COMPSCI 742 S2 C Assignment 2

Department of Computer Science The University of Auckland Due Sunday 18 September 05, 11:59 pm

This assignment will contribute 1/3 of your coursework mark, and 10% to your overall course mark.

Submit your assignment via the DropBox, either in PDF (preferred), or in MS Word format. Assignments in other format will not be accepted or marked!

TCP flavours, Email Queue statistics, M/M/k/n queue simulation

1. TCP Flavours

Over the years, a number of different *flavours* of TCP have appeared. They include *Tahoe* (1988), *Reno* (1990), *New-Reno* (1995), *SACK* (1996-98) and *Vegas*. *Vegas* has not been widely implemented; the others were discussed in FS96, i.e.

Simulation-based comparisons of Tahoe, Reno and SACK TCP, Kevin Fall, Sally Floyd, CACM, vol 26, pp5-21, 1996.

That paper is available on the 742 *resources* page.

- (a) Read the FS96 paper, then write short summaries (about two paragraphs) summarising *Tahoe*, *Reno* and *New-Reno*. Your summaries should make it clear which of the algorithms explained in RFC 2581 are implemented in each flavour. [6 marks]
- (b) Find some information (by searching the web) about the *Vegas* flavour. Write a short summary (again, about two paragraphs) of it, and comment on why it has not been widely implemented. [2 marks]

2. Email queue statistics

The University's email system runs several servers, with load-sharing arrangements to spread the incoming email messages across four servers. The servers accept incoming email messages, and send them to a suitable email forwarder.

On the 742 Assignments page you will find a file called a2.log. It's a log file with one record for each arriving email message to one of the servers. Each record begins with three fields:

- Inter-arrival time (i.e. time since previous message), seconds
- Arrival time, Unix seconds
- Sender address

The sender address is UA for messages originating inside the University, and '*' for messages originating outside.

[8 marks]

[6 marks]

- (a) Produce three plots (on the same graph) showing the probability distribution for all the records, the UA records, and the '*' records. You'll need to count the number of records for each interarrival time so as to produce a histogram. Then you can divide each count by the total number of records to convert them to probability estimates. [3 marks]
- (b) Assuming that the interarrival time distribution is exponential (f(x) = λe^{-λx}), make an estimate of λ for the '*' records interarrival times. Plot your exponential function on the same scales as your '*' probability distribution so as to demonstrate how well it fits the data.
 [3 marks]

3. M/M/k/n queue simulation

[1 mark]

On the 742 Assignments page you will find a file called mmkn.tcl. It's an ns script, providing a simple simulation of an M/M/k/n queueing system.

- (a) Consider an M/M/1/20 system with $\lambda = 2.3$ and $\mu = 3.0$ Using the formulae from our lecture notes, calculate the average number of requests in the system, and the average length of its non-empty queue. [2 marks]
- (b) Run the mmkn script using the parameter values above. Compare its 'average number of requests in the system' with the one you calculated above. Comment on any difference you observe. [1 mark]
- (c) Modify the mmkn.tcl script to compute the average length of its non-empty queue. Compare it with the one you calculated above. [3 marks]

2