
Simulation-based Comparisons of Tahoe, Rent, and SACK TCP

K e v i n Fall and Sa l ly F loyd*

L a w r e n c e B e r k e l e y Na t iona l L a b o r a t o r y

O n e C y c l o t r o n Road , Berke ley , C A 9 4 7 2 0

kfal l @ee . lb l .gov , f l o y d @ e e . l b l . g o v

Abstract

This paper uses simulations to explore the benefits of
adding selective acknowledgments (SACK) and selec-
tive repeat to TCP. We compare Tahoe and Rent TCP,
the two most common reference implementations for
TCP, with two modified versions of Rent TCP. The first
version is New-Rent TCP, a modified version of TCP
without SACK that avoids some of Rent TCP's per-
formance problems when multiple packets are dropped
from a window of data. The second version is SACK
TCP, a conservative extension of Rent TCP modified to
use the SACK option being proposed in the Internet En-
gineering Task Force (IETF). We describe the conges-
tion control algorithms in our simulated implementation
of SACK TCP and show that while selective acknowl-
edgments are not required to solve Rent TCP's per-
formance problems when multiple packets are dropped,
the absence of selective acknowledgments does impose
limits to TCP's ultimate performance. In particular,
we show that without selective acknowledgments, TCP
implementations are constrained to either retransmit at
most one dropped packet per round-trip time, or to re-
transmit packets that might have already been success-
fully delivered.

1 Introduction

In this paper we illustrate some of the benefits of adding
selective acknowledgment (SACK) to TCP. Current im-
plementations of TCP use an acknowledgment number
field that contains a cumulative acknowledgment, indi-
cating the TCP receiver has received all of the data up to
the indicated byte. A selective acknowledgment option
allows receivers to additionally report non-sequential
data they have received. When coupled with a selec-
tive retransmission policy implemented in TCP senders,

*This work was supported by the Director, Office of Energy Re-
search, Scientific Computing Staff, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

considerable savings can be achieved.
Several transport protocols have provided for se-

lective acknowledgment (SACK) of received data.
These include NETBLT [CLZ87], XTP [SDW92],
RDP [HSV84] and VMTP [Che88]. The first pro-
posals for adding SACK to TCP [B J88, BJZ90] were
later removed from the TCP RFCs (Request For Com-
ments) [BBJ92] pending further research. The cur-
rent proposal for adding SACK to TCP is given
in [MMFR96]. We use simulations to show how the
SACK option defined in [MMFR96] can be of substan-
tial benefit relative to TCP without SACK.

The simulations are designed to highlight perfor-
mance differences between TCP with and without
SACK. In this paper, Tahoe TCP refers to TCP with the
Slow-Start, Congestion Avoidance, and Fast Retransmit
algorithms first implemented in 4.3 BSD Tahoe TCP in
1988. Rent TCP refers to TCP with the earlier algo-
rithms plus Fast Recovery, first implemented in 4.3 BSD
Rent TCP in 1990.

Without SACK, Rent TCP has performance prob-
lems when multiple packets are dropped from one win-
dow of data. These problems result from the need
to await a retransmission timer expiration before re-
initiating data flow. Situations in which this problem
occurs are illustrated later in this paper (for example,
see Section 6.4).

Not all of Reno's performance problems are a nec-
essary consequence of the absence of SACK. To show
why, we implemented a variant of the Rent algorithms
in our simulator, called New-Rent. Using a sugges-
tion from Janey Hoe [Hoe95, Hoe96], New-Rent avoids
many of the retransmit timeouts of Rent without requir-
ing SACK. Nevertheless, New-Rent does not perform
as well as TCP with SACK when a large number of
packets are dropped from a window of data. The pur-
pose of our discussion of New-Rent is to clarify the
fundamental limitations of the absence of SACK.

In the absence of SACK, both Rent and New-Rent
senders can retransmit at most one dropped packet per
round-trip time, even if senders recover from multiple

ACM SIGCOMM -5- Computer Communication Review

drops in a window of data without waiting for a retrans-
mit timeout. This characteristic is not shared by Tahoe
TCP, which is not limited to retransmitting at most one
dropped packet per round-trip time. However, it is a fun-
damental consequence of the absence of SACK that the
sender has to choose between the following strategies to
recover from lost data:

1. retransmitting at most one dropped packet per
round-trip time, or

2. retransmitting packets that might have already been
successfully delivered.

Reno and New-Reno use the first strategy, and Tahoe
uses the second.

To illustrate the advantages of TCP with SACK, we
show simulations with SACK TCP, using the SACK im-
plementation in our simulator. SACK TCP is based on
a conservative extension of the Reno congestion con-
trol algorithms with the addition of selective acknowl-
edgments and selective retransmission. With SACK, a
sender has a better idea of exactly which packets have
been successfully delivered as compared with compa-
rable protocols lacking SACK. Given such information,
a sender can avoid unnecessary delays and retransmis-
sions, resulting in improved throughput. We believe the
addition of SACK to TCP is one of the most important
changes that should be made to TCP at this time to im-
prove its performance.

In Sections 2 through 5 we describe the congestion
control and packet retransmission algorithms in Tahoe,
Reno, New-Reno, and SACK TCP. Section 6 shows sim-
ulations with Tahoe, Reno, New-Reno, and SACK TCP
in scenarios ranging from one to four packets dropped
from a window of data. Section 7 shows a trace of Reno
TCP taken from actual Internet traffic, showing that the
performance problems of Reno without SACK are of
more than theoretical interest. Finally, Section 8 dis-
cusses possible future directions for TCP with selective
acknowledgments, and Section 9 gives conclusions.

2 Tahoe TCP

Modem TCP implementations contain a number of al-
gorithms aimed at controlling network congestion while
maintaining good user throughput. Early TCP imple-
mentations followed a go-back-n model using cumula-
tive positive acknowledgment and requiring a retrans-
mit timer expiration to re-send data lost during transport.
These TCPs did little to minimize network congestion.

The Tahoe TCP implementation added a number of
new algorithms and refinements to earlier implementa-
tions. The new algorithms include Slow-Start, Conges-
tion Avoidance, and Fast Retransmit [Jac88]. The re-

finements include a modification to the round-trip time
estimator used to set retransmission timeout values. All
modifications have been described elsewhere [Jac88,
Ste94].

The Fast Retransmit algorithm is of special interest in
this paper because it is modified in subsequent versions
of TCP. With Fast Retransmit, after receiving a small
number of duplicate acknowledgments for the same
TCP segment (dup ACKs), the data sender infers that a
packet has been lost and retransmits the packet without
waiting for a retransmission timer to expire, leading to
higher channel utilization and connection throughput.

3 Reno TCP

The Reno TCP implementation retained the enhance-
ments incorporated into Tahoe, but modified the Fast
Retransmit operation to include Fast Recovery [Jac90].
The new algorithm prevents the communication path
("pipe") from going empty after Fast Retransmit,
thereby avoiding the need to Slow-Start to re-fill it after
a single packet loss. Fast Recovery operates by assum-
ing each dup ACK received represents a single packet
having left the pipe. Thus, during Fast Recovery the
TCP sender is able to make intelligent estimates of the
amount of outstanding data.

Fast Recovery is entered by a TCP sender after re-
ceiving an initial threshold of dup ACKs. This thresh-
old, usually known as tcprexmtthresh, is generally set to
three. Once the threshold of dup ACKs is received, the
sender retransmits one packet and reduces its congestion
window by one half. Instead of slow-starting, as is per-
formed by a Tahoe TCP sender, the Reno sender uses
additional incoming dup ACKs to clock subsequent out-
going packets.

In Reno, the sender's usable window becomes
min(awin, cwnd + ndup) where awin is the receiver's
advertised window, cwnd is the sender's congestion
window, and ndup is maintained at 0 until the number of
dup ACKs reaches tcprexmtthresh, and thereafter tracks
the number of duplicate ACKs. Thus, during Fast Re-
covery the sender "inflates" its window by the number
of dup ACKs it has received, according to the observa-
tion that each dup ACK indicates some packet has been
removed from the network and is now cached at the re-
ceiver. After entering Fast Recovery and retransmitting
a single packet, the sender effectively waits until half
a window of dup ACKs have been received, and then
sends a new packet for each additional dup ACK that is
received. Upon receipt of an ACK for new data (called
a "recovery ACK"), the sender exits Fast Recovery by
setting ndup to 0. Fast Recovery is illustrated in more
detail in the simulations in Section 6.

ACM SIGCOMM -6- Computer Communication Review

Reno's Fast Recovery algorithm is optimized for the
case when a single packet is dropped from a window of
data. The Rent sender retransmits at most one dropped
packet per round-trip time. Rent significantly improves
upon the behavior of Tahoe TCP when a single packet is
dropped from a window of data, but can suffer from per-
formance problems when multiple packets are dropped
from a window of data. This is illustrated in the simu-
lations in Section 6 with three or more dropped packets.
The problem is easily constructed in our simulator when
a Rent TCP connection with a large congestion window
suffers a burst of packet losses after slow-starting in a
network with drop-tail gateways (or other gateways that
fail to monitor the average queue size).

4 New-Reno TCP

We include New-Rent TCP in this paper to show how a
simple change to TCP makes it possible to avoid some
of the performance problems of Rent TCP without the
addition of SACK. At the same time, we use New-Rent
TCP to explore the fundamental limitations of TCP per-
formance in the absence of SACK.

The New-Rent TCP in this paper includes a small
change to the Rent algorithm at the sender that elimi-
nates Reno's wait for a retransmit timer when multiple
packets are lost from a window [Hoe95, CH95]. The
change concerns the sender's behavior during Fast Re-
covery when a partial ACK is received that acknowl-
edges some but not all of the packets that were out-
standing at the start of that Fast Recovery period. In
Rent, partial ACKs take TCP out of Fast Recovery by
"deflating" the usable window back to the size of the
congestion window. In New-Rent, partial ACKs do not
take TCP out of Fast Recovery. Instead, partial ACKs
received during Fast Recovery are treated as an indica-
tion that the packet immediately following the acknowl-
edged packet in the sequence space has been lost, and
should be retransmitted. Thus, when multiple pack-
ets are lost from a single window of data, New-Rent
can recover without a retransmission timeout, retrans-
mitring one lost packet per round-trip time until all of
the lost packets from that window have been retransmit-
ted. New-Rent remains in Fast Recovery until all of the
data outstanding when Fast Recovery was initiated has
been acknowledged.

The implementations of New-Rent and SACK TCP
in our simulator also use a "maxburst" parameter. In
our SACK TCP implementation, the "maxburst" param-
eter limits to four the number of packets that can be
sent in response to a single incoming ACK, even if the
sender's congestion window would allow more pack-
ets to be sent. In New-Rent, the "maxburst" parame-

ter is set to four packets outside of Fast Recovery, and
to two packets during Fast Recovery, to more closely
reproduce the behavior of Rent TCP during Fast Re-
covery. The "maxburst" parameter is really only needed
for the first window of packets that are sent after leav-
ing Fast Recovery. If the sender had been prevented by
the receiver's advertised window from sending packets
during Fast Recovery, then, without "maxburst", it is
possible for the sender to send a large burst of packets
upon exiting Fast Recovery. This applies to Rent and
New-Rent TCP, and to a lesser extent, to SACK TCP.
In Tahoe TCP the Slow-Start algorithm prevents bursts
after recovering from a packet loss. The bursts of pack-
ets upon exiting Fast Recovery with New-Rent TCP are
illustrated in Section 6 in the simulations with three and
four packet drops. Bursts of packets upon exiting Fast
Recovery with Rent TCP are illustrated in [Flo95].

[Hoe95] recommends an additional change to TCP's
Fast Recovery algorithms. She suggests the data sender
send a new packet for every two dup ACKs received dur-
ing Fast Recovery, to keep the "flywheel" of ACK and
data packets going. This is not implemented in "New-
Rent" because we wanted to consider the minimal set of
changes to Rent needed to avoid unnecessary retransmit
timeouts.

5 SACK TCP

The SACK TCP implementation in this paper, called
"Sackl" in our simulator, is also discussed in [Flo96b,
Flo96a]. t The SACK option follows the format
in [MMFR96]. From [MMFR96], the SACK option
field contains a number of SACK blocks, where each
SACK block reports a non-contiguous set of data that
has been received and queued. The first block in a
SACK option is required to report the data receiver's
most recently received segment, and the additional
SACK blocks repeat the most recently reported SACK
blocks [MMFR96]. In these simulations each SACK op-
tion is assumed to have room for three SACK blocks.
When the SACK option is used with the Timestamp
option specified for TCP Extensions for High Perfor-
mance [BBJ92], then the SACK option has room for
only three SACK blocks [MMFR96]. If the SACK op-
tion were to be used with both the Timestamp option and
with T/TCP (TCP Extensions for Transactions) [Bra94],
the TCP option space would have room for only two
SACK blocks.

1The 1990 "Sack" TCP implementation on our previous simula-
tor is from Steven McCanne and Sally Floyd, and does not conform
to the formats in [MMFR96]. The new "Sackl" implementation con-
tains major contributions from Kevin Fall, Jamshid Mahdavi, and Matt
Mathis.

ACM SIGCOMM -7- Computer Communication Review

The congestion control algorithms implemented in
our SACK TCP are a conservative extension of Reno's
congestion control, in that they use the same algorithms
for increasing and decreasing the congestion window,
and make minimal changes to the other congestion con-
trol algorithms. Adding SACK to TCP does not change
the basic underlying congestion control algorithms. The
SACK TCP implementation preserves the properties of
Tahoe and Reno TCP of being robust in the presence
of out-of-order packets, and uses retransmit timeouts as
the recovery method of last resort. The main difference
between the SACK TCP implementation and the Reno
TCP implementation is in the behavior when multiple
packets are dropped from on6 window of data.

As in Reno, the SACK TCP implementation enters
Fast Recovery when the data sender receives tcprexmt-
thresh duplicate acknowledgments. The sender re-
transmits a packet and cuts the congestion window in
half. During Fast Recovery, SACK maintains a vari-
able called p i p e that represents the estimated number
of packets outstanding in the path. (This differs from the
mechanisms in the Reno implementation.) The sender
only sends new or retransmitted data when the estimated
number of packets in the path is less than the conges-
tion window. The variable p i p e is incremented by one
when the sender either sends a new packet or retransmits
an old packet. It is decremented by one when the sender
receives a dup ACK packet with a SACK option report-
ing that new data has been received at the receiver, z

Use of the p i p e variable decouples the decision of
when to send a packet from the decision of which packet
to send. The sender maintains a data structure, the
scoreboard (contributed by Jamshid Mahdavi and Matt
Mathis), that remembers acknowledgments from previ-
ous SACK options. When the sender is allowed to send
a packet, it retransmits the next packet from the list of
packets inferred to be missing at the receiver. If there are
no such packets and the receiver' s advertised window is
sufficiently large, the sender sends a new packet.

When a retransmitted packet is itself dropped, the
SACK implementation detects the drop with a retrans-
mit timeout, retransmitting the dropped packet and then
slow-starting.

The sender exits Fast Recovery when a recovery ac-
knowledgment is received acknowledging all data that
was outstanding when Fast Recovery was entered.

The SACK sender has special handling for partial
ACKs (ACKs received during Fast Recovery that ad-
vance the Acknowledgment Number field of the TCP

9Our simulator simply works in units of packets, not in units of
bytes or segments, and all data packets for a particular TCP connection
are constrained to be the same size. Also note that a more aggressive
implementation might decrement the variable p i p e by more than one
packet when an ACK packet with a SACK option is received reporting
that the receiver has received more than one new nut-of-order packet.

header, but do not take the sender out of Fast Recov-
ery). For partial ACKs, the sender decrements p i p e by
two packets rather than one, as follows. When Fast Re-
transmit is initiated, p i p e is effectively decremented
by one for the packet that was assumed tO have been
dropped, and then incremented by one for the packet
that was retransmitted. Thus, decrementing the p i p e
by two packets when the first partial ACK is received
is in some sense "cheating", as that partial ACK only
represents one packet having left the pipe. However, for
any succeeding partial ACKs, p i p e was incremented
when the retransmitted packet entered the pipe, but was
never decremented for the packet assumed to have been
dropped. Thus, when the succeeding partial ACK ar-
rives, it does in fact represent two packets that have
left the pipe: the original packet (assumed to have been
dropped), and the retransmitted packet. Because the
sender decrements pipe by two packets rather than one
for partial ACKs, the SACK sender never recovers more
slowly than a Slow-Start

The r a a x b u r s t parameter, which limits the number
of packets that can be sent in response to a single incom-
ing ACK packet, is experimental, and is not necessarily
recommended for SACK implementations, z

There are a number of other proposals for TCP con-
gestion control algorithms using selective acknowledg-
ments [Kes94, MM96]. The SACK implementation in
our simulator is designed to be the most conservative
extension of the Reno congestion control algorithms, in
that it makes the minimum changes to Reno's existing
congestion control algorithms.

6 Simulations

This section describes simulations from four scenarios,
with from one to four packets dropped from a window of
data. Each set of scenarios is run for Tahoe, Reno, New-
Reno, and SACK TCP. Following this section, Section
7 shows a trace of Reno TCP traffic taken from Internet
traffic measurements, illustrating the performance prob-
lems of Reno TCP without SACK, and Section 8 dis-
cusses future directions of TCP with SACK.

For all of the TCP implementations in all of the see-
narios, the first dropped packet is detected by the Fast
Retransmit procedure, after the source receives three
dup ACKs.

The results of the Tahoe simulations are similar in
all four scenarios. The Tahoe sender recovers with a

3For those reading the SACK code in the simulator, the boolean
o v e r h e a d parameter significantly complicates the code, but is only
of concern in the simulator. The o v e r h e a d parameter indicates
whether some randomization should be added to the timing of the TCP
connection. For all of the simulations in this paper, the o v e r h e a d
parameter is set to zero, implying no randomization is added.

ACM SIGCOMM -8- Computer Communication Review

Fast Retransmit followed by Slow-Start regardless of
the number of packets dropped from the window of
data. For connections with a larger congestion window,
Tahoe' s delay in slow-starting back up to half the previ-
ous congestion window can have a significant impact on
overall performance.

The Rent implementation without SACK gives opti-
mal performance when a single packet is dropped from
a window of data. For the scenario in Figure 3 with two
dropped packets, the sender goes through Fast Retrans-
mit and Fast Recovery twice in succession, unnecessar-
ily reducing the congestion window twice. For the sce-
narios with three or four packet drops, the Rent sender
has to wait for a retransmit timer to recover.

As expected, the New-Rent and SACK TCPs each re-
cover from all four scenarios without having to wait for
a retransmit timeout. The New-Rent and SACK TCPs
simulations look quite similar. However, the New-Rent
sender is able to retransmit at most one dropped packet
each round-trip time. The limitations of New-Rent, rel-
ative to SACK TCP, are more pronounced in scenarios
with larger congestion windows and a larger number of
dropped packets from a window of data. In this case the
constraint of retransmitting at most one dropped packet
each round-trip time results in substantial delay in re-
transmitting the later dropped packets in the window. In
addition, if the sender is limited by the receiver's ad-
vertised window during this recovery period, then the
sender can be unable to effectively use the available
bandwidth. 4.

For each of the four scenarios, the SACK sender re-
covers with good performance in both per-packet end-
to-end delay and overall throughput.

6.1 The simulation scenario

The rest of this section consists of a detailed descrip-
tion of the simulations in Figures 2 through 5. All of
these simulations can be run on our simulator n s with
the command test-sack. For those readers who are
interested, the text gives a packet-by-packet description
of the behavior of TCP in each simulation.

Figure 1: Simulation Topology

Figure 1 shows the network used for the simulations
in this paper. The circle indicates a finite-buffer drop-
tail gateway, and the squares indicate sending or receiv-

4This is shown in the LBNL simulator ns in the test
many-drops, r u n with the command test-sack

ing hosts. The links are labeled with their bandwidth
capacity and delay. Each simulation has three TCP con-
nections from S1 to K1. Only the first connection is
shown in the figures. The second and third connections
have limited data to send, and are included to achieve
the desired pattern of packet drops for the first con-
nection. The pattern of packet drops is changed sim-
ply by changing the number of packets sent by the sec-
ond and third connections. Readers interested in the
exact details of the simulation set-up are referred to
the files t e s t - s a c k and s a c k . t c l in our simula-
tor n s [MF95]. The granularity of the TCP clock is set
to 100 msec, giving round-trip time measurements ac-
curate to only the nearest 100 msec.

These simulations use drop-tail gateways with small
buffers. These are not intended to be realistic sce-
narios, or realistic values for the buffer size. They
are intended as a simple scenario for illustrating TCP's
congestion control algorithms. Simulations with RED
(Random Early Detection) gateways [FJ93] would in
general avoid the bursts of packet drops characteristic
of drop-tail gateways.

Ns [MF95] is based on LBNL's previous simulator
tcpsim, which was in turn based on the REAL sim-
ulator [Kes88]. The simulator does not use production
TCP code, and does not pretend to reproduce the exact
behavior of specific implementations of TCP [Flo95].
Instead, the simulator is intended to support exploration
of underlying TCP congestion and error control algo-
rithms, including Slow-Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery. The simulation re-
sults contained in this report can be recreated with the
t e s t - s a c k script supplied with ns .

For simplicity, most of the simulations shown in this
paper use a data receiver that sends an ACK for ev-
ery data packet received. The simulations in this paper
also consist of one-way traffic. As a result, ACKs are
never "compressed" or discarded on the path from the
receiver back to the sender. The simulation set run by
the t e s t - s a c k script includes simulations with multi-
ple connections, two-way traffic, and data receivers that
send an ACK for every two data packets received.

The graphs from the simulations were generated by
tracing packets entering and departing from R1. For
each graph, the z-axis shows the packet arrival or de-
parture time in seconds. The y-axis shows the packet
number rood 100. Packets are numbered starting with
packet 0. Each packet arrival and departure is marked
by a square on the graph. For example, a single packet
passing through R1 experiencing no appreciable queue-
ing delay would generate two marks so close together on
the graph as to appear as a single mark. Packets delayed
at R1 but not dropped will generate two colinear marks
for a constant packet number, spaced by the queueing

ACM SIGCOMM -9- Computer Communication Review

delay. Packets dropped due to buffer overflow are indi-
cated by an " x " on the graph for each packet dropped.
Returning ACK packets received at R1 are marked by a
smaller dot.

6.2 On e Packet Loss

Figure 2 shows Tahoe, Rent, New-Rent, and SACK
TCP with one dropped packet. Figure 2 shows that
Tahoerequires a Slow-Start to recover from the packet
drop, while Rent, New-Rent, and SACK TCP are all
able to recover smoothly using Fast Recovery. The rest
of this section describes the simulations in Figure 2 in
more detail.

In Figure 2 with Tahoe TCP, packets 0-13 are sent
without error as the sending TCP's congestion window
increases exponentially from 1 to 15 according to the
Slow-Start algorithm. The figure contains a square for
each packet as it arrives and leaves the congested gate-
way. For a packet like the first one that experiences
no queueing delay, the two squares appear as a single
mark. As the queueing delay at the congested gateway
increases, due in part to competing traffic not shown
in this figure, the two marks for the arrival and depar-
ture diverge, and the distance between the arrival and
departure marks corresponds to the queueing delay ex-
perienced by that packet.

By the end of the fourth non-overlapping window
of data, the router's queue is full, causing packet 14
to be dropped. Because the first seven packets of the
fourth window were successfully delivered (and ACKs
are never dropped in these simulations), as the seven
ACKs arrive the sender increases its window from 8 to
15 and sends the next 14 packets, 15-28.

After receiving the first ACK for packet 13, the sender
receives 14 additional ACKs for packet 13 correspond-
ing to the receiver's successful receipt of packets 15-
28. The third duplicate ACK of the sequence (the fourth
ACK for packet 13) meets the duplicate ACK threshold
of three, and Fast Retransmission and Slow-Start are in-
voked. In addition, the Slow-Start threshold ssthresh 5 is
reduced to seven (/L~-Z]). The sending TCP resets its
congestion window to one and retransmits packet 14.

The receiver has already cached packets 15-28, and
upon receiving the retransmitted packet 14 acknowl-
edges packet 28. The ACK for packet 28 causes the
sender to increase its congestion window by one and
continue its transmissions from packet 29. While trans-
mitting the window beginning with packet 35, the sender
reaches the Slow-Start threshold and enters Conges-

5The Slow-Start threshold ssthresh is a dynamically-set value in-
dicating an upper bound on the congestion window above which a
TCP sender switches from Slow-Start to the Congestion Avoidance
algorithm.

tion Avoidance. During subsequent transmissions, the
sender' s window is increased by roughly one packet per
round-trip time as expected.

For figure 2 with Rent TCP, Reno's Fast Recovery
algorithm gives optimal performance in this scenario.
The sender's congestion window is reduced by half, in-
coming dup acks are used to clock outgoing packets, and
Slow-Start is avoided.

Reno's operation in Figure 2 is identical to Tahoe un-
til the fourth A C K for packet 13 is received at the sender.
The ACKs corresponding to packets 15-28 comprise 14
dup ACKs for packet 13. The third dup ACK triggers
a retransmission of packet 14, puts the sender into Fast
Recovery, and reduces its congestion window and Slow-
Start threshold to seven. During Fast Recovery, receipt
of the fourth dup ACK brings the usable window to 11,
and by the 14th dup ACK the usable window reaches 21.
The "inflated" window from the last six dup acks allows
the sender to send packets 29-34. Upon receiving the
ACK for packet 28, the sender exits Fast Recovery and
continues in Congestion Avoidance with a congestion
window of seven.

The New-Rent and S A C K simulations in Figure 2
show no differences from the Rent simulation under one
packet drop.

ACM SIGCOMM -10- Computer Communication Review

=~ ~- i Tah°eTCP . , , f ~ / f f / t ! I / _. i / _..-" ! :
~= ~. ..

~ --" ~ . . - - -~
n P

N

o T,i ~l s"
New-Reno TCP

" /_1 ~= o .I ' i !,,,i" ,/i / '

,.,° , ,,i, ,,, i-/,:
' °o . , t / - , - ,~,/ ,I...-'" / ,

I I I !
1 2 3 " 4 5 6

o

E

Q.

o

° T
1

Sack TCP

f
.w . . w

/

. I -"
• I .-

_ / ,

' -./I/ (:-: il- . / .
/ ,-

I I I I
3 4 5 6

T i m e

Figure 2: Simulations with one dropped packet.

ACM SIGCOMM -11- Computer Communication Review

6.3 T w o P a c k e t L o s s e s

Figure 3 shows Tahoe, Reno, New-Reno, and SACK
TCP with two dropped packets. As in the previous sim-
ulation, Tahoe recovers from the packet drops with a
Slow-Start. Reno TCP recovers with some difficulties,
while both New-Reno and SACK TCP recover smoothly
and quickly. The rest of this section describes the simu-
lations in Figure 3 in more detail.

The top figure in Figure 3 shows Tahoe TCP with
two dropped packets. The response to loss on packet
14 is as described for Tahoe in the single loss case. In
Tahoe, even though packets 15-28 were sent, this fact is
forgotten by the sender when retransmitting packet 14.

After retransmitting packet 14 and receiving 13 dup
ACKs, the sender receives an ACK for packet 27. The
sender is in Slow-Start, opens its window to 2, and sends
packets 28 and 29. The sender switches from Slow-Start
to Congestion Avoidance when sending packet 40.

The Rent sender is often forced to wait for a retrans-
mit timeout to recover from two packets dropped from
a window of data. 6 In Figure 3 with Rent TCP' s Fast
Retransmit, the Rent sender does not have to wait for
a retransmit timeout, but instead recovers by doing a
Fast Retransmit and Fast Recovery two times in suc-
cession, in the process cutting the congestion window
in half twice, in two successive round-trip times. This
slows down the TCP connection considerably.

The two packet drops occur at packets 14 and 28. Op-
eration is similar to the one-drop case, except the loss of
packet 28 implies 13 dup ACKs are generated for packet
13 rather than 14. The 13 dup ACKs allow the sender
to send packets 29-33 with a usable window of 20 after
the last dup ACK is received.

The loss of packet 28 causes a number of dup ACKs
for packet 27 to be received at the sender. The first ACK
for packet 27 is triggered by the receiver receiving the
retransmitted packet 14. This ACK allows the sender to
send packet 34. The next five dup ACKs are triggered
by packets 29-33, and the final dup ACK is triggered by
packet 34.

At the time the first ACK for packet 27 is received, the
sender exits Fast Recovery with a congestion window of
seven, having been reduced from 15 after the first loss.
Upon receipt of the third dup ACK for packet 27, the
sender begins a second Fast Retransmit. The sender re-
transmits packet 28 and reduces its congestion window
to three, but is unable to send any additional data be-
cause of its usable window of six. The usable window

6More precisely, when two packets are dropped from a window
of data, the Rent sender is forced to wait for a retransmit timeout
whenever the congestion window is less than 10 packets when Fast
Recovery is initiated, and whenever the congestion window is within
two packets of the receiver's advertised window when Fast Recovery
is initiated.

grows from eight to nine upon receipt of the fifth and
sixth dup ACKs, allowing the sender to send packets 35
and 36.

The sender receives an ACK for packet 34 as a result
of the receiver receiving retransmitted packet 28. This
ACK brings the sender out of Fast Recovery with a con-
gestion window and ssthresh of three. The ACKs for
packets 34 and 35 allow the sender to send 37 and 38,
and the ACK for packet 36 allows packet 39 to be sent.
The pattern repeats for many round-trip times, alternat-
ing between a single ACK advancing the sender's win-
dow followed by a series of ACKs which both advance
and expand the sender's window according to Conges-
tion Avoidance.

In figure 3 with New-Rent TCP, New-Rent' s behav-
ior is similar to Rent until the sender receives the first
ACK for packet 27. This ACK is a partial ACK, and
causes New-Rent to retransmit packet 28 immediately
and not exit Fast Recovery. The dup ACK counter is
reset to zero and later increased by the number of dup
ACKs matching the partial ACK. The congestion win-
dow is not affected.

With the arrival of five dup ACKs for packet 27, the
sender sends packets 35-39. The ACK for packet 33
causes the sender to exit Fast Recovery with a con-
gestion window of seven and continue in Congestion
Avoidance.

In figure 3 with SACK TCP, SACK TCP's behav-
ior is similar to Rent until the sender receives the third
ACK for packet 13. At this point, the protocol initializes
the p i p e as follows:

p ipe = c w n d - n d u p = 15 - 3 = 12.

It then subtracts one for each of the subsequent 10 dup
ACKs and adds one for each of the five transmitted
packets 29-33. At the point the first ACK for packet
27 arrives, p i p e has value 12 - 10 + 5 = 7.

The first ACK for packet 27 is a partial ACK, caus-
ing p i p e to be decremented by two. With the sender's
congestion window at seven, packets 34 and 35 are now
sent. The five additional dup ACKs for packet 27 minus
one for the retransmission of packet 28 allow the sender
to send packets 36--39. The sender next receives two
dup ACKs for packet 27 corresponding to the receipt of
packets 34 and 35, allowing the sender to send packets
40 and 41. The next ACK received at the sender is for
packet 35 and corresponds to the receiver receiving the
retransmitted packet 28. It brings the sender out of Fast
Recovery with a congestion window of seven, thereby
allowing packet 42 to be sent. The next four ACKs for
packets 36-39 allow the sender to send packets 43--46
and continue under Congestion Avoidance.

ACM SIGCOMM -12- Computer Communication Review

: TahoeTCP / __ .. /- /!i...., '' !
-1 / :

o

Z

El.

• ! , / " / / ," Reno T C P /, /
I - l _ : • / / ' . 1 .: / ;

. . , r ." ! . : .:

• /

tI ' - . I ' , ' : I",
tl.: - I', l ' ' / ": . . : I F :"

• I :"
• i • " IP :

I I

; 1 s 6

r ,

N e w - R e n o T C P

/,
J/J

7 .e .~ :" ,
1 2

f
= ."

I / ! -
! /

. ! /

u _

:.

/ ,
..." //, :....':

J

I -

/ ./ / //,
/. / ?

~ .:
I I ,~ s e

Z

O

Sack T C P

P
:f.

U :

I

, / /
J - : • : :

, , (, / / .._ . / //
a . : :

.: I : " , : / -
/ "

f ;*
• : ." _ : • :_:

I - ! "
I , 3 1 ~

T i m e

Figure 3: Simulations with two dropped packets.

A C M S I G C O M M -13- Compute r Communica t ion R e v i e w

6.4 Three Packet Losses

Figure 4 shows Tahoe, Reno, New-Reno, and SACK
TCP with three dropped packets. As in the previous
simulations, Tahoe recovers from the packet drops with
a Slow-Start Reno TCP, on the other hand, experi-
ences severe performance problems, and has to wait for
a retransmit timer to recover from the dropped pack-
ets. Both New-Reno and SACK TCP recover fairly
smoothly. The rest of this section describes the simu-
lations in Figure 4 in more detail.

The top figure in Figure 4 shows Tahoe TCP with
three dropped packets. The response to loss on packet
14 is as described for Tahoe in the single loss case. As
in the two packet loss case, even though packets 15-28
were sent, this is not taken into account by the sender.

After retransmitting packet 14 and receiving 12 dup
ACKs, the sender receives an ACK for packet 25. The
sender is in Slow-Start, opens its window to 2, and sends
packets 26 and 27. Note that packets 26 and 27 are sent
a second time, even though 27 has already been suc-
cessfully received. The sender next receives two ACKs
for packet 27, corresponding to the receipt of the resent
packets 26 and 27. One of these ACKs is for new data,
which increases the congestion window to three. The
sender continues in Slow-Start until packet 37, where it
switches to Congestion Avoidance.

Figure 4 shows Reno TCP with three dropped pack-
ets. When three packets are dropped from a window of
data, the Reno sender is almost always forced to wait for
a retransmit timeout.7

Reno's operation in Figure 4 is generally similar to
Reno with two drops, except the additional packet drop
causes only 12 dup ACKs for packet 13 rather than thir-
teen. The 12 dup ACKs allow the sender to send packet
29-32 with a usable window of 19 after retransmitting
packet 14.

With the arrival of the first ACK for packet 25, Reno
exits Fast Recovery, but after receiving three additional
ACKs re-enters Fast Recovery with a congestion win-
dow of three and usable window of six. With the ar-
rival of the fifth ACK for packet 25, the usable window
grows to seven, but the sender is still unable to send
data because seven packets (26-32) are still unacknowl-
edged. The ACK for packet 27 brings the sender out of
Fast Recovery once again with a congestion window of
three. At the point the ACK for packet 27 arrives, the
sender is stalled. Although packets 28-32 have not yet
been acknowledged and 28 requires retransmission, the
"ACK clock" is lost, implying Reno is unable to employ

~When three packets are dropped from a window of data, the Reno
sender is forced to wait for a retransmit timeout whenever the number
of packets between the first and the second dropped packets is less
than 2 + 3W/4 , for W the congestion window just before the Fast
Retransmit.

Fast Retransmit and must instead await a retransmission
timeout.

The timeout for packet 28 expires, causing a retrans-
mission and putting the sender into Slow-Start. The
ACK for packet 32 corresponds to the arrival of packet
28 at the receiver, and the sender continues in Conges-
tion Avoidance as expected.

Figure 4 shows New-Reno TCP with three dropped
packets. New-Reno's operation is similar to Reno with
three drops until the receipt of the first ACK for packet
25. After receiving this ACK, the New-Reno sender im-
mediately retransmits packet 26 and sets its usable win-
dow to a congestion window of seven. The four subse-
quent dup ACKs for packet 25 inflate the usable win-
dow to eleven, allowing the sender to send packets 33-
36. The next partial ACK acknowledges packet 27 and
causes the sender to retransmit packet 28 and reduce its
usable window to seven. The sender is unable to send
additional data until the receipt of the third and fourth
dup ACKs for packet 27, which allow the sender to send
packets 37 and 38 with a usable window of eleven.

The ACK for packet 36 brings the sender out of Fast
Recovery and returns its congestion window to seven.
Only packets 37 and 38 are unacknowledged at this
point, so the sender should be able to send five addi-
tional packets but is instead limited to sending only four
packets by the maxburs t parameter described above.
The arrival of the ACKs for packets 37 and 38 allows
the sender to send packets 43 and 44 followed by 45, re-
spectively. The sender continues in Congestion Avoid-
ance with a window of seven.

Figure 4 shows SACK TCP with three dropped pack-
ets. SACK TCP's packet sending pattern is similar to
Reno with three packet drops, until the 12th dup ACK
for packet 13 is received at the sender. This ACK con-
tains SACK information indicating a "hole" at packet
26. Rather than sending packets 29-32 as in Reno, it
instead sends 29-31 and retransmits 26.

The handling of pipe is similar to SACK TCP with
two packet drops. When the third dup ACK for packet
13 arrives at the sender, p i p e is initialized to 12. The
retransmission of packet 26 is accounted for, causing the
value of p i p e to become 12 - 9 + 1 + 3 = 7 when the
first ACK for packet 25 arrives. This ACK corresponds
to the receiver receiving the retransmitted packet 14, and
causes the sender to reduce p i p e by two and send pack-
ets 32 and 33.

ACM SIGCOMM -14- Computer Communication Review

: I m a h o e T O P - /_//f_../-
r I ! : ,

... -.. /.:..... (:_:....---/_._::_.
~7,, , t / , - I I :--........ /

I I 1 2 ~ ~ s 6

z

Reno T C P

r /

t / "
o:

! ' -
7 .t
1 I ~ ,~

.w
./

t. #

Z

N e w - R e n o T C P /it/" ::

rw .."

/

T/ " / ~

l. :"
7 w.

, / I !
:" -" ./..f

,,i(-::", '"!_: #I_/
/ J

I I 4 5 ~

~g

i
Gt.

S a c k T C P

t/ !' :

J :"
m .

_

/ .-'

| : :

I :.:

./:
1"

I -
I o :

Time

'/ ,/' - ! -

,,/" /.....
I I 4 s

Figure 4: Simulations with three dropped packets.

A C M S I G C O M M -15- Computer Communication Review

The next three ACKs acknowledge packet 25 and
contain SACK information indicating a hole at packets
26 and 28. The three ACKs cause the sender to reduce
p i p e by three and retransmit packet 28. At that point
no holes remain to be filled and the sender may send
packets 34 and 35. The next ACK arrives shortly there-
after, acknowledges packet 27 and indicates the hole at
packet 28. It is also a partial ACK, causing p i p e to
be decremented by two and allowing the sender to send
packets 36 and 37.

The next two ACKs for packet 27 arrive nearly to-
gether and correspond to the receiver receiving packets
32 and 33. These ACKs contain SACK information in-
dicating the hole at packet 28 remains to be filled. As the
sender has already retransmitted 28 and no other holes
are indicated in the SACK information, the sender con-
tinues by sending packets 38 and 39. The next ACK
received at the sender corresponds to the receiver's re-
ceipt of the retransmission of packet 28. It acknowl-
edges packet 33 and brings the sender out of Fast Re-
covery with a congestion window of 7. The sender con-
tinues in Congestion Avoidance.

6.5 Four Packet Losses

Figure 5 shows Tahoe, Reno, New-Reno, and SACK
TCP with four dropped packets. As in the previ-
ous simulations, Tahoe recovers from the packet drops
with a Slow-Start. Also as in the previous simulation,
Reno TCP experiences severe performance problems,
and has to wait for a retransmit timer to recover from
the dropped packets. New-Reno requires four round-
trip times to recover and to retransmit the four dropped
packets, while the SACK TCP sender recovers quickly
and smoothly. The differences between New-Reno and
SACK TCP become more pronounced if even more
packets are dropped from the window of data. The rest
of this section describes the simulations in Figure 5 in
more detail.

The top figure in Figure 5 shows Tahoe TCP with
four dropped packets. The response to loss on packet 14
is as described for Tahoe in the single loss case. Once
again, the transmission of packets 15-28 is forgotten by
the sender when retransmitting packet 14.

After retransmitting packet 14 and receiving 11 dup
ACKs, the sender receives an ACK for packet 23. The
sender is in Slow-Start, opens its window to 2, and sends
packets 24 and 25. Once again, Tahoe duplicates effort
on packet 25.

The sender next receives two ACKs for packet 25,
corresponding to receipt of the resent packets 24 and
25. One of these ACKs is for new data, which increases
the congestion window to three. The sender then sends
packets 26-28, again duplicating effort on packet 27.

The next pair of ACKs, one for new data and one du-
plicate, correspond to the receiver's receipt of packets
26 and 27 and increase the sender's congestion window
to four. The ACK for packet 28 arrives next, increases
the congestion widow to five, and continues in Slow-
Start. The sender switches to Congestion Avoidance as
it sends packet 35 and continues in Congestion Avoid-
ance as expected.

For Figure 5 with Rent TCP, the sender is always
forced to wait for a retransmit timeout when four pack-
ets are dropped from a single window of data.

The sender receives eleven dup ACKs for packet 14,
retransmits packet 14 on the third and is able to send
packets 29-31 as a result of receiving the ninth through
eleventh dup ACKs. The ACK for packet 23 brings the
sender out of Fast Recovery with a usable window set
to the congestion window of seven. The third dup ACK,
corresponding to the receiver's receipt of packets 29-
31, initiates a second Fast Retransmit and Fast Recov-
ery, triggering a retransmission of packet 24, reducing
the congestion window to three, and setting the usable
window to six. As packets 24-31 are unacknowledged,
the sender cannot proceed until it receives another ACK.

The next ACK for packet 25 brings the sender out
of Fast Recovery again, bringing the congestion win-
dow and usable window to three. As in the case of three
drops, the sender is frozen because the six unacknowl-
edged packets exceeds the congestion window and the
ACK clock is lost. The sender must await a retransmis-
sion timer expiration to proceed.

Once the timer expires, the sender retransmits packet
26, receives an ACK for packet 27, and transmits 28 and
29. After a timer expiration, Rent behaves similarly to
Tahoe, in that it sometimes retransmits packets (in this
case, packet 29) that it has already transmitted and that
have already been cached at the receiver. After receiv-
ing two ACKs for packet 31 it continues in Congestion
Avoidance.

In Figure 5 with New-Rent TCP, New-Reno's op-
eration is similar to Rent with three drops until the re-
ceipt of the first ACK for packet 23. Upon receiving
this ACK, the sender immediately retransmits packet 24
and sets its usable window to the congestion window
of seven. The three subsequent dup ACKs for packet
23 inflate the usable window to ten, allowing the sender
to send packets 32 and 33. The next partial ACK ac-
knowledges packet 25 and causes the sender to retrans-
mit packet 26 and reduce its usable window to seven.

ACM SIGCOMM -16- Computer Communication Review

; ! i /
T a h o e T C P / / / r -

,. / I/I! ~ , r ! I i /

: z ~ / ~ . , - _ i l / , i _ /
T, v /

!

A o

=s
z

Q.

R e n o T C P

I

," .__

IJ '

T .r .~

.It
.1'

! l -

I I
4 5

=o

Z

7 . =
D,,.

N e w - R e n o T C P

.m.
a

tl
V -

I I
1 2 3

::.

-
-

/ , , . i

I I :
f.

"--.: I i / !

,,/ /
l/_..": : ff _."/

, , I / i '/
I I I , , ,

,4 5 6

Z

S a c k T C P . / .:"
f / • :

/ -:

• t - "

~/ ." .__
?

U -

• / : '/:/ ! //
I / ,I/ /

.i'" I / / /:
"1 -:": " " ! ./:_-: ./:-:- /.-.:

Time

Figure 5: Simulations with four dropped packets.

A C M S I G C O M M o17- Computer Communication Review

The sender is unable to send additional data until the
receipt of the second dup ACKs for packet 25, which al-
lows the sender to send packet 34 with a usable window
of nine. The last partial ACK acknowledges packet 27
and causes the sender to retransmit packet 28 and reduce
its usable window to seven. The sender is again unable
to send additional data until the receipt of the dup ACK
for packet 27, which allows the sender to send packet 35
with a usable window of eight.

The ACK for packet 34 brings the sender out of Fast
Recovery and returns its congestion window to seven.
Only packet 35 is unacknowledged at this point, so the
sender should be able to send six additional packets but
is instead limited to sending only four by the "maxburst"
parameter described above. The arrival of the ACK for
packet 35 allows the sender to send packets 40-42. The
sender continues in Congestion Avoidance with a win-
dow of seven.

In Figure 5 with SACK TCP, SACK TCP's packet
sending pattern is similar to Reno with four packet
drops, until the 10th dup ACK for packet 13 is received
at the sender indicating a hole at packet 24. The 1 lth
dup ACK for packet 13 indicates holes at packets 24 and
26. The sender retransmits packets 24 and 26 as a result
of these ACKs.

The handling of pipe is similar to SACK TCP with
three packet drops. When the third dup ACK for packet
13 arrives at the sender, p i p e is initialized to 12. The
retransmission of packets 24 and 26 are accounted for,
causing the value of p i p e to be 1 2 - 8 + 2 + 1 = 7 when
the first ACK for packet 23 arrives. This partial ACK,
corresponding to the receiver receiving the retransmitted
packet 14, causes the sender to reduce p i p e by two,
and also contains SACK information indicating holes
at packets 24 and 26. The sender proceeds by sending
packets 30 and 31 because 24 and 26 have already been
retransmitted.

The dup ACK for packet 23 corresponds to the re-
ceiver receiving packet 29 and contains SACK informa-
tion indicating holes at packets 24, 26 and 28. Again the
sender notices it has already retransmitted 24 and 26,
and thus proceeds by retransmitting 28. A short time
later an ACK for packet 25 arrives, indicating the holes
at packets 26 and 28. The ACK for packet 27 arrives
next, indicating the hole at packet 28. Each of these
ACKs reduces pipe by two, allowing the sender to send
packets 32-35 because it has already retransmitted 28.

The next two ACKs for packet 27 arrive nearly to-
gether and correspond to the receiver receiving packets
30 and 31. These ACKs contain SACK information in-
dicating the hole at packet 28 remains to be filled. Once
again, the sender avoids retransmitting packet 28 and
continues by sending packets 36 and 37. The next ACK
received at the sender corresponds to the receiver's re-

ceipt of the retransmission of packet 28. It acknowl-
edges packet 31 and brings the sender out of Fast Re-
covery with a congestion window of 7. The sender con-
tinues in Congestion Avoidance.

7 A trace of Reno TCP

The TCP trace in this section is taken from actual In-
ternet traffic measurements, but exhibits behavior sim-
ilar to that in our simulator. It shows the poor perfor-
mance of Reno without SACK when multiple packets
are dropped from one window of data. The TCP con-
nection in this trace repeated has two packets dropped
from a window of data, and each time is forced to wait
for a retransmit timeout to recover.

!~I / 'f / i

,i,1|/' 'el

,i'

i / /
/"

,111
,%

Time

z

g

_= ++
. - +

_-+
_-+

l .

I +

I

: ÷
• 4-

3!s i 5!o
Time

Figure 6: A trace of Reno TCP.

The trace in Figure 6 shows a TCP connection from
the San Diego Supercomputer Center (SDSC) in San
Diego, using IRIX-5.2, to Brookhaven National Labo-
ratory on Long Island, using IRIX-5.1.1. The TCP con-
nection receives poor throughput because of repeated
waits for a retransmit timeout. The graph on the right

ACM SIGCOMM -18- Computer Communication R e v i e w

gives a enlargement of a section from the graph on the
left. The blowup shows a mark for every packet trans-
mitted, and a "+" for every ACK received.

The enlargement shows that the data receiver uses a
delayed-ACK algorithm, usually sending a single ACK
for every two data packets. As a result, in the Con-
gestion Avoidance phase the data sender normally sends
two data packets for every ACK packet received. When
an ACK packet is received that causes the sender to in-
crease its congestion window by one packet, then the
data sender sends three data packets after receiving a
single ACK packet. As an example, at time 4.24 the
data sender receives an ACK acknowledging sequence
number 24065, and the data sender sends three packets,
for sequence numbers 26113-27648. The last two of the
three packets are dropped.

At time 4.48 the data sender receives a third dup ACK
(in the figure this is printed on top of the second dup
ACK), executes Fast Retransmit, retransmits one packet,
and later receives an ACK for that packet. However,
at this point the sender's congestion window is half of
its old value, and this is not large enough to permit the
sender to send the next highest packet. The sender waits
for a retransmit timer to expire before retransmitting the
second packet that was dropped from the original win-
dow of data. This is similar to the Rent behavior illus-
trated in the simulator. This is an example of a scenario
where Tahoe might give better performance that Rent.

The trace was supplied by Vern Paxson, as part of
work on his Ph.D. thesis. Vern reports that 13% of his
2299 collected TCP traces show this behavior. That is,
13% of his TCP traces contain a Fast Retransmit fol-
lowed by a retransmit timeout, where the packet re-
transmitted after the retransmit timeout had not been
previously retransmitted by the TCP sender. This ad-
ditional condition eliminates incidents from Tahoe or
Rent traces where the retransmit timeout is required
simply because a retransmitted packet is itself dropped.
Thus, 13% of Vern's TCP traces are likely to include
Rent TCP with multiple packet drops and an unneces-
sary retransmit timeout.

8 Future directions for selective ac-
knowledgments

The addition of selective acknowledgments allows ad-
ditional improvements to TCP, in addition to improv-
ing the congestion control behavior when multiple pack-
ets are dropped in one window of data. [MM96] ex-
plores TCP congestion control algorithms for TCP with
SACK. [BPSK96] shows that SACK and explicit wire-
less loss notification both result in substantial perfor-
mance improvements for TCP over lossy links. Sev-

eral researchers are exploring the use of SACK, coupled
with the explicit notification of non-congestion-related
losses, for lossy environments such as satellite links.

The SACK option will allow the TCP protocol to be
more intelligent in other ways as well. a As one exam-
ple, the use of selective acknowledgments will allow the
sender to make a more intelligent response to the first or
second dup ACKs. Most TCP implementations, includ-
ing the ones shown in this paper, simply ignore the first
or second dup ACKs. With SACK, the sender will know
if a dup ACK indicates that another packet has in fact
left the pipe, allowing the sender to send a new packet if
the receiver' s advertised window permits. Further, with
SACK the sender will know which packet has left the
network, allowing the sender to make an informed guess
about whether this is likely to be the last dup ACK that
it will receive.

As a second example, by giving precise information
on the exact data received by the receiver, and the order
in which that data was received, the use of SACK would
allow the sender to infer when it has mistakenly assumed
that a packet was dropped, and therefore to rescind its
decision to reduce the congestion window.

As a third example, by effectively decoupling deci-
sions of when to send a packet from decisions of which
packet to send, SACK opens the way to further advances
of TCP's congestion control algorithms.

The SACK implementation in our simulator could be
improved in its robustness to reordered packets during
Fast Recovery. If, during Fast Recovery, the sender re-
ceives a SACK packet with a SACK block for packet n,
and a second SACK block repeating a report for packet
n - 2, the sender in our implementation might immedi-
ately retransmit packet n - 1. Probably the sender should
walt for a few more ACKs all indicating that packet n - 1
is missing at the receiver, to give robustness against re-
ordered packets.

The New-Rent and SACK implementations in our
simulator use a "maxburst" parameter to limit the po-
tential burstiness of the sender for the first window of
packets sent after exiting from Fast Recovery. This is
mainly an issue when the sender has been prevented
from sending packets during Fast Recovery because of
restrictions imposed by the receiver's advertised win-
dow. An improved SACK implementation would only
use a "maxburst" parameter immediately after leaving
Fast Recovery. A comparable mechanism to prevent
bursts would be, upon exiting Fast Recovery, to set the
congestion window to the number of packets known to
be in the pipe, to set ssthresh to what would have been
the congestion window, and to use Slow-Start to quickly

8These proposals are not necessarily original with us, but are from
general discussions in the research eonununity about the use of SACK.
Unfortunately, we don't have a precise attribution for each proposal.

ACM SIGCOMM -19- Computer Communication Review

increase the congestion window back up to ssthresh.

9 Conclusions

In this paper we have explored the fundamental restric-
tions imposed by the lack of selective acknowledgments
in TCP, and have examined a TCP implementation that
incorporates selective acknowledgments into Reno TCP
while making minimal changes to TCP's underlying
congestion control algorithms. We assume that the ad-
dition of selective acknowledgments to TCP will open
the way to further developments of the TCP protocol.

10 Acknowledgements

This document 9 was written in support of [MMFR96],
the current proposal for adding a SACK option to TCP,
and draws from discussions about SACK and TCP with
a wide range of people. We would in particular like to
thank Had Balakrishnan, Bob Braden, Janey Hoe, Van
Jacobson, Jamshid Mahdavi, Matt Mathis, Vern Paxson,
Allyn Romanow, and Lixia Zhang. We thank Vern Pax-
son for the TCP traces. The implementation of SACK
TCP in the simulator is in large part from Matt Mathis
and Jamshid Mahdavi.

References

[BBJ92]

[B J88]

D. Borman, R. Braden, and V. Jacobson.
"TCP Extensions for High Performance,".
Request for Comments (Proposed Stan-
dard) RFC 1323, Internet Engineering Task
Force, May 1992. (Obsoletes RFC1185).

R. Braden and V. Jacobson. "TCP ex-
tensions for long-delay paths". Request
for Comments (Experimental) RFC 1072,
Internet Engineering Task Force, October
1988.

[BJZ90] R. Braden, V. Jacobson, and L. Zhang.
"TCP Extension for High-Speed Paths,".
Request for Comments (Experimental)
RFC 1185, Internet Engineering Task
Force, October 1990. (Obsoleted by
RFC1323).

9The earlier versions of this note are available at URL
ftp:llftp.ee.lbl.govlpaperslsacks_vO.ps.Z (December 1995) and URL
ftp:l/ftp.ee.lbl.govlpaperslsacks_vl.ps.Z (March 1996). While the re-
suits are essentially unchanged, the earlier results used non-standard
TCP implementations where the sender's maximum congestion win-
dow is assumed to be less than the receiver's advertised window.

[BPSK96]

[Bra94]

[CH95]

[Che88]

[CLZ871

[FJ93]

[Flo95]

[Flo96a]

[Flo96b]

H. Balakrishnan, V.N. Padmanabhan,
S. Seshan, and R.H. Katz. "A Compari-
son of Mechanisms for Improving TCP
Performance over Wireless Links,". SIG-
COMM Symposium on Communications
Architectures and Protocols, Aug. 1996.
to appear.

R. Braden. "T/TCP - TCP Exten-
sions for Transactions Functional Specifi-
cation,". Request for Comments (Exper-
imental) RFC 1644, Internet Engineering
Task Force, July 1994.

D.D. Clark and J. Hoe. "Start-up Dynamics
of TCP's Congestion Control and Avoid-
ance Schemes,". Technical report, Jun.
1995. Presentation to the Internet End-to-
End Research Group, cited for acknowl-
edgement purposes only.

D. Cheriton. "VMTP: Versatile Message
Transaction Protocol: Protocol specifica-
tion,". Request for Comments (Experimen-
tal) RFC 1045, Internet Engineering Task
Force, February 1988.

D. Clark, M. Lambert, and L. Zhang.
"NETBLT: A bulk data transfer proto-
col,". Request for Comments (Experimen-
tal) RFC 998, Internet Engineering Task
Force, March 1987. (Obsoletes RFC0969).

Sally Floyd and Van Jacobson. "Ran-
dom Early Detection Gateways for Con-
gestion Avoidance,". IEEE/ACM Transac-
tions on Networking, 1(4):397--413, Aug.
1993. URL http://www-nrg.ee.lbl.gov/nrg-
papers.html.

Sally Floyd. "Simulator Tests". Techni-
cal report, Jul. 1995. URL http://www-
nrg.ee.lbl.gov/nrg-papers.html.

S. Floyd. "Issues of TCP with SACK,".
Technical report, Mar. 1996. URL
ftp://ftp.ee.lbl.gov/papers/issues_sa.ps.Z.

S. Floyd. "SACK TCP: The sender's con-
gestion control algorithms for the imple-
mentation "sackl" in LBNL's "ns" sim-
ulator (viewgraphs).,". Technical re-
port, Mar. 1996. Presentation to the
TCP Large Windows Working Group
of the IETF, March 7, 1996. URL
ftp://ftp.ee.lbl.gov/talks/sacks.ps.

ACM SIGCOMM -20- Computer Communication Review

[Hoe95]

[Hoe96]

[HSV84]

[Jac88]

[Jac90]

[Kes88]

[Kes94]

[MF95]

[MM96]

[MMFR96]

[SDW92]

J. Hoe. "Start-up Dynamics of TCP' s Con-
gestion Control and Avoidance Schemes,".
Jun. 1995. Master's thesis, MIT.

J. Hoe. "Improving the Start-up Behav-
ior of a Congestion Control Scheme for
TCP,". SIGCOMM Symposium on Com-
munications Architectures and Protocols,
Aug. 1996. to appear.

R. Hinden, J. Sax, and D. Velten. "Reli-
able Data Protocol,". Request for Com-
ments (Experimental) RFC 908, Internet
Engineering Task Force, July 1984. (Up-
dated by RFC1151).

V. Jacobson. "Congestion Avoidance
and Control,". SIGCOMM Sympo-
sium on Communications Architectures
and Protocols, pages 314-329, 1988.
An updated version is available via
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

V. Jacobson. "Modified TCP Conges-
tion Avoidance Algorithm,". Techni-
cal report, 30 Apr. 1990. Email to
the end2end-interest Mailing List, URL
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

S. Keshav. "REAL: a Network Simula-
tor,". Technical Report 88/472, University
of California Berkeley, Berkeley, Califor-
nia, 1988.

S. Keshav. "Packet-Pair Flow Control,".
Technical report, Nov. 1994. Presenta-
tion to the Internet End-to-End Research
Group, cited for acknowledgement pur-
poses only.

Steven McCanne and Sally Floyd. "NS
(Network Simulator),", 1995. URL
http://www-nrg.ee.lbl.gov/ns.

Matthew Mathis and Jamshid Mahdavi.
"Forward Acknowledgement: Refining
TCP Congestion Control,". SIGCOMM
Symposium on Communications Architec-
tures and Protocols, Aug. 1996. to appear.

Matthew Mathis, Jamshid Mahdavi, Sally
Floyd, and Allyn Romanow. "TCP Selec-
tive Acknowledgment Options,". (Internet
draft, work in progress), 1996.

W. T. Strayer, B. Dempsey, and A. Weaver.
XTP: The Xpress Transfer Protocol. Addi-
son Wesley, Reading, MA, 1992.

[Ste94] W. Richard Stevens. TCP/IP Illustrated,
Volume h The Protocols. Addison Wes-
ley, 1994.

ACM SIGCOMM -21- Computer Communication Review

