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Random variables

A random variable X is a function that assigns a
real-number value to each outcome of an experiment

Usually described by a probability density function f(x)
and a distribution function F (x) =

∫ x

−∞ f(u)du

f(x) tells how likely it is that X ’s value will be near x.
Note that f(x) can be > 1.

X has an exponential distribution with parameter λ
if it has

Density function f(x) = λe−λ x; x ≥ 0
Distribution function F (x) = 1− e−λ x; x ≥ 0
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Probabilities: 6-sided die, exponential
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Renewal Processes

Consider a sequence of events which happen first at time
T0 = 0, then keep happening at random intervals

The events occur at times Tn(n = 0, 1, ...; T0 = 0), and
Sn = Tn − Tn−1(n = 1, 2, ...) are the times between them,
often called renewal periods

If the random variables Sn are independent and identically
distributed (iid), then the sequence {Tn;n = 0, 1, ...} is a
renewal process

Renewal processes are useful for modelling streams of
packets on a wire, jobs to be processed, etc.

A renewal process is completely characterised by the
common distribution function, F (x), or the density function,
f(x) (if it exists), of its renewal periods
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Poisson processes (1)

A renewal process with exponentially distributed renewal
periods S, i.e. F (x) = 1− e−λ x, is called a Poisson process

Poisson processes are often used in modelling. They derive
several useful properties from the exponential distribution,
as follows ..
Lack of memory:

P (S ≤ t + ∆t | S > t) = P (S ≤ t); s, t ≥ 0
Knowing that the process has been running for time t doesn’t
affect its distribution for the remaining time (i.e. the time until
the next event)
The process forgets its past
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Poisson processes (2)

Uniform arrival rate:
P (S ≤ t + ∆t | S > t) ≈ λ∆t, for small ∆t
With a Poisson process, arrivals occur at an average rate λ

This implies PASTA:
Poisson Arrivals See Time Averages

A Poisson arrival acts as a random observer and sees the
queue in equilibrium

Superposition:
If A1, A2, ...An are independent Poisson processes with rates
λ1, λ2, ...λn, their superposition is also a Poisson process, with
rate λ1 + λ2... + λn

A Poisson process can also be decomposed into a set of
Poisson processes
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Poisson distribution

For a Poisson process, i.e. exponential distribution of
interarrival times (renewal periods):

Probability that n arrivals occur in interval of length t is
Pn(t) = (λt)n

n! e−λt

This formula is the Poisson distribution with parameter λ t, for
which Mean = λt, and V ar = λt

λ is the mean rate, i.e. λ events occur per unit time

More generally . . .
Mean of random variable X:

Mean(X) = E[X] =
∫∞
−∞ x f(x)dx

Variance of X: V ar(X) = σ2 = E[(X −E[X])2]
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Kendall notation of a queuing problem

ArrDist/ServDist/Servers/Buffers/Population/ServDisc

A queuing problem can be described by its
arrival distribution (arrival times of service requests)
service distribution (time server takes to service a request)
number of available servers
buffers (total number of possible service requests in the
system)
population (total number of possible requests)
service discipline (in which order do we deal with requests?)

We often only give first three, e.g. M/M/1
other parameters take default values, i.e. ∞/∞/FIFO
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Arrival time distributions

Need to model the arrival process (customers coming
through bank door, packets arriving at router)

Some processes have highly predictable arrival processes
(e.g., a plane lands and 100 passengers get off), others
have a less deterministic nature (e.g., customers arriving at
a bank)

Arrival processes are renewal processes

Can often model arrivals using statistical distributions
e.g. (Kendall notation in parentheses),Exponential (M ),
deterministic (D), Erlang with parameter k (Ek)

The thing we’re usually interested in is the interarrival time;
average arrival rate (arrivals per time unit) is denoted as λ
where applicable
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Deterministic arrival distributions (D)

Very simple: All inter-arrival times τ are constant!

τ = 1/λ
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Exponential arrival distributions (M )

Exponential arrival distributions are perhaps the most
common apart from deterministic ones

Approximately exponentially distributed, e.g. the time until
you next meet a friend you haven’t heard from in 2 years,
the time the next customer walks through the door at your
local supermarket, etc.

Exponential distribution: P (S ≤ t) =
∫ t

0
λ e−λudu

S = time between two arrivals (random variable)

Probability next arrival occurs in t seconds is P (S ≤ t).

Mean of S is 1/λ, standard deviation is also 1/λ.
(Remember: λ is the mean arrival rate)

Memoryless
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Erlang arrival distributions (Ek)

Interarrival time probability given by

P (S ≤ t) =

∫ t

0

λ
(λu)k−1

(k − 1)!
e−λudu

Values ≥ 0, two parameters: Mean = 1/λ, shape k,
– often more realistic than plain exponential

Applies to a cascade of servers with exponential distribution
times, such that a customer can’t be started until the
previous one has been completely processed

When k is integer, Erlang distribution is sum of k
independent exponential distributions (gamma function)

Note that the exponential distribution results for k = 1
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Exponential and Erlang plots
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Service time distributions

Service time: time that a server needs to deal with a service
request. For example, the time it takes to re-fuel a car or the
time it takes to route a packet at a router

Average service time is often denoted as 1/µ, where µ is the
average service rate (number of requests serviced per time
unit) per server

Can model these service times via distributions – basically
the same as for arrival time distributions.
Just use µ instead of λ
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Number of servers

The number of available servers, n is obviously a very
important parameter of a queuing system, e.g., number of
pumps at the service station

A queuing system can have either a separate queue for
each server, or a common queue for all servers

Kendall notation says nothing about common or separate
queues

Total service rate is nµ
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Buffer size

The maximum number of service requests that can be in the
system (queued or being serviced) at any one time

This number may be unlimited (the queue just gets longer),
in which case the Kendall notation omits it . . .
. . . or limited (e.g., limited number of buffers in a packet
switch)

Note that if λ < nµ, i.e. arrival rate < service rate,
we can often assume – even for relatively small actual
population sizes – that the buffer size is unlimited
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Population size

Total number of possible service requests at any instant in
time, may be limited or unlimited

Example: Computer Science has N students. The
maximum number of students needing a lab computer at
any one time is therefore limited to N. They are not going to
be able to do their assignments any faster if we give them
more than N lab computers to work on

Can often assume that the number is unlimited. For
example, assume that we have an unlimited number of CS
students as it is unlikely that all of them will ever turn up in
the lab at once

Default in Kendall notation is unlimited (value is omitted)
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Queuing/service discipline

How do we process requests in the queue?

First-come-first-served (FCFS)?

Last-come-first-served (LCFS)?

Request-dependent, e.g., quick/easy jobs first/last?

According to request priority?

Default in Kendall notation is FCFS (value is omitted in this
case)
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Kendall notation again

So what’s an M/D/2/12/200/FCFS queue then?

Answer:
exponentially distributed interarrival times (Markov)
fixed service time (Deterministic)
two servers
up to 10 places in the queue (plus two being served)
at most 200 possible requests at any one time, i.e., not all
requests may make the queue
requests that arrive first get serviced first (FCFS)
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Queue Occupation Rate, some simple insights

Consider a G/G/n queue (with G being any possible
distribution)

If λ is the arrival rate and µ is the service rate of a single
server, then

The queue will grow to infinity if λ > nµ

The queue will also grow to infinity if λ = nµ (random walk),
except if it’s a D/D/n queue
The quantity ρ = λ/nµ is called the “occupation rate.” It states
the average portion of time that each server is busy

Reference: Introduction to Operations Research,
Hillier & Lieberman, McGraw Hill
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Little’s formula

Sometimes referred to as Little’s law or result
States that the expected number of requests in the queuing
system N (in queue and being processed) is given by

N = λT

where T is the expected time that a request will spend in the
system

Alternatively T = N/λ or
time in system = number in system/av interarrival time
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