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Abstract 

This paper uses simulations to explore the benefits of 
adding selective acknowledgments (SACK) and selec- 
tive repeat to TCP. We compare Tahoe and Rent TCP, 
the two most common reference implementations for 
TCP, with two modified versions of Rent TCP. The first 
version is New-Rent TCP, a modified version of TCP 
without SACK that avoids some of Rent TCP's per- 
formance problems when multiple packets are dropped 
from a window of data. The second version is SACK 
TCP, a conservative extension of Rent  TCP modified to 
use the SACK option being proposed in the Internet En- 
gineering Task Force (IETF). We describe the conges- 
tion control algorithms in our simulated implementation 
of SACK TCP and show that while selective acknowl- 
edgments are not required to solve Rent TCP's per- 
formance problems when multiple packets are dropped, 
the absence of selective acknowledgments does impose 
limits to TCP's ultimate performance. In particular, 
we show that without selective acknowledgments, TCP 
implementations are constrained to either retransmit at 
most one dropped packet per round-trip time, or to re- 
transmit packets that might have already been success- 
fully delivered. 

1 Introduction 

In this paper we illustrate some of the benefits of adding 
selective acknowledgment (SACK) to TCP. Current im- 
plementations of TCP use an acknowledgment number 
field that contains a cumulative acknowledgment, indi- 
cating the TCP receiver has received all of the data up to 
the indicated byte. A selective acknowledgment option 
allows receivers to additionally report non-sequential 
data they have received. When coupled with a selec- 
tive retransmission policy implemented in TCP senders, 
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considerable savings can be achieved. 
Several transport protocols have provided for se- 

lective acknowledgment (SACK) of received data. 
These include NETBLT [CLZ87], XTP [SDW92], 
RDP [HSV84] and VMTP [Che88]. The first pro- 
posals for adding SACK to TCP [B J88, BJZ90] were 
later removed from the TCP RFCs (Request For Com- 
ments) [BBJ92] pending further research. The cur- 
rent proposal for adding SACK to TCP is given 
in [MMFR96]. We use simulations to show how the 
SACK option defined in [MMFR96] can be of substan- 
tial benefit relative to TCP without SACK. 

The simulations are designed to highlight perfor- 
mance differences between TCP with and without 
SACK. In this paper, Tahoe TCP refers to TCP with the 
Slow-Start, Congestion Avoidance, and Fast Retransmit 
algorithms first implemented in 4.3 BSD Tahoe TCP in 
1988. Rent TCP refers to TCP with the earlier algo- 
rithms plus Fast Recovery, first implemented in 4.3 BSD 
Rent TCP in 1990. 

Without SACK, Rent TCP has performance prob- 
lems when multiple packets are dropped from one win- 
dow of data. These problems result from the need 
to await a retransmission timer expiration before re- 
initiating data flow. Situations in which this problem 
occurs are illustrated later in this paper (for example, 
see Section 6.4). 

Not all of Reno's performance problems are a nec- 
essary consequence of the absence of SACK. To show 
why, we implemented a variant of the Rent algorithms 
in our simulator, called New-Rent. Using a sugges- 
tion from Janey Hoe [Hoe95, Hoe96], New-Rent avoids 
many of the retransmit timeouts of Rent without requir- 
ing SACK. Nevertheless, New-Rent does not perform 
as well as TCP with SACK when a large number of 
packets are dropped from a window of data. The pur- 
pose of our discussion of New-Rent is to clarify the 
fundamental limitations of the absence of SACK. 

In the absence of SACK, both Rent and New-Rent 
senders can retransmit at most one dropped packet per 
round-trip time, even if senders recover from multiple 
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drops in a window of data without waiting for a retrans- 
mit timeout. This characteristic is not shared by Tahoe 
TCP, which is not limited to retransmitting at most one 
dropped packet per round-trip time. However, it is a fun- 
damental consequence of the absence of SACK that the 
sender has to choose between the following strategies to 
recover from lost data: 

1. retransmitting at most one dropped packet per 
round-trip time, or 

2. retransmitting packets that might have already been 
successfully delivered. 

Reno and New-Reno use the first strategy, and Tahoe 
uses the second. 

To illustrate the advantages of TCP with SACK, we 
show simulations with SACK TCP, using the SACK im- 
plementation in our simulator. SACK TCP is based on 
a conservative extension of the Reno congestion con- 
trol algorithms with the addition of selective acknowl- 
edgments and selective retransmission. With SACK, a 
sender has a better idea of exactly which packets have 
been successfully delivered as compared with compa- 
rable protocols lacking SACK. Given such information, 
a sender can avoid unnecessary delays and retransmis- 
sions, resulting in improved throughput. We believe the 
addition of SACK to TCP is one of the most important 
changes that should be made to TCP at this time to im- 
prove its performance. 

In Sections 2 through 5 we describe the congestion 
control and packet retransmission algorithms in Tahoe, 
Reno, New-Reno, and SACK TCP. Section 6 shows sim- 
ulations with Tahoe, Reno, New-Reno, and SACK TCP 
in scenarios ranging from one to four packets dropped 
from a window of data. Section 7 shows a trace of Reno 
TCP taken from actual Internet traffic, showing that the 
performance problems of Reno without SACK are of 
more than theoretical interest. Finally, Section 8 dis- 
cusses possible future directions for TCP with selective 
acknowledgments, and Section 9 gives conclusions. 

2 Tahoe TCP 

Modem TCP implementations contain a number of al- 
gorithms aimed at controlling network congestion while 
maintaining good user throughput. Early TCP imple- 
mentations followed a go-back-n model using cumula- 
tive positive acknowledgment and requiring a retrans- 
mit timer expiration to re-send data lost during transport. 
These TCPs did little to minimize network congestion. 

The Tahoe TCP implementation added a number of 
new algorithms and refinements to earlier implementa- 
tions. The new algorithms include Slow-Start, Conges- 
tion Avoidance, and Fast Retransmit [Jac88]. The re- 

finements include a modification to the round-trip time 
estimator used to set retransmission timeout values. All 
modifications have been described elsewhere [Jac88, 
Ste94]. 

The Fast Retransmit algorithm is of special interest in 
this paper because it is modified in subsequent versions 
of TCP. With Fast Retransmit, after receiving a small 
number of duplicate acknowledgments for the same 
TCP segment (dup ACKs), the data sender infers that a 
packet has been lost and retransmits the packet without 
waiting for a retransmission timer to expire, leading to 
higher channel utilization and connection throughput. 

3 Reno TCP 

The Reno TCP implementation retained the enhance- 
ments incorporated into Tahoe, but modified the Fast 
Retransmit operation to include Fast Recovery [Jac90]. 
The new algorithm prevents the communication path 
("pipe") from going empty after Fast Retransmit, 
thereby avoiding the need to Slow-Start to re-fill it after 
a single packet loss. Fast Recovery operates by assum- 
ing each dup ACK received represents a single packet 
having left the pipe. Thus, during Fast Recovery the 
TCP sender is able to make intelligent estimates of the 
amount of outstanding data. 

Fast Recovery is entered by a TCP sender after re- 
ceiving an initial threshold of dup ACKs. This thresh- 
old, usually known as tcprexmtthresh, is generally set to 
three. Once the threshold of dup ACKs is received, the 
sender retransmits one packet and reduces its congestion 
window by one half. Instead of slow-starting, as is per- 
formed by a Tahoe TCP sender, the Reno sender uses 
additional incoming dup ACKs to clock subsequent out- 
going packets. 

In Reno, the sender's usable window becomes 
min(  awin, cwnd + ndup) where awin is the receiver's 
advertised window, cwnd is the sender's congestion 
window, and ndup is maintained at 0 until the number of 
dup ACKs reaches tcprexmtthresh, and thereafter tracks 
the number of duplicate ACKs. Thus, during Fast Re- 
covery the sender "inflates" its window by the number 
of dup ACKs it has received, according to the observa- 
tion that each dup ACK indicates some packet has been 
removed from the network and is now cached at the re- 
ceiver. After entering Fast Recovery and retransmitting 
a single packet, the sender effectively waits until half 
a window of dup ACKs have been received, and then 
sends a new packet for each additional dup ACK that is 
received. Upon receipt of an ACK for new data (called 
a "recovery ACK"), the sender exits Fast Recovery by 
setting ndup to 0. Fast Recovery is illustrated in more 
detail in the simulations in Section 6. 

ACM SIGCOMM -6- Computer Communication Review 



Reno's Fast Recovery algorithm is optimized for the 
case when a single packet is dropped from a window of 
data. The Rent sender retransmits at most one dropped 
packet per round-trip time. Rent significantly improves 
upon the behavior of Tahoe TCP when a single packet is 
dropped from a window of data, but can suffer from per- 
formance problems when multiple packets are dropped 
from a window of data. This is illustrated in the simu- 
lations in Section 6 with three or more dropped packets. 
The problem is easily constructed in our simulator when 
a Rent  TCP connection with a large congestion window 
suffers a burst of packet losses after slow-starting in a 
network with drop-tail gateways (or other gateways that 
fail to monitor the average queue size). 

4 New-Reno TCP 

We include New-Rent TCP in this paper to show how a 
simple change to TCP makes it possible to avoid some 
of the performance problems of Rent  TCP without the 
addition of SACK. At the same time, we use New-Rent 
TCP to explore the fundamental limitations of TCP per- 
formance in the absence of SACK. 

The New-Rent TCP in this paper includes a small 
change to the Rent algorithm at the sender that elimi- 
nates Reno's wait for a retransmit timer when multiple 
packets are lost from a window [Hoe95, CH95]. The 
change concerns the sender's behavior during Fast Re- 
covery when a partial ACK is received that acknowl- 
edges some but not all of the packets that were out- 
standing at the start of that Fast Recovery period. In 
Rent, partial ACKs take TCP out of Fast Recovery by 
"deflating" the usable window back to the size of the 
congestion window. In New-Rent, partial ACKs do not 
take TCP out of Fast Recovery. Instead, partial ACKs 
received during Fast Recovery are treated as an indica- 
tion that the packet immediately following the acknowl- 
edged packet in the sequence space has been lost, and 
should be retransmitted. Thus, when multiple pack- 
ets are lost from a single window of data, New-Rent 
can recover without a retransmission timeout, retrans- 
mitring one lost packet per round-trip time until all of 
the lost packets from that window have been retransmit- 
ted. New-Rent remains in Fast Recovery until all of the 
data outstanding when Fast Recovery was initiated has 
been acknowledged. 

The implementations of New-Rent and SACK TCP 
in our simulator also use a "maxburst" parameter. In 
our SACK TCP implementation, the "maxburst" param- 
eter limits to four the number of packets that can be 
sent in response to a single incoming ACK, even if the 
sender's congestion window would allow more pack- 
ets to be sent. In New-Rent, the "maxburst" parame- 

ter is set to four packets outside of Fast Recovery, and 
to two packets during Fast Recovery, to more closely 
reproduce the behavior of Rent  TCP during Fast Re- 
covery. The "maxburst" parameter is really only needed 
for the first window of packets that are sent after leav- 
ing Fast Recovery. If the sender had been prevented by 
the receiver's advertised window from sending packets 
during Fast Recovery, then, without "maxburst", it is 
possible for the sender to send a large burst of packets 
upon exiting Fast Recovery. This applies to Rent  and 
New-Rent TCP, and to a lesser extent, to SACK TCP. 
In Tahoe TCP the Slow-Start algorithm prevents bursts 
after recovering from a packet loss. The bursts of pack- 
ets upon exiting Fast Recovery with New-Rent TCP are 
illustrated in Section 6 in the simulations with three and 
four packet drops. Bursts of packets upon exiting Fast 
Recovery with Rent TCP are illustrated in [Flo95]. 

[Hoe95] recommends an additional change to TCP's 
Fast Recovery algorithms. She suggests the data sender 
send a new packet for every two dup ACKs received dur- 
ing Fast Recovery, to keep the "flywheel" of ACK and 
data packets going. This is not implemented in "New- 
Rent" because we wanted to consider the minimal set of 
changes to Rent  needed to avoid unnecessary retransmit 
timeouts. 

5 SACK TCP 

The SACK TCP implementation in this paper, called 
"Sackl" in our simulator, is also discussed in [Flo96b, 
Flo96a]. t The SACK option follows the format 
in [MMFR96]. From [MMFR96], the SACK option 
field contains a number of SACK blocks, where each 
SACK block reports a non-contiguous set of data that 
has been received and queued. The first block in a 
SACK option is required to report the data receiver's 
most recently received segment, and the additional 
SACK blocks repeat the most recently reported SACK 
blocks [MMFR96]. In these simulations each SACK op- 
tion is assumed to have room for three SACK blocks. 
When the SACK option is used with the Timestamp 
option specified for TCP Extensions for High Perfor- 
mance [BBJ92], then the SACK option has room for 
only three SACK blocks [MMFR96]. If the SACK op- 
tion were to be used with both the Timestamp option and 
with T/TCP (TCP Extensions for Transactions) [Bra94], 
the TCP option space would have room for only two 
SACK blocks. 

1The 1990 "Sack" TCP implementation on our previous simula- 
tor is from Steven McCanne and Sally Floyd, and does not conform 
to the formats in [MMFR96]. The new "Sackl" implementation con- 
tains major contributions from Kevin Fall, Jamshid Mahdavi, and Matt 
Mathis. 
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The congestion control algorithms implemented in 
our SACK TCP are a conservative extension of Reno's 
congestion control, in that they use the same algorithms 
for increasing and decreasing the congestion window, 
and make minimal changes to the other congestion con- 
trol algorithms. Adding SACK to TCP does not change 
the basic underlying congestion control algorithms. The 
SACK TCP implementation preserves the properties of 
Tahoe and Reno TCP of being robust in the presence 
of out-of-order packets, and uses retransmit timeouts as 
the recovery method of last resort. The main difference 
between the SACK TCP implementation and the Reno 
TCP implementation is in the behavior when multiple 
packets are dropped from on6 window of data. 

As in Reno, the SACK TCP implementation enters 
Fast Recovery when the data sender receives tcprexmt- 
thresh duplicate acknowledgments. The sender re- 
transmits a packet and cuts the congestion window in 
half. During Fast Recovery, SACK maintains a vari- 
able called p i p e  that represents the estimated number 
of packets outstanding in the path. (This differs from the 
mechanisms in the Reno implementation.) The sender 
only sends new or retransmitted data when the estimated 
number of packets in the path is less than the conges- 
tion window. The variable p i p e  is incremented by one 
when the sender either sends a new packet or retransmits 
an old packet. It is decremented by one when the sender 
receives a dup ACK packet with a SACK option report- 
ing that new data has been received at the receiver, z 

Use of the p i p e  variable decouples the decision of 
when to send a packet from the decision of which packet 
to send. The sender maintains a data structure, the 
scoreboard (contributed by Jamshid Mahdavi and Matt 
Mathis), that remembers acknowledgments from previ- 
ous SACK options. When the sender is allowed to send 
a packet, it retransmits the next packet from the list of 
packets inferred to be missing at the receiver. If there are 
no such packets and the receiver' s advertised window is 
sufficiently large, the sender sends a new packet. 

When a retransmitted packet is itself dropped, the 
SACK implementation detects the drop with a retrans- 
mit timeout, retransmitting the dropped packet and then 
slow-starting. 

The sender exits Fast Recovery when a recovery ac- 
knowledgment is received acknowledging all data that 
was outstanding when Fast Recovery was entered. 

The SACK sender has special handling for partial 
ACKs (ACKs received during Fast Recovery that ad- 
vance the Acknowledgment Number field of the TCP 

9Our simulator simply works in units of  packets, not in units of 
bytes or segments, and all data packets for a particular TCP connection 
are constrained to be the same size. Also note that a more aggressive 
implementation might decrement the variable p i p e  by more than one 
packet when an ACK packet with a SACK option is received reporting 
that the receiver has received more than one new nut-of-order packet. 

header, but do not take the sender out of Fast Recov- 
ery). For partial ACKs, the sender decrements p i p e  by 
two packets rather than one, as follows. When Fast Re- 
transmit is initiated, p i p e  is effectively decremented 
by one for the packet that was assumed tO have been 
dropped, and then incremented by one for the packet 
that was retransmitted. Thus, decrementing the p i p e  
by two packets when the first partial ACK is received 
is in some sense "cheating", as that partial ACK only 
represents one packet having left the pipe. However, for 
any succeeding partial ACKs, p i p e  was incremented 
when the retransmitted packet entered the pipe, but was 
never decremented for the packet assumed to have been 
dropped. Thus, when the succeeding partial ACK ar- 
rives, it does in fact represent two packets that have 
left the pipe: the original packet (assumed to have been 
dropped), and the retransmitted packet. Because the 
sender decrements pipe by two packets rather than one 
for partial ACKs, the SACK sender never recovers more 
slowly than a Slow-Start 

The r a a x b u r s t  parameter, which limits the number 
of packets that can be sent in response to a single incom- 
ing ACK packet, is experimental, and is not necessarily 
recommended for SACK implementations, z 

There are a number of other proposals for TCP con- 
gestion control algorithms using selective acknowledg- 
ments [Kes94, MM96]. The SACK implementation in 
our simulator is designed to be the most conservative 
extension of the Reno congestion control algorithms, in 
that it makes the minimum changes to Reno's existing 
congestion control algorithms. 

6 Simulations 

This section describes simulations from four scenarios, 
with from one to four packets dropped from a window of 
data. Each set of scenarios is run for Tahoe, Reno, New- 
Reno, and SACK TCP. Following this section, Section 
7 shows a trace of Reno TCP traffic taken from Internet 
traffic measurements, illustrating the performance prob- 
lems of Reno TCP without SACK, and Section 8 dis- 
cusses future directions of TCP with SACK. 

For all of the TCP implementations in all of the see- 
narios, the first dropped packet is detected by the Fast 
Retransmit procedure, after the source receives three 
dup ACKs. 

The results of the Tahoe simulations are similar in 
all four scenarios. The Tahoe sender recovers with a 

3For those reading the SACK code in the simulator, the boolean 
o v e r h e a d  parameter significantly complicates the code, but is only 
of concern in the simulator. The o v e r h e a d  parameter indicates 
whether some randomization should be added to the timing of the TCP 
connection. For all of the simulations in this paper, the o v e r h e a d  
parameter is set to zero, implying no randomization is added. 
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Fast Retransmit followed by Slow-Start regardless of 
the number of packets dropped from the window of 
data. For connections with a larger congestion window, 
Tahoe' s delay in slow-starting back up to half the previ- 
ous congestion window can have a significant impact on 
overall performance. 

The Rent  implementation without SACK gives opti- 
mal performance when a single packet is dropped from 
a window of data. For the scenario in Figure 3 with two 
dropped packets, the sender goes through Fast Retrans- 
mit and Fast Recovery twice in succession, unnecessar- 
ily reducing the congestion window twice. For the sce- 
narios with three or four packet drops, the Rent  sender 
has to wait for a retransmit timer to recover. 

As expected, the New-Rent and SACK TCPs each re- 
cover from all four scenarios without having to wait for 
a retransmit timeout. The New-Rent and SACK TCPs 
simulations look quite similar. However, the New-Rent 
sender is able to retransmit at most one dropped packet 
each round-trip time. The limitations of New-Rent, rel- 
ative to SACK TCP, are more pronounced in scenarios 
with larger congestion windows and a larger number of 
dropped packets from a window of data. In this case the 
constraint of retransmitting at most one dropped packet 
each round-trip time results in substantial delay in re- 
transmitting the later dropped packets in the window. In 
addition, if the sender is limited by the receiver's ad- 
vertised window during this recovery period, then the 
sender can be unable to effectively use the available 
bandwidth. 4. 

For each of the four scenarios, the SACK sender re- 
covers with good performance in both per-packet end- 
to-end delay and overall throughput. 

6.1 The simulation scenario 

The rest of this section consists of a detailed descrip- 
tion of the simulations in Figures 2 through 5. All of 
these simulations can be run on our simulator n s  with 
the command test-sack. For those readers who are 
interested, the text gives a packet-by-packet description 
of the behavior of TCP in each simulation. 

Figure 1: Simulation Topology 

Figure 1 shows the network used for the simulations 
in this paper. The circle indicates a finite-buffer drop- 
tail gateway, and the squares indicate sending or receiv- 

4This is shown in the LBNL simulator ns in the test 
many-drops, r u n  with the command test-sack 

ing hosts. The links are labeled with their bandwidth 
capacity and delay. Each simulation has three TCP con- 
nections from S1 to K1. Only the first connection is 
shown in the figures. The second and third connections 
have limited data to send, and are included to achieve 
the desired pattern of packet drops for the first con- 
nection. The pattern of packet drops is changed sim- 
ply by changing the number of packets sent by the sec- 
ond and third connections. Readers interested in the 
exact details of the simulation set-up are referred to 
the files t e s t - s a c k  and s a c k .  t c l  in our simula- 
tor n s  [MF95]. The granularity of the TCP clock is set 
to 100 msec, giving round-trip time measurements ac- 
curate to only the nearest 100 msec. 

These simulations use drop-tail gateways with small 
buffers. These are not intended to be realistic sce- 
narios, or realistic values for the buffer size. They 
are intended as a simple scenario for illustrating TCP's 
congestion control algorithms. Simulations with RED 
(Random Early Detection) gateways [FJ93] would in 
general avoid the bursts of packet drops characteristic 
of drop-tail gateways. 

Ns [MF95] is based on LBNL's previous simulator 
tcpsim, which was in turn based on the REAL sim- 
ulator [Kes88]. The simulator does not use production 
TCP code, and does not pretend to reproduce the exact 
behavior of specific implementations of TCP [Flo95]. 
Instead, the simulator is intended to support exploration 
of underlying TCP congestion and error control algo- 
rithms, including Slow-Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery. The simulation re- 
sults contained in this report can be recreated with the 
t e s t - s a c k  script supplied with ns .  

For simplicity, most of the simulations shown in this 
paper use a data receiver that sends an ACK for ev- 
ery data packet received. The simulations in this paper 
also consist of one-way traffic. As a result, ACKs are 
never "compressed" or discarded on the path from the 
receiver back to the sender. The simulation set run by 
the t e s  t - s a c k  script includes simulations with multi- 
ple connections, two-way traffic, and data receivers that 
send an ACK for every two data packets received. 

The graphs from the simulations were generated by 
tracing packets entering and departing from R1. For 
each graph, the z-axis shows the packet arrival or de- 
parture time in seconds. The y-axis shows the packet 
number rood 100. Packets are numbered starting with 
packet 0. Each packet arrival and departure is marked 
by a square on the graph. For example, a single packet 
passing through R1 experiencing no appreciable queue- 
ing delay would generate two marks so close together on 
the graph as to appear as a single mark. Packets delayed 
at R1 but not dropped will generate two colinear marks 
for a constant packet number, spaced by the queueing 
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delay. Packets dropped due to buffer overflow are indi- 
cated by an " x "  on the graph for each packet dropped. 
Returning ACK packets received at R1 are marked by a 
smaller dot. 

6.2 On e  Packet  Loss  

Figure 2 shows Tahoe, Rent, New-Rent, and SACK 
TCP with one dropped packet. Figure 2 shows that 
Tahoerequires a Slow-Start to recover from the packet 
drop, while Rent, New-Rent, and SACK TCP are all 
able to recover smoothly using Fast Recovery. The rest 
of this section describes the simulations in Figure 2 in 
more detail. 

In Figure 2 with Tahoe TCP, packets 0-13 are sent 
without error as the sending TCP's congestion window 
increases exponentially from 1 to 15 according to the 
Slow-Start algorithm. The figure contains a square for 
each packet as it arrives and leaves the congested gate- 
way. For a packet like the first one that experiences 
no queueing delay, the two squares appear as a single 
mark. As the queueing delay at the congested gateway 
increases, due in part to competing traffic not shown 
in this figure, the two marks for the arrival and depar- 
ture diverge, and the distance between the arrival and 
departure marks corresponds to the queueing delay ex- 
perienced by that packet. 

By the end of the fourth non-overlapping window 
of data, the router's queue is full, causing packet 14 
to be dropped. Because the first seven packets of the 
fourth window were successfully delivered (and ACKs 
are never dropped in these simulations), as the seven 
ACKs arrive the sender increases its window from 8 to 
15 and sends the next 14 packets, 15-28. 

After receiving the first ACK for packet 13, the sender 
receives 14 additional ACKs for packet 13 correspond- 
ing to the receiver's successful receipt of packets 15- 
28. The third duplicate ACK of the sequence (the fourth 
ACK for packet 13) meets the duplicate ACK threshold 
of three, and Fast Retransmission and Slow-Start are in- 
voked. In addition, the Slow-Start threshold ssthresh 5 is 
reduced to seven (/L~-Z]). The sending TCP resets its 
congestion window to one and retransmits packet 14. 

The receiver has already cached packets 15-28, and 
upon receiving the retransmitted packet 14 acknowl- 
edges packet 28. The ACK for packet 28 causes the 
sender to increase its congestion window by one and 
continue its transmissions from packet 29. While trans- 
mitting the window beginning with packet 35, the sender 
reaches the Slow-Start threshold and enters Conges- 

5The Slow-Start threshold ssthresh is a dynamically-set value in- 
dicating an upper bound on the congestion window above which a 
TCP sender switches from Slow-Start to the Congestion Avoidance 
algorithm. 

tion Avoidance. During subsequent transmissions, the 
sender' s window is increased by roughly one packet per 
round-trip time as expected. 

For figure 2 with Rent TCP, Reno's Fast Recovery 
algorithm gives optimal performance in this scenario. 
The sender's congestion window is reduced by half, in- 
coming dup acks are used to clock outgoing packets, and 
Slow-Start is avoided. 

Reno's operation in Figure 2 is identical to Tahoe un- 
til the fourth A C K  for packet 13 is received at the sender. 
The ACKs corresponding to packets 15-28 comprise 14 
dup ACKs for packet 13. The third dup ACK triggers 
a retransmission of packet 14, puts the sender into Fast 
Recovery, and reduces its congestion window and Slow- 
Start threshold to seven. During Fast Recovery, receipt 
of the fourth dup ACK brings the usable window to 11, 
and by the 14th dup ACK the usable window reaches 21. 
The "inflated" window from the last six dup acks allows 
the sender to send packets 29-34. Upon receiving the 
ACK for packet 28, the sender exits Fast Recovery and 
continues in Congestion Avoidance with a congestion 
window of seven. 

The New-Rent and S A C K  simulations in Figure 2 
show no differences from the Rent simulation under one 
packet drop. 
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Figure 2: Simulations with one dropped packet. 
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6.3 T w o  P a c k e t  L o s s e s  

Figure 3 shows Tahoe, Reno, New-Reno, and SACK 
TCP with two dropped packets. As in the previous sim- 
ulation, Tahoe recovers from the packet drops with a 
Slow-Start. Reno TCP recovers with some difficulties, 
while both New-Reno and SACK TCP recover smoothly 
and quickly. The rest of this section describes the simu- 
lations in Figure 3 in more detail. 

The top figure in Figure 3 shows Tahoe TCP with 
two dropped packets. The response to loss on packet 
14 is as described for Tahoe in the single loss case. In 
Tahoe, even though packets 15-28 were sent, this fact is 
forgotten by the sender when retransmitting packet 14. 

After retransmitting packet 14 and receiving 13 dup 
ACKs, the sender receives an ACK for packet 27. The 
sender is in Slow-Start, opens its window to 2, and sends 
packets 28 and 29. The sender switches from Slow-Start 
to Congestion Avoidance when sending packet 40. 

The Rent sender is often forced to wait for a retrans- 
mit timeout to recover from two packets dropped from 
a window of data. 6 In Figure 3 with Rent  TCP' s Fast 
Retransmit, the Rent sender does not have to wait for 
a retransmit timeout, but instead recovers by doing a 
Fast Retransmit and Fast Recovery two times in suc- 
cession, in the process cutting the congestion window 
in half twice, in two successive round-trip times. This 
slows down the TCP connection considerably. 

The two packet drops occur at packets 14 and 28. Op- 
eration is similar to the one-drop case, except the loss of 
packet 28 implies 13 dup ACKs are generated for packet 
13 rather than 14. The 13 dup ACKs allow the sender 
to send packets 29-33 with a usable window of 20 after 
the last dup ACK is received. 

The loss of packet 28 causes a number of dup ACKs 
for packet 27 to be received at the sender. The first ACK 
for packet 27 is triggered by the receiver receiving the 
retransmitted packet 14. This ACK allows the sender to 
send packet 34. The next five dup ACKs are triggered 
by packets 29-33, and the final dup ACK is triggered by 
packet 34. 

At the time the first ACK for packet 27 is received, the 
sender exits Fast Recovery with a congestion window of 
seven, having been reduced from 15 after the first loss. 
Upon receipt of the third dup ACK for packet 27, the 
sender begins a second Fast Retransmit. The sender re- 
transmits packet 28 and reduces its congestion window 
to three, but is unable to send any additional data be- 
cause of its usable window of six. The usable window 

6More precisely, when two packets are dropped from a window 
of data, the Rent  sender is forced to wait for a retransmit timeout 
whenever the congestion window is less than 10 packets when Fast 
Recovery is initiated, and whenever the congestion window is within 
two packets of  the receiver's advertised window when Fast Recovery 
is initiated. 

grows from eight to nine upon receipt of the fifth and 
sixth dup ACKs, allowing the sender to send packets 35 
and 36. 

The sender receives an ACK for packet 34 as a result 
of the receiver receiving retransmitted packet 28. This 
ACK brings the sender out of Fast Recovery with a con- 
gestion window and ssthresh of three. The ACKs for 
packets 34 and 35 allow the sender to send 37 and 38, 
and the ACK for packet 36 allows packet 39 to be sent. 
The pattern repeats for many round-trip times, alternat- 
ing between a single ACK advancing the sender's win- 
dow followed by a series of ACKs which both advance 
and expand the sender's window according to Conges- 
tion Avoidance. 

In figure 3 with New-Rent  TCP, New-Rent' s behav- 
ior is similar to Rent until the sender receives the first 
ACK for packet 27. This ACK is a partial ACK, and 
causes New-Rent to retransmit packet 28 immediately 
and not exit Fast Recovery. The dup ACK counter is 
reset to zero and later increased by the number of dup 
ACKs matching the partial ACK. The congestion win- 
dow is not affected. 

With the arrival of five dup ACKs for packet 27, the 
sender sends packets 35-39. The ACK for packet 33 
causes the sender to exit Fast Recovery with a con- 
gestion window of seven and continue in Congestion 
Avoidance. 

In figure 3 with SACK TCP, SACK TCP's behav- 
ior is similar to Rent until the sender receives the third 
ACK for packet 13. At this point, the protocol initializes 
the p i p e  as follows: 

p ipe  = c w n d  - n d u p  = 15 - 3 = 12. 

It then subtracts one for each of the subsequent 10 dup 
ACKs and adds one for each of the five transmitted 
packets 29-33. At the point the first ACK for packet 
27 arrives, p i p e  has value 12 - 10 + 5 = 7. 

The first ACK for packet 27 is a partial ACK, caus- 
ing p i p e  to be decremented by two. With the sender's 
congestion window at seven, packets 34 and 35 are now 
sent. The five additional dup ACKs for packet 27 minus 
one for the retransmission of packet 28 allow the sender 
to send packets 36--39. The sender next receives two 
dup ACKs for packet 27 corresponding to the receipt of 
packets 34 and 35, allowing the sender to send packets 
40 and 41. The next ACK received at the sender is for 
packet 35 and corresponds to the receiver receiving the 
retransmitted packet 28. It brings the sender out of Fast 
Recovery with a congestion window of seven, thereby 
allowing packet 42 to be sent. The next four ACKs for 
packets 36-39 allow the sender to send packets 43--46 
and continue under Congestion Avoidance. 
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Figure 3: Simulations with two dropped packets. 
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6.4 Three Packet Losses 

Figure 4 shows Tahoe, Reno, New-Reno, and SACK 
TCP with three dropped packets. As in the previous 
simulations, Tahoe recovers from the packet drops with 
a Slow-Start Reno TCP, on the other hand, experi- 
ences severe performance problems, and has to wait for 
a retransmit timer to recover from the dropped pack- 
ets. Both New-Reno and SACK TCP recover fairly 
smoothly. The rest of this section describes the simu- 
lations in Figure 4 in more detail. 

The top figure in Figure 4 shows Tahoe TCP with 
three dropped packets. The response to loss on packet 
14 is as described for Tahoe in the single loss case. As 
in the two packet loss case, even though packets 15-28 
were sent, this is not taken into account by the sender. 

After retransmitting packet 14 and receiving 12 dup 
ACKs, the sender receives an ACK for packet 25. The 
sender is in Slow-Start, opens its window to 2, and sends 
packets 26 and 27. Note that packets 26 and 27 are sent 
a second time, even though 27 has already been suc- 
cessfully received. The sender next receives two ACKs 
for packet 27, corresponding to the receipt of the resent 
packets 26 and 27. One of these ACKs is for new data, 
which increases the congestion window to three. The 
sender continues in Slow-Start until packet 37, where it 
switches to Congestion Avoidance. 

Figure 4 shows Reno TCP with three dropped pack- 
ets. When three packets are dropped from a window of 
data, the Reno sender is almost always forced to wait for 
a retransmit timeout.7 

Reno's operation in Figure 4 is generally similar to 
Reno with two drops, except the additional packet drop 
causes only 12 dup ACKs for packet 13 rather than thir- 
teen. The 12 dup ACKs allow the sender to send packet 
29-32 with a usable window of 19 after retransmitting 
packet 14. 

With the arrival of the first ACK for packet 25, Reno 
exits Fast Recovery, but after receiving three additional 
ACKs re-enters Fast Recovery with a congestion win- 
dow of three and usable window of six. With the ar- 
rival of the fifth ACK for packet 25, the usable window 
grows to seven, but the sender is still unable to send 
data because seven packets (26-32) are still unacknowl- 
edged. The ACK for packet 27 brings the sender out of 
Fast Recovery once again with a congestion window of 
three. At the point the ACK for packet 27 arrives, the 
sender is stalled. Although packets 28-32 have not yet 
been acknowledged and 28 requires retransmission, the 
"ACK clock" is lost, implying Reno is unable to employ 

~When three packets are dropped from a window of data, the Reno 
sender is forced to wait for a retransmit timeout whenever the number 
of packets between the first and the second dropped packets is less 
than 2 + 3W/4 ,  for W the congestion window just before the Fast 
Retransmit. 

Fast Retransmit and must instead await a retransmission 
timeout. 

The timeout for packet 28 expires, causing a retrans- 
mission and putting the sender into Slow-Start. The 
ACK for packet 32 corresponds to the arrival of packet 
28 at the receiver, and the sender continues in Conges- 
tion Avoidance as expected. 

Figure 4 shows New-Reno TCP with three dropped 
packets. New-Reno's operation is similar to Reno with 
three drops until the receipt of the first ACK for packet 
25. After receiving this ACK, the New-Reno sender im- 
mediately retransmits packet 26 and sets its usable win- 
dow to a congestion window of seven. The four subse- 
quent dup ACKs for packet 25 inflate the usable win- 
dow to eleven, allowing the sender to send packets 33-  
36. The next partial ACK acknowledges packet 27 and 
causes the sender to retransmit packet 28 and reduce its 
usable window to seven. The sender is unable to send 
additional data until the receipt of the third and fourth 
dup ACKs for packet 27, which allow the sender to send 
packets 37 and 38 with a usable window of eleven. 

The ACK for packet 36 brings the sender out of Fast 
Recovery and returns its congestion window to seven. 
Only packets 37 and 38 are unacknowledged at this 
point, so the sender should be able to send five addi- 
tional packets but is instead limited to sending only four 
packets by the maxburs t parameter described above. 
The arrival of the ACKs for packets 37 and 38 allows 
the sender to send packets 43 and 44 followed by 45, re- 
spectively. The sender continues in Congestion Avoid- 
ance with a window of seven. 

Figure 4 shows SACK TCP with three dropped pack- 
ets. SACK TCP's packet sending pattern is similar to 
Reno with three packet drops, until the 12th dup ACK 
for packet 13 is received at the sender. This ACK con- 
tains SACK information indicating a "hole" at packet 
26. Rather than sending packets 29-32 as in Reno, it 
instead sends 29-31 and retransmits 26. 

The handling of pipe is similar to SACK TCP with 
two packet drops. When the third dup ACK for packet 
13 arrives at the sender, p i p e  is initialized to 12. The 
retransmission of packet 26 is accounted for, causing the 
value of p i p e  to become 12 - 9 + 1 + 3 = 7 when the 
first ACK for packet 25 arrives. This ACK corresponds 
to the receiver receiving the retransmitted packet 14, and 
causes the sender to reduce p i p e  by two and send pack- 
ets 32 and 33. 
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Figure 4: Simulations with three dropped packets. 
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The next three ACKs acknowledge packet 25 and 
contain SACK information indicating a hole at packets 
26 and 28. The three ACKs cause the sender to reduce 
p i p e  by three and retransmit packet 28. At that point 
no holes remain to be filled and the sender may send 
packets 34 and 35. The next ACK arrives shortly there- 
after, acknowledges packet 27 and indicates the hole at 
packet 28. It is also a partial ACK, causing p i p e  to 
be decremented by two and allowing the sender to send 
packets 36 and 37. 

The next two ACKs for packet 27 arrive nearly to- 
gether and correspond to the receiver receiving packets 
32 and 33. These ACKs contain SACK information in- 
dicating the hole at packet 28 remains to be filled. As the 
sender has already retransmitted 28 and no other holes 
are indicated in the SACK information, the sender con- 
tinues by sending packets 38 and 39. The next ACK 
received at the sender corresponds to the receiver's re- 
ceipt of the retransmission of packet 28. It acknowl- 
edges packet 33 and brings the sender out of Fast Re- 
covery with a congestion window of 7. The sender con- 
tinues in Congestion Avoidance. 

6.5 Four Packet Losses 

Figure 5 shows Tahoe, Reno, New-Reno, and SACK 
TCP with four dropped packets. As in the previ- 
ous simulations, Tahoe recovers from the packet drops 
with a Slow-Start. Also as in the previous simulation, 
Reno TCP experiences severe performance problems, 
and has to wait for a retransmit timer to recover from 
the dropped packets. New-Reno requires four round- 
trip times to recover and to retransmit the four dropped 
packets, while the SACK TCP sender recovers quickly 
and smoothly. The differences between New-Reno and 
SACK TCP become more pronounced if even more 
packets are dropped from the window of data. The rest 
of this section describes the simulations in Figure 5 in 
more detail. 

The top figure in Figure 5 shows Tahoe TCP with 
four dropped packets. The response to loss on packet 14 
is as described for Tahoe in the single loss case. Once 
again, the transmission of packets 15-28 is forgotten by 
the sender when retransmitting packet 14. 

After retransmitting packet 14 and receiving 11 dup 
ACKs, the sender receives an ACK for packet 23. The 
sender is in Slow-Start, opens its window to 2, and sends 
packets 24 and 25. Once again, Tahoe duplicates effort 
on packet 25. 

The sender next receives two ACKs for packet 25, 
corresponding to receipt of the resent packets 24 and 
25. One of these ACKs is for new data, which increases 
the congestion window to three. The sender then sends 
packets 26-28, again duplicating effort on packet 27. 

The next pair of ACKs, one for new data and one du- 
plicate, correspond to the receiver's receipt of packets 
26 and 27 and increase the sender's congestion window 
to four. The ACK for packet 28 arrives next, increases 
the congestion widow to five, and continues in Slow- 
Start. The sender switches to Congestion Avoidance as 
it sends packet 35 and continues in Congestion Avoid- 
ance as expected. 

For Figure 5 with Rent  TCP, the sender is always 
forced to wait for a retransmit timeout when four pack- 
ets are dropped from a single window of data. 

The sender receives eleven dup ACKs for packet 14, 
retransmits packet 14 on the third and is able to send 
packets 29-31 as a result of receiving the ninth through 
eleventh dup ACKs. The ACK for packet 23 brings the 
sender out of Fast Recovery with a usable window set 
to the congestion window of seven. The third dup ACK, 
corresponding to the receiver's receipt of packets 29-  
31, initiates a second Fast Retransmit and Fast Recov- 
ery, triggering a retransmission of packet 24, reducing 
the congestion window to three, and setting the usable 
window to six. As packets 24-31 are unacknowledged, 
the sender cannot proceed until it receives another ACK. 

The next ACK for packet 25 brings the sender out 
of Fast Recovery again, bringing the congestion win- 
dow and usable window to three. As in the case of three 
drops, the sender is frozen because the six unacknowl- 
edged packets exceeds the congestion window and the 
ACK clock is lost. The sender must await a retransmis- 
sion timer expiration to proceed. 

Once the timer expires, the sender retransmits packet 
26, receives an ACK for packet 27, and transmits 28 and 
29. After a timer expiration, Rent  behaves similarly to 
Tahoe, in that it sometimes retransmits packets (in this 
case, packet 29) that it has already transmitted and that 
have already been cached at the receiver. After receiv- 
ing two ACKs for packet 31 it continues in Congestion 
Avoidance. 

In Figure 5 with New-Rent  TCP, New-Reno's op- 
eration is similar to Rent  with three drops until the re- 
ceipt of the first ACK for packet 23. Upon receiving 
this ACK, the sender immediately retransmits packet 24 
and sets its usable window to the congestion window 
of seven. The three subsequent dup ACKs for packet 
23 inflate the usable window to ten, allowing the sender 
to send packets 32 and 33. The next partial ACK ac- 
knowledges packet 25 and causes the sender to retrans- 
mit packet 26 and reduce its usable window to seven. 
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Figure 5: Simulations with four dropped packets. 
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The sender is unable to send additional data until the 
receipt of the second dup ACKs for packet 25, which al- 
lows the sender to send packet 34 with a usable window 
of nine. The last partial ACK acknowledges packet 27 
and causes the sender to retransmit packet 28 and reduce 
its usable window to seven. The sender is again unable 
to send additional data until the receipt of the dup ACK 
for packet 27, which allows the sender to send packet 35 
with a usable window of eight. 

The ACK for packet 34 brings the sender out of Fast 
Recovery and returns its congestion window to seven. 
Only packet 35 is unacknowledged at this point, so the 
sender should be able to send six additional packets but 
is instead limited to sending only four by the "maxburst" 
parameter described above. The arrival of the ACK for 
packet 35 allows the sender to send packets 40-42. The 
sender continues in Congestion Avoidance with a win- 
dow of seven. 

In Figure 5 with SACK TCP, SACK TCP's packet 
sending pattern is similar to Reno with four packet 
drops, until the 10th dup ACK for packet 13 is received 
at the sender indicating a hole at packet 24. The 1 lth 
dup ACK for packet 13 indicates holes at packets 24 and 
26. The sender retransmits packets 24 and 26 as a result 
of these ACKs. 

The handling of pipe is similar to SACK TCP with 
three packet drops. When the third dup ACK for packet 
13 arrives at the sender, p i p e  is initialized to 12. The 
retransmission of packets 24 and 26 are accounted for, 
causing the value of p i p e  to be 1 2 -  8 + 2 + 1 = 7 when 
the first ACK for packet 23 arrives. This partial ACK, 
corresponding to the receiver receiving the retransmitted 
packet 14, causes the sender to reduce p i p e  by two, 
and also contains SACK information indicating holes 
at packets 24 and 26. The sender proceeds by sending 
packets 30 and 31 because 24 and 26 have already been 
retransmitted. 

The dup ACK for packet 23 corresponds to the re- 
ceiver receiving packet 29 and contains SACK informa- 
tion indicating holes at packets 24, 26 and 28. Again the 
sender notices it has already retransmitted 24 and 26, 
and thus proceeds by retransmitting 28. A short time 
later an ACK for packet 25 arrives, indicating the holes 
at packets 26 and 28. The ACK for packet 27 arrives 
next, indicating the hole at packet 28. Each of these 
ACKs reduces pipe by two, allowing the sender to send 
packets 32-35 because it has already retransmitted 28. 

The next two ACKs for packet 27 arrive nearly to- 
gether and correspond to the receiver receiving packets 
30 and 31. These ACKs contain SACK information in- 
dicating the hole at packet 28 remains to be filled. Once 
again, the sender avoids retransmitting packet 28 and 
continues by sending packets 36 and 37. The next ACK 
received at the sender corresponds to the receiver's re- 

ceipt of the retransmission of packet 28. It acknowl- 
edges packet 31 and brings the sender out of Fast Re- 
covery with a congestion window of 7. The sender con- 
tinues in Congestion Avoidance. 

7 A trace of Reno TCP 

The TCP trace in this section is taken from actual In- 
ternet traffic measurements, but exhibits behavior sim- 
ilar to that in our simulator. It shows the poor perfor- 
mance of Reno without SACK when multiple packets 
are dropped from one window of data. The TCP con- 
nection in this trace repeated has two packets dropped 
from a window of data, and each time is forced to wait 
for a retransmit timeout to recover. 
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Figure 6: A trace of Reno TCP. 

The trace in Figure 6 shows a TCP connection from 
the San Diego Supercomputer Center (SDSC) in San 
Diego, using IRIX-5.2, to Brookhaven National Labo- 
ratory on Long Island, using IRIX-5.1.1. The TCP con- 
nection receives poor throughput because of repeated 
waits for a retransmit timeout. The graph on the right 
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gives a enlargement of a section from the graph on the 
left. The blowup shows a mark for every packet trans- 
mitted, and a "+" for every ACK received. 

The enlargement shows that the data receiver uses a 
delayed-ACK algorithm, usually sending a single ACK 
for every two data packets. As a result, in the Con- 
gestion Avoidance phase the data sender normally sends 
two data packets for every ACK packet received. When 
an ACK packet is received that causes the sender to in- 
crease its congestion window by one packet, then the 
data sender sends three data packets after receiving a 
single ACK packet. As an example, at time 4.24 the 
data sender receives an ACK acknowledging sequence 
number 24065, and the data sender sends three packets, 
for sequence numbers 26113-27648. The last two of the 
three packets are dropped. 

At time 4.48 the data sender receives a third dup ACK 
(in the figure this is printed on top of the second dup 
ACK), executes Fast Retransmit, retransmits one packet, 
and later receives an ACK for that packet. However, 
at this point the sender's congestion window is half of 
its old value, and this is not large enough to permit the 
sender to send the next highest packet. The sender waits 
for a retransmit timer to expire before retransmitting the 
second packet that was dropped from the original win- 
dow of data. This is similar to the Rent behavior illus- 
trated in the simulator. This is an example of a scenario 
where Tahoe might give better performance that Rent. 

The trace was supplied by Vern Paxson, as part of 
work on his Ph.D. thesis. Vern reports that 13% of his 
2299 collected TCP traces show this behavior. That is, 
13% of his TCP traces contain a Fast Retransmit fol- 
lowed by a retransmit timeout, where the packet re- 
transmitted after the retransmit timeout had not been 
previously retransmitted by the TCP sender. This ad- 
ditional condition eliminates incidents from Tahoe or 
Rent traces where the retransmit timeout is required 
simply because a retransmitted packet is itself dropped. 
Thus, 13% of Vern's TCP traces are likely to include 
Rent TCP with multiple packet drops and an unneces- 
sary retransmit timeout. 

8 Future directions for selective ac- 
knowledgments 

The addition of selective acknowledgments allows ad- 
ditional improvements to TCP, in addition to improv- 
ing the congestion control behavior when multiple pack- 
ets are dropped in one window of data. [MM96] ex- 
plores TCP congestion control algorithms for TCP with 
SACK. [BPSK96] shows that SACK and explicit wire- 
less loss notification both result in substantial perfor- 
mance improvements for TCP over lossy links. Sev- 

eral researchers are exploring the use of SACK, coupled 
with the explicit notification of non-congestion-related 
losses, for lossy environments such as satellite links. 

The SACK option will allow the TCP protocol to be 
more intelligent in other ways as well. a As one exam- 
ple, the use of selective acknowledgments will allow the 
sender to make a more intelligent response to the first or 
second dup ACKs. Most TCP implementations, includ- 
ing the ones shown in this paper, simply ignore the first 
or second dup ACKs. With SACK, the sender will know 
if a dup ACK indicates that another packet has in fact 
left the pipe, allowing the sender to send a new packet if 
the receiver' s advertised window permits. Further, with 
SACK the sender will know which packet has left the 
network, allowing the sender to make an informed guess 
about whether this is likely to be the last dup ACK that 
it will receive. 

As a second example, by giving precise information 
on the exact data received by the receiver, and the order 
in which that data was received, the use of SACK would 
allow the sender to infer when it has mistakenly assumed 
that a packet was dropped, and therefore to rescind its 
decision to reduce the congestion window. 

As a third example, by effectively decoupling deci- 
sions of when to send a packet from decisions of which 
packet to send, SACK opens the way to further advances 
of TCP's congestion control algorithms. 

The SACK implementation in our simulator could be 
improved in its robustness to reordered packets during 
Fast Recovery. If, during Fast Recovery, the sender re- 
ceives a SACK packet with a SACK block for packet n, 
and a second SACK block repeating a report for packet 
n - 2, the sender in our implementation might immedi- 
ately retransmit packet n -  1. Probably the sender should 
walt for a few more ACKs all indicating that packet n -  1 
is missing at the receiver, to give robustness against re- 
ordered packets. 

The New-Rent and SACK implementations in our 
simulator use a "maxburst" parameter to limit the po- 
tential burstiness of the sender for the first window of 
packets sent after exiting from Fast Recovery. This is 
mainly an issue when the sender has been prevented 
from sending packets during Fast Recovery because of 
restrictions imposed by the receiver's advertised win- 
dow. An improved SACK implementation would only 
use a "maxburst" parameter immediately after leaving 
Fast Recovery. A comparable mechanism to prevent 
bursts would be, upon exiting Fast Recovery, to set the 
congestion window to the number of packets known to 
be in the pipe, to set ssthresh to what would have been 
the congestion window, and to use Slow-Start to quickly 

8These proposals are not necessarily original with us, but are from 
general discussions in the research eonununity about the use of SACK. 
Unfortunately, we don't have a precise attribution for each proposal. 
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increase the congestion window back up to ssthresh. 

9 Conclusions 

In this paper we have explored the fundamental restric- 
tions imposed by the lack of selective acknowledgments 
in TCP, and have examined a TCP implementation that 
incorporates selective acknowledgments into Reno TCP 
while making minimal changes to TCP's underlying 
congestion control algorithms. We assume that the ad- 
dition of selective acknowledgments to TCP will open 
the way to further developments of the TCP protocol. 
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