
COMPSCI 742 S2 C Assignment 1
Department of Computer Science

The University of Auckland

Due Sunday 21 August 05, 11:59 pm

This assignment will contribute 1/3 of your coursework mark,
and 10% to your overall course mark.

Submit your assignment via the DropBox, either in PDF (preferred), or in MS Word format.
Assignments in other format willnotbe accepted or marked!

The problem: testing available capacity

Every link along an Internet path has a ‘bottleneck’ link, i.e. one that sets an upper limit on the data rate
between sender and receiver. For example, we often (used to)have campus networks using 100 Mb/s
Ethernet, connected via wide-area links using 10 Mb/s Ethernet. In this case we call the link with the
smallest carrying capacity thenarrow link.

If the bottleneck link is carrying other traffic, we describethat traffic ascrosstraffic; it will use some
of the link’s capacity. We call the remaining link capacity its availablecapacity. We call a link which
becomes a bottleneck because it carries cross traffic atight link.

Researchers who have large (Terabyte) files to transfer often want to know the available capacity for the
path between two sites, so that they can estimate how long it will take to transfer a file. One way to
measure available capacity is to transfer a large test file, and observe the transfer rate for that file. If that
file transfer uses all of the available capacity, its transfer rate will give us a good estimate of available
capacity. Otherwise, we can run multiple transfers until wedo use all the available capacity.Iperf is a
performance measurement tool that uses this approach.

Now consider how TCP behaves. A single TCP connection will increase its congestion window until
it senses a packet loss; that packet loss will usually be caused by lack of space in router buffers. After
that TCP will try to keep its sending rate (congestion window) close to the maximum rate. Therefore, a
single TCP connection should be able to use all the bandwidth, so there’s no reason to run multiple TCP
transfers.

Again, if we do run multiple TCP transfers, they should – after a while – adjust their congestion windows
so that they share the available bandwidth; that’s what we mean when we say that TCP isnetwork friendly.

For this assignment, you are to usensto explore the behaviour of multiple TCP connections on a bottle-
neck link.

Start by downloading the tcl scripts from the 742 ’Assignments’ web page. You can runnson
hydra.cs.auckland.ac.nz, as explained in the lecture handout onns.

CONTINUED

COMPSCI 742 S2 C 2 Assignment 1

Note thatnsprovides a simplified, idealised version of TCP. In particular, Agent/TCP/Reno:

• Doesn’t send the opening SYN or SYN ACK packets

• Always sends the same size packets

• Usespacketsas its units for sequence numbers, and for it’s congestion window

• Only has packet losses for the data packets being sent. They don’t occur for the returning ACK
packets

Nonetheless,ns’s TCP is realistic enough to clearly demonstrate how TCP behaves in most circum-
stances.

1. Familiarise yourself with ns [5 marks]
For this you’ll use theack clock.tcl script – see the notes on ‘Sliding Window’ at the end of
this assignment handout.

(a) Runack clock.tcl using the parameter values for Animation 1 in the ‘Sliding Window’
notes. What doesnam’s ‘re-layout’ button do? What happens if you increase the bottleneck
link speed to 0.5 Mb/s? [2 marks]

Re-layout button draws network using ’ball and spring’ algorithm. [Ca speci-
fies attraction in springs (links),Cr specifies repulsion between balls (nodes)]

[1 mark]
Higher link speed allows higher throughput, smaller queue sizes.

[1 mark]

(b) Runack clock.tcl again, using the parameter values for Animation 2. Why can’tyou
see (on thenam display) any packets on the link between nodes 1 and 2? [1 mark]

The link speed (155 Mb/s) is now much higher than the edge links, hence the
packet size is too small to be visible. You can see them if you slow the animation,
e.g. by setting Step: to about10µs. [1 mark]

(c) Runack clock.tcl again, using the parameter values for Animation 3. What doesnam’s
‘Edit/View’ button do? How does ‘Edit/View’ interact with ‘Layout’ [2 marks]

Pressing Edit/View switches to ’edit’ mode, allowing you tomanually edit the
layout, i.e. move nodes with the mouse. Clicking the button again switches back
to ’view’ mode. [1 mark]
Re-layout recomputes layout whenever you press it. [1 mark]
In View mode you can click on links to produce plots of packetsvs time in small
strips below the main display. Also, you can click on a node tospecify filters,
i.e. whether packets with that node as source or destinationare displayed.

CONTINUED

COMPSCI 742 S2 C 3 Assignment 1

2. Understand the a1-net.tcl script [5 marks]

(a) The script sets the following values: runnam = 1, ntcps = 3, simtime = 10, qsize=9. Run
ns, look at the nam display, adjust its layout so that the network structure becomes clear, then
start it running. What does it do? [3 marks]

Sets up a link from R1 to R2, andn tcp TCP links from s(j) to d(j) via R1-R2.
[1 mark]

Starts first TCP session at 0.1s, and the other TCP streams at 0.5s intervals, after
that. FTP data sources send through each TCP. [1 mark]
A record is written to filedf nameevery interval seconds; it contains the time
(seconds), and the ackvalue for each of the TCPs. [1 mark]

(b) The script starts off with a set of parameter values – you can edit the script to change them.
What do the runnam, ntcps, simtime, q size parameters do? [2 marks]

run nam= 1 to invoke nam at end of ns run
n tcps= number of TCP streams to use
sim time= number of seconds simulated time
q size= queue size for R1-R2 link (i.e. at R1 node)

CONTINUED

COMPSCI 742 S2 C 4 Assignment 1

3. Running multiple TCP connections [5 marks]

(a) Edit the script so as to prevent it generating anout.nam file (the file is too big to keep
playing with, and we no longer need to see how the simulation is proceeding).

Set ntcps=1, 2, 5, 10; run for each to get tcp-run-n.dat files. Makeplots of the 5 TCPs
in tcp-run-5.dat (using gnuplot, excel, etc.) Make a table showing total number of packets
transferred for 1, 2, 5, 10 running TCPs after 20s.

Plot of packets transferred vs time, i.e. the data values from the tcp-run=5.dat
file; should look something like this –

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20

"tcp-run-5.dat" u 1:2
"" u 1:3
"" u 1:4
"" u 1:5
"" u 1:6

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20

"tcp-run-5.dat" u 1:2
"" u 1:3
"" u 1:4
"" u 1:5
"" u 1:6

If you plot the whole 20s, you can see that the plot becomes stable, i.e. the
TCPs reach a balance against each other after about 7s. [Thatgenerally seems to
happen with two or three of them running at about the same rate, and the others
running at a slower rate.Why don’t they all settle at thesamerate?] [2 marks]

Total number of packets transferred: 8710, 17010, 22568, 20420 for 1, 2, 5 and
10 TCPs. [1 mark](+/- about 60 is OK, provided the relative values are
reasonable)

Comments on the traces: [2 marks](1 mark for each sensible comment on the
plots)

CONTINUED

COMPSCI 742 S2 C 5 Assignment 1

4. Plot the total throughput for n TCP connections [5 marks]

(a) Modify the script to compute total throughput. Verify that the totals are computed and written
to the data file correctly. Plot the total number of bytes vs time when 1, 2, 5, 10 TCPs are
running.

Modifying the script: need to add code to thew data proc to sum the packet
counts for the individual TCPs, and write it to the output data file. [2 marks](1
for the code, 1 for demonstrating that the sums are correct, e.g. by printing a few
lines of the file with total and individual counts on each line. Possible 1 bonus
mark for ignoring -1 counts for not-yet-started TCPs!)

Plot should show that throughput increases for 1, 2, then 5 TCPs, but 10 TCPs
have lower throughput than 5. [1 mark](Throughput can be in packets or bytes
(= packets× 1000))

Comment on the traces: [2 marks](1 mark for each comment, max 2. 1 bonus
mark for plots showing transfer rates for the individual TCPs [but total mark is
limited to 20!])

5. (OPTIONAL) Improve the simulation [0 marks]

(a) Can you find a set of ns parameters that allows a single TCP to build up to almost completely
filling the bottleneck link? If you can, how does it behave as the number of TCP connections
increases?

One can achieve this in several ways:

• Decrease the link speed – e.g. to around 2 Mb/s

• Increase the R1 queue size – e.g. qsize = 60, also increase the transmit
window size (window?) to match.
This is more like a real-world approach, where we could tune the parame-
ters of our TCP stack.

CONTINUED

COMPSCI 742 S2 C 6 Assignment 1

Sliding Window: ackclock.tcl

http://www.isi.edu/cgi-bin/ns-edu/view db.pl#ack clock.tcl
By F.Cela & A.Goller on 02/16/01
http://www.ce.chalmers.se/̃ fcela/tcp-tour.html

TCP implements an algorithm for flow control called Sliding Window; the reader will surely be familiar
with this kind of algorithms which are used for flow control atthe data link control layer of some protocols
as well. The “window” is the maximum amount of data we can sendwithout having to wait for ACKs.
In summary, the operation of the algorithm is as follows:

• Transmit all the new segments in the window

• Wait for acknowledgement/s to come (several packets can be acknowledged in the same ACK)

• Slide the window to the indicated position and set the windowsize to the value advertised in the
acknowledgement.

When we wait for an acknowledgement to a packet for some time and it has not arrived yet, the packet
is retransmitted. When the acknowledgement arrives, it causes the window to be repositioned and the
transmission continues from the packet following the one transmitted last.

TCP achieves following objectives by using the sliding window algorithm:

• The ACK policy makes the protocol self-clocking. Therefore, it dynamically adapts its transmis-
sion speed to both the speed of the network and the speed of thepeer sending acknowledgements.
If the conditions change in the network, so does the sender’stransmission rate.

• The “credit” given by the window size makes possible an efficient use of the link.

• The receiver can regulate the information arriving rate by adjusting the sender’s transmission win-
dow.

CONTINUED

COMPSCI 742 S2 C 7 Assignment 1

Animation 1: shows the first two issues explained above.
script used: ackclock.tcl

Parameters for this animation:ns ack clock.tcl 0.2Mb 40ms 100 20 2

Description: Links n0-n1 and n2-n3 have 1Mbit/s bandwidth and 10ms delay. Link n1-n2 has 0.2Mbit/s
bandwidth, 40ms delay. Queue size at n0 is 100 segments and TCP uses a 20-segment window size.
For the sake of simplicity, the TCP in n0 models the first TCP specification which sends as much data
as the send window allows at the beginning of the transmission. Current TCP implementations use a
less aggressive start (slow-start). After the connection establishment, we start sending as much data as
the send window allows us. Note how the queue grows fast at thebeginning of the bottleneck. Around
t=3.8 we have sent the first 20 segments that the window allowsus, then we run out of window and we
have to wait for the first acknowledgement to open the window again. From now on, arrival of each new
acknowledgement triggers the transmission of a new segment, the TCP source adapts to the effective
capacity of the path, and and we can see how the queue at the bottleneck remains stable.

Animation 2: shows self-clocking

Self-clocking is an interesting property of TCP that allowsautomatic adjustment of the transmission
speed to the bandwidth and delay of the path. Therefore, it makes possible for TCP to operate over links
with very different speeds. As an example, we can make the link 1-2 in the previous animation more than
700 times faster and TCP will still work without any problems.
script used: ackclock.tcl

Parameters for this animation:ns ack clock.tcl 155Mb 2ms 100 20 1

Description: Links n0-n1 and n2-n3 are 1Mbit/s bandwidth, 10ms delay. Link n1-n2 is 155Mbit/s, 2ms
delay. Queue size at n0 is 100 segments and TCP uses a 20-segment window size.

Animation 3: shows TCP works well even if we make the bottleneck slower. However in this case we
discover the effect of the “data in transit” limitation discussed in (2): as long as the window size is smaller
than the actual size of the path we send bursts of data rather than a continuous flow. Therefore, we are
not able to use the link efficiently.
script used: ackclock.tcl

Parameters for this animation:ns ackclock.tcl 64kb 100ms 100 20 1

Description: Links n0-n1 and n2-n3 are 1Mbit/s bandwidth, 10ms delay. Link n1-n2 is 64kbit/s, 100ms
delay. Queue size at n0 is 100 segments and TCP uses a 20-segment window size. Around t=0.5 we run
out of window and we have to wait for acknowledgements to openit again. We send bursts of packets
rather than a continuous flow of packets.

