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Abstract

We propose a model of TCP performance that cap-
tures the behavior of a diverse set of network paths.
The model uses more parameters than previous ef-
forts, but we show that each feature of the model de-
scribes an effect that is important for at least some
paths. We show that the model is sufficient to de-
scribe the datasets we collected with acceptable ac-
curacy. Finally, we show that the model’s parame-
ters can be estimated using simple, application-level
measurements.

1 Introduction

The goals of this paper are:

• To build a network measurement tool that mea-
sures the characteristics of a network path nec-
essary to predict TCP performance.

• To build a model of TCP behavior that predicts
TCP performance as a function of given network
path characteristics.

These two problems are complementary. Thus our
ultimate goal is to identify a set of parameters that
can be estimated with minimal cost and that charac-
terize the TCP performance of a path with maximal
accuracy.

Our approach is empirical in the sense that we are
looking for a model that works over the range of char-
acteristics that is typical of current networks. Thus,
we are willing to ignore characteristics that might af-
fect TCP performance in theory, but which seem to
have little effect in the current Internet. Conversely,
we are forced to deal with the full diversity of In-
ternet paths and hosts, including some unexpected
phenomena; for example, we find that the growth of
the congestion window during slow start is nondeter-
ministic, at least for some sender-receiver pairs.

1.1 Related Work

A number of models have been proposed that relate
TCP performance to various path characteristics, in-
cluding round trip time (rtt), drop rate, bottleneck
bandwidth, etc. Most of these models focus on the
steady state behavior of long transfers [14] [15] [20]
[21] [28] [22] [30] [29] [25] [11] .

These models focus on congestion avoidance as the
primary steady state behavior of TCP. Recent work
considers cases where buffers (rather than conges-
tion) limit the size of the send window [2][13]. Our
model is less detailed than these, but it includes a
high-level description of three steady-state behav-
iors: congestion avoidance, buffer-limited, and self-
clocking.

One limitation of many previous models is that
they treat the drop rate as an exogenous variable;
that is, a characteristic of the network that is inde-
pendent of the behavior of TCP. One exception is
[24], which recognizes that the dropped packets ob-
served by a TCP transfer are at least partly endoge-
nous; that is, caused by the transfer itself. As an
example, during slow start it is common for the con-
gestion window to exceed the delay-bandwidth prod-
uct of the nework, causing the sender to saturate the
bottleneck link, and possibly causing packets to be
dropped even in the absence of cross traffic. The
exogenous drop rate doesn’t appear in our model ex-
plicity. Instead, we estimate the probability of drop-
ping out of slow start as a function of the current
window size. This probability is determined partly
by the drop rate, but (in most cases) primarily by
the window size and capacity of the path.

Some models of short TCP transfers have been
proposed [9] [23] [4] [34] [33]. These models identify
two sources of variability in transfer times: variabil-
ity in rtts and dropped packets. Our datasets suggest
a third source of variability: nondeterminism in the
growth of the congestion window during slow start.
In some cases, this nondeterminism is the primary
source of variability. We incorporate this behavior
in our model.

Although there are models of short and long trans-
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fers, most work has ignored the transition from slow
start to steady state. For many paths in the current
Internet, this transition happens in the size range
from 10–100KB, which happens to be the size range
of many TCP transfers. In traces of Web downloads
at Boston University, this range contained 15–20 %
of the transfers (based on our analysis of datasets
from [5]). Our datasets are intended to observe this
transition, and we try to describe it in our model.
Of course, the price of realism is complexity. Our

model has more parameters than its predecessors,
and although it provides some insight into TCP per-
formance, it is not amenable to analysis. Also, it is
based on details of a specific path, which requires a
measurement infrastructure. But we show that this
complexity is necessary; that is, each feature of the
model describes an effect that is important for at
least some paths. We also show that the model is
sufficient to describe the behavior of the datasets we
collected, with one exception. Finally, we show that
the network characteristics the model uses can be es-
timated from simple application-level measurements.

1.2 Applications

Why is it useful to predict the performance of TCP
transfers? One reason is to improve user interfaces.
For example, many web browsers display information
on the progress of long transfers and make simple
estimates of the remaining transfer times. In the-
ory, these estimates are useful to users, but in cur-
rent practice they are so innaccurate that many users
have learned to ignore them.
Another reason is to automate selection among

mirror sites. In many cases, data that is available
on the Web or by ftp is available from multiple sites.
Often users are asked to choose one of these sites
based on geographic proximity, without information
about the expected performance of the various paths.
Finally, for distributed applications, these pre-

dictions are useful for both resource selection and
scheduling.
For users, predictions are probably only useful for

transfers that take more than a few seconds. But for
applications it may also be important to characterize
the performance of short transfers. For example, the
performance of a distributed application with fine-
grain interaction would likely depend on the transfer
time (and variability) of small messages.
Because network performance is so variable, it is

usually impossible to predict the duration of a single
transfer with any accuracy. Usually the best we can
do it to provide a range of likely values, or a dis-
tribution of values. Thus, all of our predictions are

stochastic, in the sense that we predict the distribu-
tion of a set of values, and we evaluate the quality
of prediction by the agreement of the predicted and
actual distributions.

Different applications might use these predictions
differently. For a user interface, it might be best to
present the median of the distribution, or a range
that is likely to contain the true value. For resource
selection, it might be appropriate to choose the re-
source with the minimum expected value, or the min-
imum maximal value. Finally, for real-time schedul-
ing, the goal might be to minimize the probability of
missing a deadline.

2 Measurement

There are three general approaches to network mea-
surement. One is to collect packet-level information
somewhere in a network path. Another is to col-
lect kernel-level information at either the sender or
the receiver. The third is to collect information at
the application level. The packet and kernel-level
approaches provide the most detailed information
and the most accurate timings. The advantages of
application-level measurement are that it is easy to
implement, and the resulting tools are portable.

We start at the application level, to see what is
possible with a quick-and-dirty approach, and then
evaluate the limitations we encounter. We find that,
for the most part, the information we need is avail-
able from application-level measurements, and that
the benefits of dropping down a level are probably
not worth the difficulties.

Most Web browsers already contain code to moni-
tor the progress of HTTP transfers. With a few small
changes, we instrumented a version of wget to record
the arrival time of each chunk of data as presented
to the application level. The following pseudocode
shows the structure of the instrumentation:

set the timer

connect (socket)

record elapsed time

write (request)

while (more data) {

select (socket)

record elapsed time

read (buffer)

record amount of data

}

The connect system call returns when the con-
nection is established, so the first elapsed time is the
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Figure 1: Timing charts for 30 HTTP transfers.

time to send a SYN packet and receive a SYN-ACK
packet, which is approximately one rtt.

The select system call returns when data from
the socket is available. The second elapsed time is
the time to send a request and receive the first byte
of the reply, which is also approximately one rtt.

For subsequent reads, the elapsed time depends
on the arrival of packets and the ability of the OS
to present packets to the application layer. In most
cases, the spacing of packets is large enough that
each read corresponds to one packet arrival.

For each transfer, the modified version of wget pro-
duces two vectors: ti is the time in ms when the ith
read started, and si is the total number of bytes read
when the ith read completed. Figure 1 plots 30 trans-
fers of a particular file from a Web server, showing s
versus t.

At the beginning of each transfer, the slow start
mechanism is apparent. Increasing bursts of pack-
ets arrive at regular intervals. The first two packets
arrive after a little more than 50ms, the next four
packets arrive 25ms later, and the next 8 arrive 25ms
after that. We can quickly infer that the rtt is 25ms
and the initial congestion window (icw) is 2. Look-
ing at the number of packets in each burst, which
we call the apparent window size (aws), we can in-
fer that the congestion window at the sender doubles
after each round, from 2 to 4 to 8.

In the next round, we expect the congestion win-
dow to be 16, and in some cases there is a clear break
after the 16th packet, but in many cases there is
no apparent break, and packets arrive continuously
at regular, small intervals. These cases demonstrate
successful TCP self-clocking (see Section 2.1).

A few transfers show evidence of packet loss.
When a packet is dropped, the OS can’t present addi-
tional data to the application layer until the retrans-
mission arrives, so a drop appears as a long horizon-

tal line. When the retransmission arrives, it is made
available along with all the data that arrived in the
interim; this mass “arrival” appears as a long ver-
tical line. This path shows a significant number of
drops, but in most cases they have little effect on
performance. At the top of the figure, there are sev-
eral transfers that suffer long delays because one of
the last packets in the transfer was dropped. In this
case, there are not enough duplicate ACKs to trigger
Fast Retransmission; instead the sender waits for a
timeout, with a significant impact on performance.
This figure is promising, because it suggests that

simple application-level measurements can provide a
lot of information about a network path. Just look-
ing at charts like Figure 1, we can make qualitative
assessments of the following characteristics:

• The size and variability of the rtt.

• The initial and subsequent congestion windows.

• The bottleneck bandwidth.

• The buffer size at the sender.

• The frequency and performance impact of
dropped packets.

• The characteristics of steady-state behavior (see
Section 2.2).

These are exactly the characteristics we need to
predict TCP performance. Timing diagrams for
all of our datasets are available at www.caida.org/
performance/tcp/timing, along with our charac-
terization of each.

2.1 TCP Self-clocking

Conventional wisdom holds that the TCP slow start
mechanism inevitably ends when the congestion win-
dow exceeds the bdp of the path and the sender
induces one or more drops at the bottleneck link.
As motivation for TCP Vegas, Brakmo and Peter-
son claim that TCP “needs to create losses to find
the available bandwidth,” and that, “if the thresh-
old window is set too large, the congestion window
will grow until the available bandwidth is exceeded,
resulting in losses...” [8].
Similar claims are common in discussions of TCP

performance. For example, Hoe writes “... the
sender usually ends up outputting too many packets
too quickly and thus losing multiple packets in the
same window” [16]. Allman and Paxson claim “For
TCP, this estimate is currently made by exponen-
tially increasing the sending rate until experiencing
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packet loss” [1]. Barakat and Altman write “Due to
the fast window increase, [slow start] overloads the
network and causes many losses” [4].
These claims contradict Jacobson and Karels, who

suggested that in steady-state TCP is self-clocking
[17]. The self-clocking mechanism is based on the
observation that if a stream of packets with length L
arrive at a bottleneck link with bandwidth B, they
will leave the bottleneck link with interpacket spac-
ing L/B, and arrive at the receiver with roughly the
same spacing. If the receiver issues ACKs promptly,
the ACKs tend to arrive at the sender with the same
spacing, which induces the sender to transmit at a
rate that approximates B.
When self-clocking works, the transfer induces

minimal contention at the bottleneck link, and so
is unlikely to cause a packet drop by itself (an en-
dogenous drop). If there are no exogenous drops,
the transfer can continue transmitting at rate B in-
definitely. During this time, the congestion window
continues to grow, but only linearly, as the number
of packets per rtt is no longer growing. In this state,
the congestion window may be much larger than the
bdp.
This observation contradicts an assumption that

underlies many models of TCP performance, which
is that the send rate is most often determined by
the congestion window. In many cases, the conges-
tion window is irrelevant, and congestion control is
achieved entirely by the flow control mechanism.
But this leaves us with an empirical question: how

often (and in what circumstances) does the TCP self-
clocking mechanism succeed? Unfortunately, our ob-
servations of self-clocking are limited; in 10 of our
13 datasets, the congestion window never reaches
the bdp, either because it is limited by the sender’s
buffer or because the transfer ends in slow start. But
the other three datasets (Servers 7, 9 and 10) show
the transition from slow start to self-clocking steady
state. For servers 7 and 10, the vast majority of
transfers make the transition with no indication of
dropped packets. Server 9 is harder to character-
ize. About half of the transfers enter a self-clocking
steady state; the other half seem to enter congestion
avoidance.
These observations suggest that in many cases the

self-clocking mechanism is effective, and that con-
cerns about congestion induced by slow start may
be overstated.

2.2 TCP Steady State

Self-clocking is one of three steady-state behaviors
we see in our data sets. Another is the buffer-limited
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Figure 2: Timing charts for 30 HTTP transfers.

state, in which the performance of the transfer is lim-
ited by the buffer size at the sender. The third is con-
gestion avoidance, in which the congestion window
grows linearly until a drop occurs and then halves.
A transfer may enter congestion avoidance when a
dropped packet is detected or when the congestion
window exceeds ssthresh. Congestion avoidance ap-
pears in only a few of our datasets, and only for a
small number of transfers.
Figure 2 shows a set of transfers that are primar-

ily buffer-limited. After 2 rounds of slow start, the
apparent window size reaches 12 packets and stays
there for the next four rounds. Since the window size
doesn’t increase, we infer that the limitation is the
buffer size at the sender, not the congestion window.
In fact, the congestion window can grow indefinitely
during a buffer-limited transfer.

3 The Datasets

Of course, a model of TCP performance should ap-
ply to the widest range of network conditions. To de-
velop our model, we wanted to collect datasets from
network paths with a variety of characteristics.
The ubiquity and accessibility of Web servers

makes them a convenient tool for network measure-
ments. We started with a few sites that gave us ex-
plicit permission to perform experiments. This ap-
proach kept us out of trouble, but it is not clear that
the paths we looked at are representative of the In-
ternet.
Later, we looked for a more diverse collection of

servers. We obtained one day of traces from the
IRCache Project (http://www.ircache.net/) and
looked for frequently-accessed files that were at least
100,000 bytes. Starting with the most popular and
working our way down (skipping one that was obvi-
ously pornographic), we made measurements of the
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Figure 3: Cdf of read sizes for three servers.

first 11 files we were able to download successfully.
We used the HTTP/1.1 Range header to get only the
first 100,000 bytes of data (plus roughly 350 bytes of
header). Two servers ignored the Range header and
sent the whole file.

We chose a file size of 100,000 bytes because we
expected that most transfers of that size would leave
slow start. In fact, we underestimated; in 6 of the
datasets, most transfers never leave slow start.

Each dataset includes 100 transfers, spaced out
with an average of 100 seconds between them (ex-
ponential distribution). Thus, the duration of the
measurements is 3–4 hours. Our intention was to
impose a minimally-noticeable load on the servers.
This attempt seems to have been successful; if any-
one noticed, they didn’t contact us. However, since
we didn’t have permission to make these measure-
ments, we do not identify the servers in this paper,
except by numbers that we assigned arbitrarily.

In general, the only information we have about the
servers is what we can infer from the URL, but the
set appears to include diverse locations, content, and
network characteristics, and may be representative
of servers in the Internet. Our client is located at
Boston University, which is a multi-hosted institition
with relatively low-traffic, high-bandwidth network
connections. So the client end of these paths may
not be typical of Internet users.

The next few sections present the steps we used to
process these datasets and estimate the characteris-
tics of the network paths we observed.

3.1 Packet size

If the application reads data as soon as it is avail-
able, then the receive buffer will usually be empty
and the data read will usually correspond to single
incoming packet. We expect that most applications

can keep up with most network connections, despite
the vagaries of the local scheduler.
To test this claim, we plotted the distribution of

read sizes for each dataset. Figure 3 shows cdfs of
the read sizes for a typical server (Server 1), and
two servers that we chose because they are unusual.
In the typical case, the vast majority of reads are
1448 or 1460 bytes, which correspond to the maxi-
mum segment size (mss) of the path, minus L2 and
L3 headers. We conclude that in most cases, the ap-
plication is reading data fast enough to get a single
packet per read.
For Servers 4 and 2, the most common read size is

1460 bytes, but a significant number of packets are
smaller. For Server 4, more than 30% of the packets
are 1176 bytes. For Server 2, packets span the range
from 300 to 2000 bytes. The reason for this diversity
is that the initial and subsequent congestion windows
on this server are not integer multiples of the mss.
Three of the servers we looked at send a first packet

that is smaller than the rest. The sizes of these ini-
tial packets were 250–350 bytes, which is roughly the
range of sizes for HTTP headers. We conclude that
some servers send HTTP headers as a separate seg-
ment. Most implementations of TCP buffer outgoing
data until a full packet is available or until a timer
expires. So if there is a delay after the server writes
the HTTP header and before it retrieves the data,
the header might be sent as a separate packet. Al-
ternatively, these servers might be flushing the socket
after writing the header, although we don’t know a
reason for doing that.
In general, small packets degrade performance by

increasing the overhead of transmitting headers and
switching packets. However, in the few cases we saw
where servers are sending sub-maximal packets, the
performance impact is probably small.

3.2 Bottleneck bandwidth

The idea of using packet spacing to estimate bottle-
neck bandwidth was proposed by Keshav [18] and has
been implemented in various network measurement
tools [7] [10] [32] [19] [12].
Brakmo and Peterson implemented a version of

TCP Vegas that uses packet-pair bandwidth esti-
mates to choose the value of ssthresh [8]. Similar
techniques have been proposed and evaluated else-
where [16] [3] [1]. Partridge et al. have implemented
a version of FreeBSD that uses packet pair estimates
to accelerate slow start [31].
To implement packet-pair bandwidth estimation

using our measurements, we compute the first dif-
ferences of the vectors t and s, yielding dt, which is
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Figure 4: Bandwidth estimates for three servers,
with and without filtering.

the interpacket spacing, and ds, which contains the
packet sizes. For each packet, we compute the instan-
taneous bandwidth bwi = dsi/dti. If packets leave
the bottleneck link back to back, and their spacing
isn’t perturbed by cross traffic, bw estimates the bot-
tleneck bandwidth of the path.

Previous packet pair measurements have been
based on the assumption that packets often arrive
at the destination with unperturbed packet spac-
ing, and that the correct bottleneck bandwidth is
the mode of the distribution of estimates. Dovrolis
et al. warn that under some traffic conditions, the
global mode is determined by cross traffic and not
bottleneck bandwidth, but they still expect a local
mode at the correct value [12].

For continuous distributions, the notion of a mode
is awkward to define, and methods for identifying
modes tend to be ad hoc. Furthermore, many of
our datasets exhibit no clear modes. Figure 4 (top)
shows distributions of bw estimates from servers
with slow, medium and high bottleneck bandwidths.
Server 7 shows a strong mode around 7 Mbps, but the
other two cases are less promising. Server 8 shows
a mode near 90 Mbps, but the distribution is nearly

uniform from 70 to 100 Mbps. Similarly, the “mode”
for Server 1 spans the range from 0 to 100 Mbps. It
seems impossible to generate a precise bandwidth es-
timate from these distributions.

Fortunately, we have more information to work
with. Looking at timing charts like Figure 1, we
see that interpacket spacing is highly variable, but
there are many linear segments where unperturbed
packets arrive at what appears to be the bottleneck
bandwidth. The processing power of the human eye
makes it seem trivial to identify these parallel line
segments and estimate their slopes. The trick is to
accomplish the same task statistically.

Again, we start by computing, for each chart, the
vector of bandwidth estimates bwi. For each of these
vectors, we look at each subsequence of k bandwidth
estimates, and compute the deviation of the jth sub-
sequence, σj = 1/k

∑j+k

i=j |bwi −m|, where m is the
median of the estimates in the subsequence. The
subsequences with the lowest deviation correspond
to the straightest line segments in the timing chart.

During processing, we keep only the n subse-
quences with the lowest deviation, on the assump-
tion that their interpacket spacing represents the
true bottleneck bandwidth. We filter out the sub-
sequences with higher deviation, on the assumption
that their interpacket spacing has been perturbed.
Figure 4 (top) shows distributions of the estimates
that remain after filtering with k = 8 and n = 100.
In all three cases, the range of the estimates has been
greatly reduced. Furthermore, in all of our datasets,
the mode of the distribution is at or near the median;
thus, we use the median as our bandwidth estimate
and the interquartile distance as an indicator of its
precision. This filtering technique works well with a
range of values for k and n.

For most of our datasets, we don’t know the actual
bottleneck bandwidths of the path, so we can’t evalu-
ate the accuracy of these estimates. But by dividing
our datasets into subsets, we can evaluate their re-
peatability. For each dataset, we generate 5 subsets
with 20 randomly-chosed timing charts in each. We
generate a bandwidth estimate for each subset, and
compute the range and interquartile distance of the
five estimates. Table 3.2 shows the results for all 13
datasets.

In most cases, the range of estimates is small,
which suggests that they are actually measuring the
capacity of a link in the path. However, one weakness
of our technique is that it might be fooled by what
Dovrolis et al. call a “post-narrow capacity mode.”

For Server 6, the range of estimates is quite wide.
On further investigation, we found that this dataset
actually contains three paths with different charac-
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Server Est bw Range Interquart
1 24.908 (24.908, 28.014) 1.147%
2 63.656 (63.656, 86.860) 0.701%
3 89.040 (88.996, 90.051) 0.513%
4 92.710 (91.975, 92.712) 0.269%
5 90.677 (89.628, 91.937) 0.687%
6 63.870 (41.590, 84.870) 11.974%
7 6.982 (6.914, 7.075) 0.212%
8 91.261 (91.261, 92.313) 0.190%
9 0.331 (0.331, 0.513) 5.845%
10 9.376 (9.356, 9.412) 0.126%
11 89.474 (89.444, 90.866) 0.669%
12 22.694 (21.129, 33.811) 15.300%
13 88.775 (88.775, 90.142) 0.386%

Table 1: Bandwidth estimates for each dataset. Est.
bw is based on all 100 timing charts. Range contains
the highest and lowest estimates from each subset
of 20 charts. Interquart is one-half the interquartile
distance, written as a percentage of the estimated
bw.

teristics. Subsequent requests for the same URL are
actually being handled by different servers, due to
changes in DNS information caused by distributed
content delivery mechanisms like those used by Aka-
mai Technologies and Speedera Networks.
The filtering technique we use here can be inte-

grated into existing bandwidth measurement tools.
As future work, we plan to evaluate this technique
more rigorously and compare it with existing tools.

3.3 Congestion windows

The duration of short TCP transfers tends to be a
multiple of the round trip time, where the multiplier
depends on the behavior of the congestion window
at the sender. Thus, in order to predict TCP per-
formance for a given server, we have to measure its
initial and subsequent congestion windows. In order
to do that, we have to be able to identify the end of
each round of packets.
To separate arriving packets into rounds, we look

at the vector of interpacket spacing, ds, and identify
intervals that seem to be due to congestion control
rather than queue delays. To do that, it helps to
know the rtt and the interpacket spacing at the bot-
tleneck. As a coarse estimate of the rtt, we collect
the measured rtts of the SYN-ACK and request-reply
rounds and compute the 5th percentile of their val-
ues. To get the interpacket spacing at the bottle-
neck, we use the bandwidth estimation technique in
the previous section.
For each packet arrival, we compute the inter-
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Figure 5: Window sizes for the first four rounds of
slow start, for 100 HTTP connections.

packet spacing we expect at the bottleneck band-
width, inter = dsi/bbw. Then we compute a loga-
rithmic transformation of the interarrival time, dt′i =
f(dti), scaled so that dt

′

i = 0 if dti = inter and
dt′i = 1 if dti = rtt. This transformation gives us a
criterion for breaking a timing chart into rounds; if
dt′i > 0.5, we consider the ith packet to be the begin-
ning of a new round. During slow start, the breaks
between rounds are obvious and the choice of this
threshold has little effect. As the congestion win-
dow approaches the bdp, it becomes impossible (and
meaningless) to indentify rounds. In the next few
sections, we will limit the discussion to cases where
the breaks between rounds are unambiguous. Later,
we consider ways to characterize steady state behav-
ior.

Figure 5(top) shows a server with the kind of slow
start behavior we expect. The first round is always
2 packets, the second is always 4, and the third is
usually 8, except in a few cases where, it seems,
a packet drop causes TCP to switch to congestion
avoidance. By the fourth round, the congestion win-
dow has reached the bdp, which is about 15 packets,
and it is no longer possible to identify the breaks
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between rounds accurately.
Although this behavior is comprehensible, it is not

typical. In most of our datasets, the behavior of the
congestion windows turns out to be nondeterminis-
tic. Figure 5(bottom) is typical. The initial con-
gestion window is consistently 2524 B, or 1.74 pack-
ets. But the second round is sometimes 3 and some-
times 4 packets. The third round is usually twice
the second, but again, it sometimes falls short by a
packet. The same thing happens in the next round;
the congestion window either doubles or falls short
by a packet, seemingly at random.
This behavior is not an abberration. Of our 13

datasets, 10 show significant nondeterminism start-
ing in the second or third round and continuing in
subsequent rounds. The window sizes for all datasets
are available from www.caida.org/performance/

tcp/wins.
The most likely explanation of this behavior is an

interaction between the delayed ACK mechanism at
the receiver and the growth of the congestion window
at the sender [27]. In steady state, most receivers
send one ACK for every other packet. Other ACKs
are delayed until the next packet arrives or until a
timer expires.
During slow start, many senders increase the con-

gestion window by one mss for each new ACK that
arrives. If the receiver acknowledges every other
packet, the congestion window tends to grow by a
factor of 1.5 per round, rather than the canonical fac-
tor of 2. To avoid this effect, many receivers modify
the delayed ACK mechanism during slow start. In
general, though, the receiver does not know whether
the sender is in slow start and must use heuristics.
In accordance with RFC1122, most receivers use a

timer to bound the time an ACK is delayed. We sus-
pect that this timer is the source of nondeterminism
in window sizes. For our datasets, the receiver was
running Red Hat Linux 7.3 (kernel version 2.4.18-3).
On this system, the duration of the delayed ACK
timer depends on the estimated rtt, with minimum
and maximum values of 40 and 200 ms.

3.4 Round trip time

The performance of short TCP transfers depends on
the distribution of rtts. In general it is trivial to
measure the rtt of a network path. Tools like ping
can generate packets of various types and sizes, and
measure the time until a reply arrives. So it is no
surprise that we can use TCP to estimate rtt, or that
by making repeated measurements we can estimate
the distribution of rtts.
A TCP connection takes at least two rtts, one for
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Figure 6: Distributions of round trip times for the
SYN-ACK round, reply-request round, and next
three data rounds of 100 HTTP connections.

the SYN-ACK round and one for the request-reply
round. If the transfer size is greater than the ini-
tial congestion window (icw), additional data rounds
are required. In our datasets, we can measure the
SYN-ACK and request-reply rounds directly, and af-
ter segmenting the timing chart we can estimate the
rtts of the next three data rounds reliably.
Figure 6 shows distributions of rtt for SYN-ACK,

reply-request round, and data rounds. Server 2 (top)
is typical. The SYN-ACK round sees the shortest
rtts because the packet sizes are minimal and there
is no application-level processing at the server. The
request-reply round takes the longest, and has the
highest variability, because the application-level pro-
cessing at the server is synchronous and may require
disk access.
In two of our datasets, the rtts for the request-

reply round are 2–10 times longer than the net-
work rtt. Server 3 (Figure 6 bottom) is an example.
Clearly for this kind of application, a model of TCP
performance needs to include a model of application-
level performance. After the request-reply round, the
servers we observed seem to keep up with the net-
work. Even in high-bandwidth, low-rtt paths, the
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Figure 7: Distributions of delays for the SYN-ACK
round, for four servers. The axes are transformed so
that a lognormal distribution appears as a straight
line.

subsequent data rounds happen at network speed.

Server 3 is the one exception. After the first 40
packets each transfer is delayed by roughly 50 ms
(a few are shorter and a few are as long as 400
ms). Since the distribution of these delays is noth-
ing like the distribution of rtts, we conclude that
they are caused by the server. In general, though,
our datasets do not distinguish between network and
server delays. Barford and Crovella address this
problem more successfully using network-level traces
[6].

There are two ways to characterize the variability
we see in rtt from one connection to the next. One
is simply to record the empirical cdf of rtts. The
other is to summarize the distribution of rtts using
moments or other summary statistics. In general,
the distribution of network delays is heavily skewed.
Therefore, moments computed from samples do a
poor job of characterizing the shape of the distribu-
tion. In many cases, the distribution of rtts is well-
described by a three-parameter lognormal model; in
other words, the distribution is characterized by a
minimal value, which is the latency of the network
path, and a distribution of delays, which tends to be
normal on a log axis.

For a given set of measured rtti, we estimate the
minimal value, θ = min rtti, and then compute the
distribution of delays, delayi = rtti − θ. By plot-
ting the distribution of delays, we can see whether
the lognormal model is appropriate. Figure 7 shows
the distribution of delays for the SYN-ACK round
for four servers with a range of variability. The axes
have been transformed so that a lognormal distri-
bution appears as a straight line. The actual dis-
tributions are only approximately straight, but they

Server θ ζ σ E[delay]
ms log10 ms log10 ms ms

1 271.564 1.198 0.545 3.842
2 7.351 -0.379 0.424 0.749
3 14.247 -0.114 0.292 0.931
4 75.239 -0.547 0.316 0.608
5 6.648 -0.253 0.126 0.783
6 6.611 0.087 0.746 1.441
7 24.471 0.505 0.703 2.120
8 87.689 -0.414 0.598 0.790
9 37.593 1.452 0.833 6.038
10 50.942 0.009 0.662 1.256
11 227.368 1.218 0.870 4.937
12 239.564 1.960 0.238 7.303
13 50.225 -0.541 0.301 0.609

Table 2: Estimated parameters for the distribution
of rtts in the SYN-ACK round for 13 servers.

are close enough that we think the lognormal model
summarizes them well.
Table 2 shows the estimated parameters for the

SYN-ACK round for each server. The expected value
of delay is computed as E[delay] = exp(ζ + σ2/2).

3.5 Correlations

The duration of short TCP transfers is the sum of
a series of consecutive rtts. Therefore, correlation
between successive rtts will affect the distribution of
transfer times. In general the strength of correlation
depends on the interval between packets. For mod-
eling TCP performance, the relevant interval is the
rtt of the path.
Bolot characterized the relationship between the

rtts of successive packets and found that correlations
diminish as the timescale increases, and disappear
when the interval between packets exceeds 500ms [7].
Moon et al. estimate the autocorrelation function for
series of RTP packets and find strong correlations
that diminish over larger intervals, again becoming
insignificant beyond 500ms [26].
By breaking our observations of slow start into a

series of rtts, we can use our measurements to es-
timate correlations between successive rounds. For
each round, we compute the cdf of all rtts seen during
that round. Then for each timing chart, we find the
rank of each observed rtt in the cdf for its round.
Next we transform the ranks using the inverse of
the normal distribution, and then compute Pearson’s
correlation. Table 3 shows the estimated correlations
for the first four rounds, for each server. Values in
parentheses are statistically insignificant at 90% con-
fidence.
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Server syn-ack req-rep data 1 data 2
req-rep data 1 data 2 data 3

1 0.203 0.180 0.220 0.364
2 (-0.113) (0.126) (0.076) (-0.108)
3 (-0.082) (-0.131) 0.702 0.770
4 (0.096) 0.265 (-0.034) (-0.008)
5 (0.116) (-0.121) (0.088) (0.092)
6 0.671 0.640 0.736 0.713
7 0.396 0.334 0.310 0.326
8 (0.044) (-0.020) (-0.185) (-0.269)
9 0.721 0.682 0.657 0.638
10 0.184 (0.081) (0.157) (-0.144)
11 0.811 0.745 0.874 0.915
12 0.631 0.625 0.875 0.895
13 (-0.040) (0.101) (-0.047) (-0.043)

Table 3: Correlations in rtt for the first four rounds
of TCP connections.

About half of the servers show significant correla-
tions; these correlations are usually consistent from
round to round. For Server 3, the correlation be-
tween data rounds is above 0.7, but the correlations
in the first two rounds are insignificant because the
duration of the req-rep round is limited by the server
and unrelated to network conditions.

Based on prior work, we might expect higher cor-
relations on paths with shorter rtts, but that is not
the case. There is no apparent relationship between
rtt and the degree of correlation. On the other hand,
paths with high variability (see E[delay] in Table 2)
tend to have high correlations. This result makes
sense, since paths with longer delays are more likely
to have queues that persist long enough to induce
correlations over longer timescales.

4 Performance model

Finally we are ready to assemble a model of TCP
performance. The model is based on the following
state transition diagram:

ss0 ss1 ss2 ssn

ca scbl

The states labeled ss0 through ssn are slow start
states; the states labeled ca, sb and sc represent con-
gestion avoidance, server bound, and self-clocking
states. By looking at the timing chart for each trans-
fer, we try to identify the sequence of states the
transfer went through.

For each transfer, we have a series of window sizes,
wi, computed as in Section3.3. All transfers start in
ss0. If w0 is less than 5.0, we move to ss1; a larger
window probably indicates a dropped packet, so we
move to ca.

For subsequent rounds, we compute the ratio of
successive window sizes, wi/wi−1. If this ratio is be-
tween 1.5 and 2.0, we move to the next slow start
state. If it falls short of 1.5, we assume that a
dropped packet caused the congestion window to
shrink and we move to ca. If we see evidence of
a dropped packet (see Section 2), we also move to
ca. Finally, if the window exceeds bdp, we move to
sc.

For each slow start state, we keep track of the dis-
tribution of window sizes in that state.

Once a transfer leaves slow start, we compute the
average throughput between the end of the last round
of slow start and the end of the timing chart. For
each of the states ca, sb and sc, we keep track of the
distribution of throughputs.

Thus, for each timing chart, we compute a series of
states that starts in ss0 and ends in one of ca, sb or
sc. By counting the state transitions in these paths,
we estimate the probability of each state transition.

This model now contains all the information we
need to compute the distribution of transfer times
for a given transfer size. By making a random walk
through the state transition diagram, we can gener-
ate a single estimate of the transfer time. By mak-
ing repeated walks, we can estimate the distribution.
The next section explains this process in more detail.

4.1 Estimating transfer times

In previous sections, we have shown how to use a
set of timing charts to estimate the parameters of a
network path. These parameters are:

• The distribution of rtts for the SYN-ACK
round, the request-reply round, and the first
data round.

• The correlation in rtts for the first two data
rounds.

• The state transition probabilities for n slow start
states plus terminal states ca, sb and sc.

• The distribution of window sizes for each slow
start state.

• The distribution of throughputs for each termi-
nal state.

10
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These parameters are sufficient to estimate the
transfer time for a given transfer size, s. Here is
the algorithm in pseudocode:

1. Set stotal, the total data received, to 0.

2. Choose rtt0 from the distribution of SYN-ACK
rtts and rtt1 from the distribution of request-
replay rtts. Set ttotal, the total elapsed time, to
rtt0 + rtt1.

3. Start in state ss0.

4. Using the state transition probabilities, choose
the next state at random.

5. If the new state is terminal, choose throughput
at random from the distribution of through-
puts. Compute the remaining time trem =
(s − stotal)/throughput and return the sum
trem + ttotal.

6. Choose a window size, win, from the distribu-
tion of window sizes for this state. If stotal +
win > s, the transfer completes during this
round. Return ttotal.

7. Update stotal = stotal + win.

8. Choose rtti from the distribution of data rtts,
and update ttotal = ttotal + rtti.

9. Go to step 4.

By repeating this process, we can estimate the dis-
tribution of transfer times.

5 Validation

To test this model, we divided each dataset randomly
into two sets of 50 transfers. We used the first subset
to estimate the parameters of the model and generate
a distribution of transfer times for a range of sizes.
Then we compare the predicted times with the mea-
sured times from the second subset.
Figure 8 shows the results for four servers we chose

to be representative. For Server 1, most transfers end
in slow start. For some of the file sizes, the distri-
bution of transfer times is multimodal because some
transfers require one or more extra rtts. The model
captures this behavior well. For Server 2, most trans-
fers are buffer-limited, so the transfer time is deter-
mined by the distribution of rtts. Again, the distri-
butions are often multimodal. For Server 9, many
transfers enter congestion avoidance almost imme-
diately, but some are self-clocking. The range of
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Figure 8: Distributions of predicted (thick, gray
lines) and actual transfer times (thin, darker lines).
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transfer times is unusually wide, but the model de-
scribes the distributions reasonably well, in location
and variance if not in shape. For Server 10, most
transfers are self-clocking and the range of trans-
fer times is relatively narrow. Similar figures for
all 13 datasets are available from www.caida.org/

performance/tcp/aptimes.100000.
In two cases, the model is not as successful. As

we discuss in Section 3.4, transfers from Server 3 see
a delay after the first 40 packets. Since this delay
isn’t included in the model, our preditions for longer
transfers are too short. The other problem is Server
6, which is actually not a single server, but three
servers with different performance characteristics, as
we discuss in Section 3.2. Our model combines the
characteristics of the three servers, forming a tri-
modal distribution of rtts. When we convolve this
distribution with itself, it gets smoother, whereas the
real distribution of transfer times is sharply trimodal.
Although the location and variance of the predictions
is right, the shape of the distribution is not.
Although some servers present features that are

not captured by the model, in general the model is
able to capture the behavior of a wide range of server
and network conditions.

5.1 Short measurements

A stronger test of the model is whether, given mea-
surements of short transfers, it can predict the du-
rations of long transfers. To simulate measurements
of shorter transfers, we cut off each timing chart af-
ter the first 50,000 bytes and predict the duration
of 100,000 byte transfers. Again, we divided the
datasets in half, using 50 timing charts to build the
model and testing it on the other 50.
Table 5.1 shows the results, comparing a goodness-

of-fit measure for predictions that use the censored
measurements (right column) with the predictions
from the previous section (left column). A graphi-
cal representation of this data is available from www.

caida.org/performance/tcp/aptimes.50000.
The distance metric is, roughly speaking, the nor-

malized area between the predicted and actual distri-
butions, computed by summing for each percentile,
p, from 1 to 99:

|F−1
p (p)− F−1

a (p)|

F−1
a (p)

where Fp and Fa are the actual and predicted dis-
tibution functions.
For most servers, the predictions based on cen-

sored data are reasonably good, either a little worse
or, by chance, a little better than the predictions

Server Distance Distance
100,000 50,000

1 0.804 1.044
2 0.771 3.475
3 3.490 8.716
4 0.087 0.303
5 2.639 1.871
6 3.682 6.802
7 0.937 0.627
8 0.265 0.459
9 1.938 2.194
10 1.194 2.023
11 1.237 2.657
12 0.782 0.803
13 0.697 2.254

Table 4: Goodness of fit measurements for predicted
transfer times, given measurements truncated after
100,000 or 50,000 bytes.

that use all the data. When the predictions fail it is
because the truncated datasets don’t contain enough
information to classify the steady-state behavior of
the server. For example, Server 2 is buffer-limited,
but in the truncated dataset it never leaves slow
start, so the model predicts transfer times that are
too short.

5.2 Limitations

Application-level measurements are easy to imple-
ment, and tools that use them are portable. The
price of this convenience is that many of the things
we would like to measure, like round trip times and
window sizes, are not directly visible to an applica-
tion. We have shown that it is possible infer this
information with acceptable accuracy, but there are
two parts of the model that would benefit from more
network-level information.
The first is identifying dropped packets. The

heuristics our model uses are successful in the sense
that they identify characteristics in a timing chart
that indicate a dropped packet, but without network-
level traces we can’t assess their accuracy.
The second limitation is the difficulty of distin-

guishing server delays from network delays. For the
HTTP transfers we looked at, most server delays oc-
cur during the request-reply round; after that, the
servers kept up with the network. Other kinds of
TCP transfers, like ftp, may be similar, but there
are other cases where a more detailed model of server
performance may be necessary.
Finally, an aspect of TCP performance that we

left out of the model is the effect of dropped pack-
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ets at the end of a transfer. In our datasets, most
dropped packets were caught by the Fast Retrans-
mit mechanism, so they tended not to impose long
delays, except indirectly by reducing the congestion
window. When a packet is dropped at the end of a
transfer, there may not be enough ACK packets to
trigger Fast Retransmit, and a transfer may suffer a
timeout. In our datasets, these events are rare, but
their effect is significant.

6 Conclusions

We propose a model of TCP performance that cap-
tures the behavior of a diverse set of network paths.
The features of this model are:

• It includes a model of slow start and three com-
mon steady-state behaviors: congestion avoid-
ance, buffer-limited, and self-clocking. Thus, it
is applicable to a wide range of transfer sizes.

• It predicts the entire distribution of transfer
times, rather than just the expected value.

• In accordance with our observations, it treats
the growth of the congestion window during slow
start as a stochastic process.

• Rather than estimate the exogenous drop rate
explicitly, the model incorporates both exoge-
nous and endogenous drops in an array of state
transition probabilities.

• It involves more parameters than previous mod-
els, but we show that these parameters can be
estimated with a reasonable number of simple,
application-level measurements.

• The model includes a novel and promising way
of estimating bottleneck bandwidth based on
packet spacing.

• It is applicable to all current and most conceiv-
able implementations of TCP. In some cases, its
estimated parameters can be used to identify the
implementation of the sender or receiver.

6.1 Future Work

Our experiments show that the parameters of our
model are consistent; when we divide a dataset in
half at random, we can use the parameters from one
half to predict the performance of the other half.
The next step is to make the model predictive; that

is, given a set of past measurements, we would like to
predict future performance. To do that, we have to

address two additional problems. The first is to find
a number of measurements, and their timescale, that
is sufficient to capture the stochastic properties of a
network path. The second is to identify and deal
with the nonstationarity induced by path changes
and other large-timescale variability. Fortunately,
several previous projects have addressed these prob-
lems, including the Network Weather Service (NWS)
[35]. Our next step is to incorporate our model into
the NWS.
In Section 3.2, we propose a way of filtering packet-

train measurements to improve the accuracy of bot-
tleneck bandwidth estimation. We have shown that
this technique improves the repeatability of esti-
mates, but we don’t know about their accuracy. We
plan to incorporate it into existing bandwidth esti-
mation tools for a more rigorous evaluation.
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