
Queueing Theory

Peter Fenwick, July 2002

August 7, 2009

1 Preliminary note on mathematical models

Most of Computer Science has rather little contact with numbers, measurements and physical
reality – it doesn’t matter too much if things get a bit slower, or a bit faster.

Data Communications is not like that. It is full of physical quantities such as propagation veloc-
ities and delays, bit rates, message lengths, and so on. With real-world things like this we often
set up mathematical pictures or “models” to describe and predict behaviour.

Now all three of the 742 lecturers (in 2001 at least) have a background in Physics, and Physics is
largely about finding mathematical models or descriptions of some physical system or process.
This means that we often work in terms of models, sometimes without even realising it, and this
can lead to all sorts of confusions among Computer Science students. The queueing theory of
these notes leads to quite typical mathematical models, with hidden or assumed implications.

Some of these aspects are –

1. A model is never any more than an approximation to reality; people can all to easily assume
that their model is reality and then get into all sorts of problems. Sometimes a simple model
exists only because we can’t handle the mathematics of a more accurate one! This often
applies to queueing theory.

2. When using a model you must know what simplifications and assumptions it makes. For
example a very simple model of the flight of a ball or other projectile says that it is a parabola.
More complex models progressively introduce air resistance, the spin of the ball, the rotation
of the earth and even more, but at increasing complexity.

3. You must recognise the limitations of the model, when it works and when it doesn’t. Know-
ing when it will not predict is at least important as knowing when it will predict.

4. You may find that somebody used to working with models will assume one for a while and
then abruptly abandon it or move to another, when the original one is “clearly inappropri-
ate”. If you understand the model and its limitations as in the earlier points, the change
may be natural. If you do not understand those aspects, it is totally confusing. Be warned –
I have found this can be a very real problem!

5. Sometimes you can use a very simple, crude, model to see if something is feasible. For ex-
ample if a communications protocol must transfer data at 1.5Mbit/s, and “quick and dirty”

1

calculation shows that it can never do better than 1.1Mbit/s then you probably need another
approach. But if that calculation showed that it should work at 1.6 or even 1.4 Mbit/s then
a more careful calculation is probably justified.

2 Queueing Theory – Introduction and Terms

Queueing Theory deals with the situation where customers(people, or other entities) wait in an
ordered line or queue for service from one or more servers. Customers arrive on the queue ac-
cording to some assumed distribution of interarrival times and, after waiting, take some service
time to have the request satisfied. Within the environment of a computing system, queues apply
to buffers in a communication system, the handling of I/O traffic (and especially disk traffic), to
people awaiting access to a terminal, and failure rates and times to repair. In many cases there
will be several cascaded queues,or several interacting queues. Several terms must be specified
before we can discuss a general queueing system –

Source The population source may be finite or infinite. The essential point of a finite population is
that the queue absorbs potential customers as it grows and the arrival rate falls in accordance
with the population not in the queue. For a large population we often assume an infinite
population to simplify the mathematics.

Arrival Process Assume that customers enter the queue at times t0 < t1 < t2 . . . tn The ran-
dom variables τk = tk−tk−1 (for k ≥ 1) are the interarrival times, and are assumed to form a
sequence of independent and identically distributed random variables. The arrival process
is described by the distribution function A of the interarrival time A(t) = P [τ ≤ t].

• If the interarrival time distribution is exponential (ie P [t ≤ τ] = 1 − e − λt, where
λ = 1/τ), the probability of n arrivals in a time interval of length t is e−λt(λt)n/n!,
for n = 0, 1, 2, . . . and the average arrival rate is λ. This corresponds to the important
case of a Poisson distribution where, in a very large population of n customers, the
probability, P , of a particular customer entering the queue within a short time interval
is very small, but there is a reasonable probability (nP) that some customer will arrive.

• Another important distribution is the Erlang-k distribution, defined by

Ek(x) = 1 −
j=0
∑

k−1

(λx)j

j!
e−λx

It applies to a cascade of servers with exponential distribution times, such that a cus-
tomer cannot be started until the previous one has been completely processed.

Service Time Distribution Let sk be the service time required by the kth arriving customer; as-
sume that the sk are independent, identically distributed random variables and that we can
refer to an arbitrary service time as s, distributed as Ws(t) = P [s ≤ t]. The most usual
service-time distribution is exponential, defining a service called random service. If µ is the
average service rate, then Ws(t) = 1 − e−µt.

2

Maximum queueing system capacity In some systems the queue capacity is assumed to be in-
finite; all arriving customers can be accommodated, although the waiting time may be ar-
bitrarily long. In others the queue capacity is zero (the customer is turned away if there is
no free server). In other cases the queue may have a finite capacity, such as a waiting room
with limited seating.

Number of servers The simplest queueing system is the single server system, which can serve
only one customer at a time. A multiserver system has c identical servers and can serve up
to c customers simultaneously.

Queue discipline The queue discipline, or service discipline, defines the rule for selecting the
next customer. The most usual one is “first come first served” (FCFS), also known as “first
in first out” or FIFO. Another one is “random selection for service” (RSS) or “service in
random order” (SIRO). In some circumstances we deal with priority queues (essentially
parallel queues where there is a preferred order of selecting customers for service), or with
preemptive queues in which a new customer can interrupt a customer being served.

Traffic Intensity The traffic intensity ρ is the ratio of the mean service time E[s] to the mean
interarrival time E[τ], for an arrival rate λ and service rate µ; it defines the minimum number
of servers to cope with the arriving traffic.

ρ =
E[s]

E[t]
= λE[s] =

λ

µ

Server utilisation The traffic intensity per server or server utilisation u = ρ/c is the approximate
probability that a server is busy (assuming that traffic is evenly divided among the servers).
Note that some authors interchange ρ and u so that ρ is the server utilisation and u is the
traffic intensity – with single server systems the two have the same value.

A queue may be specified by the Kendall notation, of the form

A/B/c/K/m/Z

Here A specifies the interarrival time distribution, B the service time distribution, c the number
of servers, K the system capacity, m the number in the source, and Z the queue discipline. The
shorter notation A/B/c is often used for no limit on queue size, infinite source, and FIFO queue
discipline. The symbols used for A and B are –

GI General independent interarrival time

G General service time, usually assumed independent

Ek Erlang-k time distribution

M Exponential time distribution (Markov, or random times)

D Deterministic or constant interarrival or service time

3

mean arrival rate λ
mean service rate/server µ
mean interarrival time t = 1/λ
number of servers c
time in queue q
time at server s
average time in queue E[q]
average time at server E[s]

traffic intensity ρ = λE[s] =
λ

µ

per-server utilisation u =
λ

cµ
=

ρ

c

time in system (queue+server) w = q + s

mean time in (queue+server) W = E[w] = E[q] + E[s]

Number in queueing system N = Nq + Ns

Mean number in system L = E[N] = λW = E[Nq] + E[Ns]

Mean number in queue Lq = λWq

Table 1: Important Relations

3 Some Important Relations

In the examples of Table ?? we speak of the combination of (queue+server) as being the “system”,
ie between arrival at the queue and departure after service.

The following sections will derive some of the queueing equations for the more important queue-
ing strategies and present some other results for each case.

4 The Random Arrival Process

This is the simplest queueing model and assumes that an arrival process is a combination of in-
dependent events; the probability of any particular customer arriving is small, but the population
is large and the probability of some customer arriving is finite. This situation is described by the
Poisson distribution; for an arrival rate λ, the probability of n customers arriving in a time t is

Pn[t] =
(λt)n

n!
e−λt

The probability a(t)δt that the interarrival time is between t and t + δt is simply the probabil-
ity of no arrivals in time t, followed by one arrival in the time δt. Thus a(t)δt = P0(t)P1(δt) =
e−λtλδte−λδt. As δt → 0, e−λδt → 1 and a(t)δt = λe−λt. The inter-arrival times follow a nega-
tive exponential distribution. An exponential arrival distribution is usually plausible, especially
with large customer populations. The usual assumption of an exponential service distribution

4

is usually questionable and is often defensible only on the grounds that a solution is otherwise
impossible.

An underlying assumption is that the random arrival model has no memory; each arrival (or
service) is a separate event which is independent of what has happened before. The probability
of its occurrence is independent of the time which that customer was away from the system or
was being serviced. In contrast, for the important case of a constant or deterministic service time
the probability of service completion is mostly zero except for one time since service commenced
– the system has memory and the mathematics is far more complex, if it is indeed possible.

5 Single Server Model M/M/1,

or M/M/1/∞/∞/FIFO

This model assumes exponential interarrival and service time distributions, a single server, and
no limit on queue lengths. For this case the traffic intensity ρ is equal to the server utilisation u.

Consider a queueing system with an arrival rate λ, service rate µ, and a probability Pj(t) of having
j customers (including that being served at time t). We may represent the system by a state
diagram where state j corresponds to having j customers in the system. Movement between the
states is by customers arriving (moving to a “higher” state), or completing service (moving to a
“lower” state). For the present assume that the arrival and service rates, λ and µ, are independent
of the state. Later models do not have this simplification. [A subtle point is that the arrival and
service rates are assumed to be constant (in the steady state) so that a state transition is an independent
event, which does not depend on the time spent in the state; this condition is satisfied only for random
arrivals, or exponentially distributed inter-arrival times.] Note also that ΣPk = 1. The steady state
solution must be averaged over a time which is large compared with both of 1/λ and 1/µ. The
state Sk corresponds to the queueing system containing k customers and occurs with a probability
Pk.

��
��

��
��

��
��

��
��- - - -

� � � �
0 1 2 3

λP0 λP1 λP2 λP3

µP1 µP2 µP3 µP4

Consider first the two states S0 (empty system) and S1 (a single customer). The state moves from
S0 to S1 by a customer arriving, and the change occurs with frequency λP0. Similarly the state
moves from S1 to S0 by the customer completing service, and the change occurs with frequency
µP1. In equilibrium the two must be equal and

λP0 = µP1

Considering the probabilities of entering and leaving S1, we have that

λP0 + µP2 = µP1 + λP1

But as λP0 = µP1, we have λP1 = µP2 and in general λPk = µPk+1. Setting ρ = λ/µ, and solving
in turn for each Pk, we find that

Pk = ρkP0

5

These probabilities must total 1, giving

∞
∑

k=0

ρkP0 = 1

As P0 is the probability that the system is idle and ρ is the probability that the system is busy, it is
clear that P0 = 1 − ρ. Using the sum of a geometric series, we then find that

Pk = (1 − ρ)ρk

The mean number of customers in the system, N , is then

N =
∞
∑

k=0

kPk = (1 − ρ)
∞
∑

k=0

kρk

From which N = ρ
1−ρ (number in system)

As the average number actually being served is ρ, the average num-
ber waiting in the queue is N − ρ,
giving Lq = ρ

1−ρ − ρ

= ρ2

1−ρ (number in queue)

A very important result which is intuitively obvious, but very hard
to prove for the general case, is “Little’s formula”. This states that if
the N customers are in the system for an average time T ,

then N = λT (Little’s formula)

As the number waiting is Lq = ρ2

1−ρ ,

the time spent waiting is Wq =
Lq

λ

= ρ
1−ρ

λ
µ

1
λ

= ρ
1−ρ

1
µ (time in queue)

Average time in the system W = N
λ = ρ

1−ρ
1
λ

multiplying by µ W = 1
µ−λ (time in system)

Some basic results for the M/M/1 queue are shown in Table ??

6 Scaling Effect

An important phenomenon in queueing systems is the “scaling effect”. It may be assumed that if
we have a single computer shared among n users, and replace it with n computers, each of 1/n

6

Some basic relations for the M/M/1 queue are

Prob of n customers in system Pn = (1 − ρ)ρn

Prob of no customers in system P0 = (1 − ρ)

Prob of more than n cust. in system P [N > n] = ρn+1

Avg no. of customers in system E[N] =
ρ

1 − ρ

Average queue length Lq =
ρ2

1 − ρ

Waiting time distribution w(t) = ρ(µ − λ)e−t(µ−λ)dt

Average waiting time Wq =
ρ

1 − ρ

1

µ

Prob. of waiting time > t = ρe−t(µ−λ)dt

Average time in system W = E[w] =
1

(µ − λ)

Variance of number in system =
ρ

(1 − ρ)2

Probability of spending
longer than t in system

= e−t(λ−µ)

r-th percentile of waiting time — πw(r) =
E[s]

1 − ρ
loge

100

100 − r
(r% of customers wait less
than this time)

= E[w] loge
100

100−r

90th percentile πw(90) = 2.303E[w]

95th percentile πw(95) = 2.996E[w]

r-th percentile of time in queue πq(r) = E[w] loge

100ρ

100 − r

=
E[q]

ρ
loge

100ρ

100 − r

90-th percentile of time in queue πq(90) = E[w] loge(10ρ)

95-th percentile of time in queue πq(95) = E[w] loge(20ρ)

Table 2: Important results for the M/M/1 queue

7

the power, that the overall response time is unchanged and we have more conveniently located
computers. This plausible argument is wrong.

Assume that we have old values of λ and µ, and new values of λ/n and µ/n, then the expected
times in queue and times in system are –

Old time in queue E[q]old = ρ
µ

1
1−ρ

New time in queue E[q]new = ρ
µ/n

1
1−ρ

= n ρ
µ

1
1−ρ

Old time in system E[w]old = 1
µ

1
1−ρ

New time in system E[w]new = 1
µ/n

1
1−ρ

= n 1
µ

1
1−ρ

The mean number waiting in the queue and the mean number waiting in the system are un-
changed, but we find that

E[q]new

E[q]old
=

E[w]new

E[w]old
= n

The waiting times have therefore increased in inverse ratio to the computer power. The general
rule is that separate queues to slower servers should be avoided where possible. It is better to
have a single fast server.

7 Example of an M/M/1 situation

An office has one workstation which is used by an average of 10 people per 8-hour day, with the
average time spent at the workstation exponentially distributed, and a mean time of 30 minutes.
Assume an 8-hour day.

The arrival rate is λ = 10 per day = 1/48 per minute, giving a server utilisation of ρ = 30/48 =
0.625; the workstation should therefore be idle for 37.5% of the time.

However the full situation is shown in Figure ??.

Thus, the average waiting time is 50 minutes, but for those who do not get immediate access the
waiting time is 80 minutes! More complete calculations show that one third of the customers must
spend over 90 minutes in the office for 30 minutes of useful work, and 10% must spend over 3
hours.

Providing 2 workstations decreases the average waiting time to 3.25 minutes, with only 10% hav-
ing to wait more than 8.67 minutes.

8 Multiple Server Model M/M/c,

or M/M/c/∞/∞/FIFO

This is the situation of a queue at a bank counter, where there are c servers. If there are fewer than
c customers an arriving customer can be serviced immediately; if more than c customers arrive

8

Probability of more
than 1 customer in
system

P [N ≥ 2] = ρ2 = 0.391

Mean steady-state
number in system

L = E[N] =
ρ

1 − ρ

=
0.625

1 − 0.625
= 1.667

Mean time customer
spends in system

W = E[w] =
1

µ − λ
= 80 minutes

Mean number of cus-
tomers in queue

Lq =
ρ2

1 − ρ
= 1.04

Mean length of non-
empty queue

E[Nq | Nq > 0] =
1

1 − ρ
= 2.67

Mean time in queue E[q] = 50 minutes

Mean time in queue for
those who wait

E[q | q > 0] = E[w] = 80 minutes

Figure 1: Example of M/M/1 Queueing system

they must wait for the next available server. The analysis follows the general approach taken
earlier for the M/M/1 queue.

Assuming that all c servers are identical, with service rate µ, we have as before that λP0 = µP1.
Considering now the transitions between P1 and P2, the “upward” rate is governed entirely by
the arrival statistics and is still λP1, but with two servers active in the P2 state, the “downward”
probability is now doubled; the equation is now λP1 = 2µP2. In general, we have that λPk−1 =
kµPk, for all values of k up to c (while there is no waiting queue and all arrivals can be serviced
immediately). Beyond that all servers are busy, the input queue builds up and the downward rate
remains at cµ.

Solving for Pj gives Pj = 1
j!

(

λ
µ

)j
P0 for j = 0, 1, . . . , c

or, letting ρ = λ/µ Pj = ρj

j! P0 if not all servers are busy

The states when all c servers are busy may be modelled as a queue with arrival rate λ and service
rate cµ. If state c, with no customers waiting but all servers busy, occurs with probability Pc, then
0, 1, 2, 3, . . . customers will be queued with probabilities

Pc,

(

λ

cµ

)

Pc,

(

λ

cµ

)2

Pc,

(

λ

cµ

)3

Pc, . . .

9

and a total probability of
Pc

1 − λ/cµ
= P0

ρc

c!

1

1 − λ/cµ

=
ρc

c!

cµ

cµ − λ
P0

By normalising, we get
1

P0
=

c−1
∑

j=0

ρj

j!
+

ρc

c!

cµ

cµ − λ

If c ≫ ρ, this is nearly the series expansion for the exponential function, giving P0 = e−ρ, and

Pj =
ρj

j!
e−ρ

More usually, c is finite and the approximation is inappropriate, giving

Pj −
ρj/j!
∑

ρi/i!

Summarising the important formulae for the M/M/c system –

Probability of no cus-
tomers in system

1

P0
=

c−1
∑

j=0

ρj

j!
+

ρc

c!

cµ

cµ − λ

Probability of n cus-
tomers in system

Pn = P0
ρn

n!
if n ≤ c

Pn = P0
ρc(λ/cµ)n−c

c!
if n ≥ c

Average no. in queue Lq =
P0λµρc

(c − 1)!(cµ − λ)2

Average no. in system L = Lq + λ/µ

Average waiting time Wq = P0
µρc

(c − 1)!(cµ − λ)2

Average time in system W = Wq + 1/µ

Waiting time distribution Wq(t)dt =
P0cρ

c

c!
e−(cµ−λ)tdt

Prob of waiting longer than t =
P0cρ

c

c!(cµ − λ)
e−(cµ−λ)t

9 Solution of the general queueing equations

In the more general case, λ and µ may depend on the state (for example, in a finite population
λ must decrease as each customer enters the queue and increase as each customer completes
service). The argument follows the line of the earlier cases, but is rather more complex. Remember
though that the earlier restriction still applies – within a given state, the values of λ and µ must
be independent of the time already spent in that state.

10

��
��

��
��

��
��

��
��- - - -

� � � �
0 1 2 3

λ0P0 λ1P1 λ2P2 λ3P3

µ1P1 µ2P2 µ3P3 µ4P4

Consider the equilibrium conditions for state j. State j is entered at rate λj−1Pj−1 by arrivals from
state (j − 1) and at rate µj+1Pj+1 by completion from state (j + 1). State j is left at rate λjPj by
arrivals and at rate µjPj by departures. The general equilibrium condition is then

λj−1Pj−1 − (λj + µj)Pj + µj+1Pj+1 = 0

For an empty queue, λ−1 = µ0 = 0, and

0 = −λ0P0 + µ1P1

P1 =
λ0

µ1
P0

and, in general Pj+1 =
λj + µj

µj+1
Pj −

λj−1

µj+1
Pj−1

whence, substituting
for values of j,

Pj =
λ0λ1 . . . λj−1

µ1µ2 . . . µj
P0

=
λ0

µj

j−1
∏

i=0

λi

µi
P0

As the sum over all j =
1, we get

1

P0
= 1 +

λ0

µ1
+

n
∑

j=2





λ0

µ1

j−1
∏

i=1

λi

µi





The mean queue length
L is then

L =
∑

jPj

=

[

λ0

µ1
+ 2

λ0λ1

µ1µ2
+ 3

λ0λ1λ2

µ1µ2µ3
+ . . .

]

P0

Note that this equation is quite general – it relates the queue sizes to the arrival rates λ and service
rates µ. We can get different queueing models by choosing different behaviours for the λ and µ. In
most cases µ will be independent of the queue size (although the M/M/c queue can regarded as a
case with varying µ), but for a finite population we may find that λ decreases as customers enter
the queue. Similarly, if customers are deterred by a long queue, we may find that λ decreases for
large queues. The special case of multiple servers has been dealt with already, and another one is
described in the next section. Other situations can be handled, provided only that the values of λ
and µ can be calculated.

11

10 The Machine-repair model M/M/1/k/k/FIFO

(or Machine-interference model)

The machine-repair is an extreme example of a finite population queueing system; the entire
population may be in the system and the arrival rate zero. Some examples are –

• a machine-shop with a number of machines which work for a while and then need attention;
the time to failure follows an exponential distribution (surprise!). A single maintenance
worker has the job of repairing the failed machines; the repair time is again exponentially
distributed. (The machine-repair model is an extreme case of a finite-population queueing
system.) This model yields the extremely important concept of “walk time”, which arises
when a service worker (or computer, etc) visits or examines units in sequence. The walk time
is the time to move from one unit to the next and is essentially non-productive or wasted
time.

• a multi-processor computer with a shared memory. The processors work for a time before
they need data from the memory (ie they “fail”) and enter the memory queue for “servic-
ing”. They then resume operation as soon as the shared memory responds.

• a small population of users of a computer, where each user does other work for a while and
then queues for the computer, thus removing one potential computer user.

• a polled or sequential access computer network where users work preparing input and then
need service from the central computer (ie they “fail”) and the computer polls or visits each
in turn.

• A client-server system, where clients make requests of a central server and must wait for the
response before they can proceed.

��
��

��
��

��
��

��
��- - - -

� � � �
0 1 2 3

kλ0P0 (k − 1)λ1P1 (k − 3)λ2P2 (k − 4)λ3P3

µP1 µP2 µP3 µP4

12

For this model we have –

number of machines = k

average time to machine failure = E[o]

average time to repair = E[s]

average service rate µ = 1/E[s]

probability of no machine
needing service

= P0

serviceman utilisation ρ = λ/µ = E[s]/E[o]

failure rate per active machine λ = 1/E[o]

average number of failed machines = L

The failure rate with N ma-
chines under repair (ie. k−N
in service) is

λN = (k − N)λ

Then, putting ρ = λ/µ P1 = kρP0

P2 = k(k − 1)ρ2P0 . . . etc

The total probability is 1 = P0

[

1 + kρ + k(k − 1)ρ2... + k!ρk
]

or P0 =
[

1 + kρ + k(k − 1)ρ2 + . . . + k!ρk
]

−1

The operator utilisation
(probability that the operator
is busy)

= 1 − P0

and the machine utilisation =
1 − P0

kρ

The avg time a machine is broken W =
k

µ(1 − P0)
−

1

λ
Alternatively W = k/λ − E[o] − E[s]

and to calculate P0
1

P0
=

k
∑

n=0

k!

(k − n)!

(

E[s]

E[o]

)n

=
k
∑

n=0

k!

(k − n)!
ρn

In many computer situations a more realistic model is the M/D/1/k/k/FIFO, the machine repair
model with constant service time. Unfortunately this does not seem to be a standard result, if
indeed the results are obtainable at all.

11 More general models

The models given so far are generally simple, but the assumption of exponentially distributed
service time is often inappropriate. For example, some computing situations have a constant

13

the average number
waiting

Lq = E[nq] =
λ2σ2

s + ρ2

2(1 − ρ)
=

λ2E[s2]

2(1 − ρ)

= ρ2 1 + σ2
sµ

2

2(1 − ρ)

the average number in
the system

L = E[N] = Lq + ρ = ρ + ρ2 1 + σ2
sµ

2

2(1 − ρ)
the average time wait-
ing

Wq = E[q] = Lq/λ

average time in non-
empty queue

E[q | q > 0] = Wq/ρ

Standard deviation of
time in queue

σ2
q = E[q2] − W 2

q

average time in system W = E[w] = L/λ

mean-square time in
system

E[w2] = E[q2] +
E[s2]

1 − ρ
variance of time in sys-
tem

σ2
w = E[w2] − W 2

variance of number in
system

σ2
N =

λ2E[s3]

3(1 − ρ)
+

(

λ2E[s]2

2(1 − ρ)

)2

+
λ2(3 − 2ρE[s2])

2(1 − ρ)
+ ρ(1 − ρ)

Table 3: Results for the M/G/1 system

service time (many types of transaction servicing), but others have a much larger “tail” than the
exponential distribution. The analysis is now much more difficult because λ and µ are time and
history dependent and the simple state transition models do not apply. When going to the more
general service distributions it is often impossible to get the exact distribution functions, but it
is possible to get the mean and standard deviations of some of the variables if the first three
moments of the service time are known.

12 The M/G/1 system

For these formulæ shown in Table ?? we introduce the standard deviations of the time in queue,
service time and time in system, denoted by σq, σs and σw. The first equation, for the number
of customers in the queue, is a fundamental equation for all queueing systems, known as the
Pollaczek-Khintchine equation.

Two approximate results for the percentiles of response times are that
p90(w) = E[w] + 1.3σw

and that p95(w) = E[w] + 2σw

14

13 The M/Ek/1 queueing system

An important case of the M/G/1 system is the M/Ek/1 system, for the Erlang-k service time dis-
tribution (a cascade of exponential servers). The earlier equation is repeated, but now writing µ
instead of λ, to emphasise that it describes a service distribution rather than an arrival distribu-
tion. The average service rate is µ.

Ek(x) = 1 −
k−1
∑

j=0

(µx)j

j!
e−µx

For large values of k, the Erlang-k distribution tends towards a rectangular distribution with a
cut-off of 2µ. The moments of the service time, for substitution into the Table ?? results for the
M/G/1 system, are –

second moment E[s2] =
(k + 1)

k
µ2

third moment E[s3] =
(k + 1)(k + 2)

k2
µ3

14 The M/D/1 system

With a constant service time s, we use the M/G/1 model with σs = 0, E[s] = s, E[s2] = s2,
E[s3] = s3, etc. The simplest important result is that the average number waiting is half that
waiting with exponentially distributed service.

Lq =
ρ2

2(1 − ρ)

the total number in the system N =
ρ2

2(1 − ρ)
+ ρ

the mean time in the system W =
(2 − ρ)

2µ(1 − ρ)

std devn of number in system σN =
1

1 − ρ

√

ρ −
3ρ2

2
+

5ρ3

6
−

ρ4

12

Other results can be derived from the M/G/1 equations.

15 The Erlang B and Erlang C formulæ

A telephone exchange normally has a number of incoming lines, served by a number of switches
where any switch can service any one of a group of lines. (There are often about 1000 lines to a
group.) If at least one switch is free the call can be accepted immediately. If all switches are busy
the result depends on the design of the exchange.

15

• If there is no explicit input queue, an incoming call must be abandoned forthwith. The
corresponding queue model is M/M/c/c, ie with c servers and a system capacity of c. The
probability of a call being lost is variously known as Erlang’s lost call formula or the Erlang B
formula, or the first Erlang function and is

PN =
ρN/N !
∑N

i=0
ρi

i!

The average number of occupied servers is

L = ρ(1 − PN)

The equation and terminology arise from a telephone exchange where a limited number of
switches are available to handle incoming calls, and calls are lost if all switches are busy.

• An alternative design allows the incoming call to wait until a server is free; the correspond-
ing model is a M/M/c queue (ie M/M/c/∞, with unlimited capacity). The difference from
the preceding case is that there may now be a queue of waiting calls; the Erlang B function
assumed that calls which were accepted immediately were lost. The probability of a call
having to wait is given by the Erlang C formula

Pn = P0
cρc

c!(c − ρ)

where
1

P0
=

c−1
∑

n=0

ρn

n!
+

cρc

c!(c − ρ

These formulæ have obvious application to many computing applications. For example, given
a multi-user computer with known session statistics, how many user processes should be made
available to ensure that logons are accepted with certain probability?

16 Communications Buffers

If we assume a situation where we have a concentrating node which receives messages from a
number of sources and transmits them over a single aggregate output channel, we clearly have a
situation where queueing is important – the messages are queued in a buffer for transmission.

If there are many data sources (terminals etc) we can probably assume Poisson statistics and an
exponential input distribution. The server situation is slightly more complex – the output channel
sends data at a constant rate (bit/s or byte/s), but if we assume an exponential distribution of
message length, the distribution of server time per message becomes exponential and the M/M/1
queue model will apply.

16

The mean number in the system is N =
ρ

1 − ρ

the average delay W =
N

λ
=

ρ

1 − ρ

1

λ

=
1/µ

1 − ρ
=

1

µ − λ

and the average queue length Lq =
ρ2

1 − ρ

In many cases we have messages of constant length; the M/D/1 queue model is then applicable.
If the message transmission time is µ, then the service time λ = 1/µ. Then,

the mean number in the system N =
ρ

1 − ρ

(

1 −
ρ

2

)

the mean time in the system W =
1/µ

1 − ρ

(

1 −
ρ

2

)

=
1

µ − λ

(

1 −
ρ

2

)

In both cases the change to constant service time yields the old result (M/M/1 queue) with the
multiplier (1 − ρ/2), which is always less than 1.0. The difference is entirely due to the variation
in service times with the M/M/1 queue discipline. There is little change at light loading, but as
the traffic intensity approaches 1, the delay for the M/D/1 queue tends to half the delay for the
M/M/1 queue.

The number in queue and the delay (for µ = 1.00) are -

number & delay
ρ M/M/1 M/D/1

0.1 0.111 0.106
0.2 0.250 0.225
0.3 0.429 0.364
0.4 0.667 0.533
0.5 1.000 0.750
0.6 1.500 1.050
0.7 2.333 1.517
0.8 4.000 2.400
0.9 9.000 4.950

0.95 19.000 9.975
0.99 99.000 49.995

The normal rule of thumb is that an M/M/1 queue becomes overloaded for (ρ > 0.6). The over-
load point for fixed service time (M/D/1 queue) occurs at a rather higher traffic intensity, at about
ρ = 0.7. We can also calculate the number of buffers to ensure an upper limit of message rejection
due to buffer overload.

17

16.1 Example 1

Assume that a multiplexer must accept 100 messages per second and that the user can tolerate a
loss of no more than 10 messages in an 8-hour day. How many buffers must provided to guarantee
this service?

There are 100 × 3600 × 8 = 2, 880, 000 messages in a day, of which no more than 10 may be lost.
The probability of all buffers being full may not exceed 10/2, 880, 000 = 3.5× 10−6. Given that the
probability of there being n customers in the system is ρn+1, we must have that

ρn+1 < 3.5 × 10−6

or (n + 1) loge ρ < −12.57
n > −12.57/ loge ρ − 1

The table of n as a function of ρ, is

ρ Number of
buffers

0.2 7
0.3 10
0.4 13
0.5 18
0.6 24
0.7 35
0.8 56
0.9 119

This is another argument for ensuring that a system is operating well within its apparent capacity.
Not only do delays increase with loading, but so does the probability of buffer overflows. If
the multiplexer operates at only 50% of its nominal load, a pool of at least 20 buffers should be
provided to queue the input messages. (If the average message length is 100 bytes so that the
multiplexer must handle 10,000 bytes per second, it should be rated at 20,000 bytes per second on
its output line and have at least 20 message buffers.) Most actual multiplexers can invoke flow
control procedures to inhibit traffic as overload approaches, but this example indicates just how
much buffering may be needed in high speed data logging with asynchronous inputs.

16.2 Example 2

An 8 channel multiplexer has a nominal capacity of 500 char/s and has an input buffer of 50
characters for each channel. Each channel may tolerate no more than one lost character per day
(8 hours). What is the maximum utilisation of the multiplexer?

Each channel has a nominal capacity of 1,800,000 characters in 8 hours, giving a permitted error
probability of 0.556 × 10−6 and ρ51 < 0.556 × 10−6, whence ρ < 0.75. Increasing the buffer to 100
characters allows ρ to reach 0.87.

18

17 Performance of Sequential access Networks

This analysis applies to all networks in which the right to transmit cycles in a regular manner
among the stations, including token ring and token bus. The machine repair model applies when
customers need only occasional service and the service agent may be idle; this analysis is more
applicable where queues exist at most stations and there is continuous traffic. It also shows an al-
ternative approach to a queueing problem based on physical arguments as much as mathematical
ones.

Consider a network of N nodes or stations, with an average walk time w for data (or control) to
pass from one node to its successor. Thus the time for control to pass around the entire network
is L = N.w, the system walk time. In some cases there may be different walk times for data transfer
and control transfer the choice is usually obvious.

A user who wishes to transmit sees an “access time” from submitting the packet until the packet
is finally sent. It has two components

• the “walk time” as control circulates to the node, and

• the queueing time, behind preceding messages (this includes the transmission time)

The access time may be derived by a simple physical argument. The time for control to circulate
around the network, in the absence of any user traffic, is the walk time, L. A station which receives
a message and wishes to transmit must wait, on average, for half this time before receiving the
right to transmit, or a time of L/2. If, however, the network is busy with a utilization ρ, the right
to transmit can circulate only when the network is idle; the circulation speed is reduced by the
factor (1 − ρ) and the system walk time then becomes

L

2

1

(1 − ρ)

For the queueing delay, note that there are potential queues at each node and that these queues
are served sequentially – the queue for the next node effectively continues on from the tail of the
queue for the current node, and so on. Thus there is really just a single circular queue which
is broken among the nodes and which needs transitions between nodes at appropriate times.
However, messages which arrive at an arbitrary node will on average arrive at the mid-point of
the effective queue and have half the usual waiting time.

19

��
��

A

��
��

B

��
��

C��
��

D

��
��

E

Z
Z

Z
Z

Z~

6

� �

?

Queue B
follows
queue A

�
�
�
�
�
��

?

Queue C
follows
queue B

�

?��6
Queue D follows queue C

C
C
C
C
C
CO

6

Queue E
follows
queue D

�
�

�
�

�>

6

� �
?

Queue A
follows
queue E

The queueing delay is then half that for a single queue. The normal waiting time in a queue is

Wq =
ρ

1 − ρ

1

µ

For a sequential network with an arrival rate of λ per node (Nλ overall) the network utilisation
is ρ = λNm, where m is the average message service time. For an exponential distribution of
message lengths, we have that m = 1/µ, giving

ρ =
λN

µ

then Wq =
Nλ

µ2(1 − ρ)

Thus E(D) =
L

2

1

1 − ρ
+

Nλ

2µ2(1 − ρ)

=
n

2

1

(1 − ρ)

(

w +
λ

µ2

)

Writing ρ in terms of λ and µ, the expected delay is

E(D) =
Nµ

2(µ − Nλ)

(

w +
λ

µ2

)

For packets of constant size, the queueing delay is halved and the ex-
pected delay is

E(D) =
Nµ

2(µ − Nλ)

(

w +
λ

2µ2

)

20

The delay is therefore dependent on the difference of the arrival and service rates (equivalent to
the term 1/(1 − ρ) and on the relative values of the walk time between nodes (w) and the time
between message arrivals (1/µ), weighted by the ratio of service time to arrival time. Given that
λ and µ are fixed by the desired user traffic and the network transmission speed, it is clear that w
must be as small as possible for good performance.

More exact models give slightly different results. For each station having a packet arrival rate λ,
the same frame statistics (the second moment of frame length = m2 and the same walk time w,
one model gives the average access delay as

E(D) =
tc
2

(

1 −
ρ

N

)

+
Nλm2

2(1 − ρ)

=
L

2

(1 − ρ/N)

1 − ρ
+

Nλm2

2(1 − ρ)

In these formulæ m2 is the second moment of the frame length and ρ = Nλm is the network util-
isation. The first term is related to the circulation of the transmission right and for low utilisation
is just half the system walk time. The numerator is related to the utilisation of each node, and the
denominator to the overall traffic intensity. The second term is in fact the average waiting time
for an M/G/1 queue.

Another analysis gives a similar result, but with (1+ρ/N) in the numerator. As the simple analysis
presented here gives the average of these two “more exact” results, it seems to be just as good as
either of the “better” approaches.

As both terms are dominated by the factor 1/(1− ρ) we must minimise the system walk time L to
ensure performance at high utilizations. In most cases this means minimising the token latency
at each node. We will also see that the token ring is much better in this regard than the token bus,
simply because of the token-passing overheads.

21

