
plicate matches and eliminated a few common applications
(traceroute, http, netbios) that are never control streams
for UDP traffic on ephemeral ports. If multiple matches
remained, we chose the match that occurred most com-
monly on its own. For example, if we narrowed the
choices to Microsoft’s RealMedia Player (81%) and Squid
(<0.1%), we’d assign the unidentified fragments to Mi-
crosoft’s RealMedia Player. Varying our method of resolv-
ing multiple matches has no significant effect on the final
results.

As seen in Table XI, the vast majority of fragmented
UDP traffic appears to be caused by Microsoft’s Windows
Media Player. Other culprits include the games Quake,
Doom, and Asheron’s Call, and L2TP, a tunneling proto-
col.

We also categorized applications identified via well-
known port numbers into thirteen groups4 based on sim-
ilarities among application functions. The top ten applica-
tion groups contributing to fragmented traffic, as measured
in February 2002, are shown in Table XI. While Streaming
applications are the primary contributors of fragmented
traffic, the effects of tunneled traffic are under-represented
in this table because several tunneling protocols (IPSEC,
GRE) are not identifiable via port numbers.

IPv6 and Packet Fragmentation

The next version of the IP protocol, IPv6, eliminates
the IP packet fragmentation mechanism in routers [19].
IPv6 also requires a checksum in the UDP header of all
UDP packets. The UDP checksum field does appear in
the IPv4 UDP header, but its use is optional. One pro-
posed mechanism for bridging IPv4 and IPv6 networks
is that UDP packets lacking checksums will have check-
sums computed and applied before they are transmitted
onto IPv6 networks. This process of checksum compu-
tation is difficult for fragmented traffic since all of the
fragments of the original datagram must be reassembled
before a checksum can be computed. If all of the frag-
ments do not share the same egress point from the IPv4
network, checksum computation is impossible. However,
we are aware of no available data on the prevalence of IPv4
UDP fragments without UDP checksums. In our data, we
observe that only 0.42% of all UDP fragments lacked a
UDP checksum. However, 25.5% of all hosts sending
fragmented traffic sent UDP packets without checksums.
82.3% of all hosts that sent UDP packets without a check-

4Application Groups: Conferencing, Encryption, File Systems, File
Transfer, Games, Login, Mail/News, Network Infrastructure, Other,
P2P, Streaming, Tunneling, and WWW

sum also sent UDP packets with checksums. This result is
consistent with application-specific checksum incorpora-
tion, rather than host-specific behavior, which complicates
a user-transparent IPv4 to IPv6 transition.

V. CONCLUSION

Many assertions about the nature and extent of frag-
mented traffic are based in folklore, rather than measure-
ment and analysis. Common beliefs include: fragmented
traffic is decreasing in prevalence or nonexistent, frag-
mented traffic exists only on LANs (due to NFS) and not
on backbone links, misconfiguration causes most fragmen-
tation, and only UDP traffic is fragmented.

While the majority of fragmented traffic is UDP (68%
by packets and 72% by bytes), ICMP, IPSEC, TCP, and
tunneled traffic are commonly fragmented as well. Mi-
crosoft’s Media Player is the single largest source of frag-
ment series, accounting for 52% seen in this study. Tun-
neled traffic is a major cause of fragmented traffic, and
accounts for at least 16% of fragmented series.

NFS accounts for only 0.1% of fragment series ob-
served. We were unable to classify the applications associ-
ated with a small percentage of UDP traffic because of the
use of ephemeral ports and dynamically exchanged ports.
The classifiable UDP traffic was comprised primarily of
tunneled, streaming media and game traffic.

Fragmented traffic does occur regularly at highly ag-
gregated exchange points as well as on access links. Al-
though fragmented traffic is a small percentage of traffic
overall, its prevalence is highly variable; fragmented traf-
fic accounted for 8% of all packets during hour-long peri-
ods on some links. The bursty nature of fragmented traffic
makes it difficult to measure accurately with short samples
of network traffic.

Fragmented traffic is detrimental to wide-area network
performance. Fragmented traffic causes increased load on
routers, through both the division of the original packet
and the increased number of packets handled by all sub-
sequent routers. The traffic also causes increased load on
links due to the overhead of an extra IP header for each
fragment. Additionally, because all of the fragments are
necessary to reassemble the original packet, the probabil-
ity of successfully delivering a fragmented packet expo-
nentially decreases as a function of the number of frag-
ments, in contrast to the normal packet loss rate. This par-
tial packet loss may further increase link and router load-
ing as higher layers must retransmit packets.

With the advent of IPv6, all packets that are currently
fragmented in the network will be dropped by routers,
with a “Packet Too Big” ICMP message returned to the
source host [23]. The proposed mechanism for transition



Application Series(%)

MS MEDIA 78.
UNKNOWN 16.
QUAKE 2.4
L2TP 1.7
DOOM 0.86
REALAUDIO UDP 0.19
ASHERONS 0.14
TALK 0.14
AOL 0.11
ISAKMP 0.090

Application Group Series(%)

Streaming 78.
UNKNOWN 16.
Games 3.4
Tunneling 1.9
Other 0.28
Network Infrastructure 0.25
File Systems 0.14
Encryption 0.12
Conferencing 0.10
WWW 0.076

TABLE XI
THE TOP TEN TCP AND UDP APPLICATIONS AND APPLICATION GROUPS OVERALL (INCLUDING APPLICATIONS ON

EPHEMERAL PORTS IDENTIFIED VIA CONTROL STREAMS).

between IPv4 and IPv6 networks requires checksums for
all fragmented UDP traffic, yet 26% lacks a UDP check-
sum. Understanding the actual prevalence and causes of
fragmented traffic is critical to the success of currently pro-
posed protocols and security efforts.
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