COMPSCI 74232 C Assignment 1

Department of Computer Science
The University of Auckland

Due Sunday 21 August 05, 11:59 pm

This assignment will contribute 1/3 of your coursework mark
and 10% to your overall course mark.

Submit your assignment via the DropBox, either in PDF (pref8, or in MS Word format.
Assignments in other format wilotbe accepted or marked!

The problem: testing available capacity

Every link along an Internet path has a ‘bottleneck’ link, one that sets an upper limit on the data rate
between sender and receiver. For example, we often (usdtht®) campus networks using 100 Mb/s
Ethernet, connected via wide-area links using 10 Mb/s Etsterin this case we call the link with the
smallest carrying capacity therrowlink.

If the bottleneck link is carrying other traffic, we descrithat traffic ascrosstraffic; it will use some
of the link’s capacity. We call the remaining link capacity availablecapacity. We call a link which
becomes a bottleneck because it carries cross traffihielink.

Researchers who have large (Terabyte) files to transfar oféat to know the available capacity for the
path between two sites, so that they can estimate how londlitake to transfer a file. One way to
measure available capacity is to transfer a large test fik phserve the transfer rate for that file. If that
file transfer uses all of the available capacity, its transdige will give us a good estimate of available
capacity. Otherwise, we can run multiple transfers untildeeuse all the available capacitiperfis a
performance measurement tool that uses this approach.

Now consider how TCP behaves. A single TCP connection wiltéase its congestion window until

it senses a packet loss; that packet loss will usually beethig lack of space in router buffers. After

that TCP will try to keep its sending rate (congestion winjlolese to the maximum rate. Therefore, a
single TCP connection should be able to use all the bandysdtthere’s no reason to run multiple TCP
transfers.

Again, if we do run multiple TCP transfers, they should —dtevhile — adjust their congestion windows
so that they share the available bandwidth; that's what wemden we say that TCPrigtwork friendly.

For this assignment, you are to usgto explore the behaviour of multiple TCP connections on @édot
neck link.

Start by downloading the tcl scripts from the 742 'Assigniiséweb page. You can rumson
hydr a. cs. auckl and. ac. nz, as explained in the lecture handoutrom

CONTINUED

COMPSCI 742S2 C 2 Assignment 1

Note thathsprovides a simplified, idealised version of TCP. In partecpufgent/TCP/Reno:

e Doesn’t send the opening SYN or SYN ACK packets
e Always sends the same size packets
e Usespacketsas its units for sequence numbers, and for it's congestiodevi/

e Only has packet losses for the data packets being sent. Tdréyatcur for the returning ACK
packets

Nonethelessns’s TCP is realistic enough to clearly demonstrate how TCP beshav most circum-
stances.

1. Familiariseyourself with ns [5 marks]
For this you'll use theack _cl ock. t cl script — see the notes on ‘Sliding Window’ at the end of
this assignment handout.

(&) Runack_cl ock. t cl using the parameter values for Animation 1 in the ‘Slidinghdéw’
notes. What doesanis ‘re-layout’ button do? What happens if you increase thttléoeck
link speed to 0.5 Mb/s? [2 marks]

Re-layout button draws network using ’ball and spring’ aitqon. [C, speci-
fies attraction in springs (links),,. specifies repulsion between balls (nodes)]
[1 mark]
Higher link speed allows higher throughput, smaller quezess
[1 mark]

(b) Runack_cl ock. t cl again, using the parameter values for Animation 2. Why cgott
see (on th@amdisplay) any packets on the link between nodes 1 and 2? [1]mark

The link speed (155 Mb/s) is now much higher than the edgeslihkence the
packet size is too small to be visible. You can see them if yow ghe animation,
e.g. by setting Step: to abols. [1 mark]

(c) Runack_cl ock. t cl again, using the parameter values for Animation 3. What daeds
‘Edit/View’ button do? How does ‘Edit/View’ interact witH_ayout’ [2 marks]

Pressing Edit/View switches to 'edit’ mode, allowing yourt@nually edit the
layout, i.e. move nodes with the mouse. Clicking the but@aimswitches back

to 'view’ mode. [1 mark]
Re-layout recomputes layout whenever you press it. [1 mark]
In View mode you can click on links to produce plots of packetime in small
strips below the main display. Also, you can click on a nodsptecify filters,

i.e. whether packets with that node as source or destinaierisplayed.

CONTINUED

COMPSCI 742S2 C 3 Assignment 1

2. Understand theal- net .t cl script [5 marks]

(a) The script sets the following values: raam = 1, ntcps = 3, simtime = 10, gsize=9. Run
ns, look at the nam display, adjust its layout so that the odtstructure becomes clear, then
start it running. What does it do? [3 marks]

Sets up a link from R1 to R2, amdtcp TCP links from s(j) to d(j) via R1-R2.

[1 mark]
Starts first TCP session at 0.1s, and the other TCP streanfssdhtervals, after
that. FTP data sources send through each TCP. [1 mark]
A record is written to filedf_nameeveryinterval seconds; it contains the time
(seconds), and the ackalue for each of the TCPs. [1 mark]

(b) The script starts off with a set of parameter values — yauedit the script to change them.
What do the rumam, ntcps, simtime, gsize parameters do? [2 marks]

run_nam= 1 to invoke nam at end of ns run
n_tcps= number of TCP streams to use

simtime= number of seconds simulated time
g-size= queue size for R1-R2 link (i.e. at R1 node)

CONTINUED

COMPSCI 742S2 C 4 Assignment 1

3. Running multiple TCP connections [5 marks]

(a) Edit the script so as to prevent it generatingoan . namfile (the file is too big to keep
playing with, and we no longer need to see how the simulatigraceeding).
Set ntcps=1, 2, 5, 10; run for each to get tcp-run-n.dat files. Mpkes of the 5 TCPs
in tcp-run-5.dat (using gnuplot, excel, etc.) Make a talblevsing total number of packets
transferred for 1, 2, 5, 10 running TCPs after 20s.

Plot of packets transferred vs time, i.e. the data valuas fitee tcp-run=5.dat
file; should look something like this —

8000 T T

"tcp-rlu n-5.dat"u1:2 ——
"ul3

7000

6000

5000

4000

3000

2000

1000

0

0 ' :5 iO 1‘5 20
If you plot the whole 20s, you can see that the plot becomdsestae. the
TCPs reach a balance against each other after about 7s.gdimatally seems to

happen with two or three of them running at about the same aatéthe others
running at a slower raté&Vhy don’t they all settle at treamerate? [2 marks]

Total number of packets transferred: 8710, 17010, 2256&@¢for 1, 2, 5 and
10 TCPs. [1 marK}+/- about 60 is OK, provided the relative values are
reasonable)

Comments on the traces: [2 marisimark for each sensible comment on the
plots)

CONTINUED

COMPSCI 742S2 C 5 Assignment 1

4. Plot the total throughput for n TCP connections [5 marks]

(a) Modify the script to compute total throughput. Verifyattihe totals are computed and written
to the data file correctly. Plot the total number of bytes wgetiwhen 1, 2, 5, 10 TCPs are
running.

Modifying the script: need to add code to twedat a pr oc to sum the packet
counts for the individual TCPs, and write it to the outputedidie. [2 marks{1
for the code, 1 for demonstrating that the sums are corregt ®y printing a few
lines of the file with total and individual counts on each lifssible 1 bonus
mark for ignoring -1 counts for not-yet-started TCPs!)

Plot should show that throughput increases for 1, 2, then Bsf®ut 10 TCPs
have lower throughputthan 5. [1 mafkhroughput can be in packets or bytes
(= packets x 1000))

Comment on the traces: [2 marksjmark for each comment, max 2. 1 bonus
mark for plots showing transfer rates for the individual T<CBut total mark is
limited to 20!])

5. (OPTIONAL) Improvethe simulation [0 marks]

(a) Canyoufind a set of ns parameters that allows a single ®®&ild up to almost completely
filling the bottleneck link? If you can, how does it behavelastumber of TCP connections
increases?

One can achieve this in several ways:
e Decrease the link speed — e.g. to around 2 Mb/s

e Increase the R1 queue size — e.gsize = 60, also increase the transmit
window size (window ?) to match.
This is more like a real-world approach, where we could tineggarame-
ters of our TCP stack.

CONTINUED

COMPSCI 742S2 C 6 Assignment 1

Sliding Window: ackclock.tcl

http://wwv. i si.edu/cgi-bin/ns-edu/vi ewdb. pl #ack_cl ock. t cl
By F.Cela & A.Goller on 02/16/01
http://ww. ce. chal ners. se/ Tcel a/tcp-tour. htm

TCP implements an algorithm for flow control called Slidingnidlow; the reader will surely be familiar
with this kind of algorithms which are used for flow controtla¢ data link control layer of some protocols
as well. The “window” is the maximum amount of data we can se&itdout having to wait for ACKs.
In summary, the operation of the algorithm is as follows:

e Transmit all the new segments in the window
o Wait for acknowledgement/s to come (several packets caclbewledged in the same ACK)

e Slide the window to the indicated position and set the windi®e to the value advertised in the
acknowledgement.

When we wait for an acknowledgement to a packet for some timdetshas not arrived yet, the packet
is retransmitted. When the acknowledgement arrives, iseathe window to be repositioned and the
transmission continues from the packet following the oaagmitted last.

TCP achieves following objectives by using the sliding vandalgorithm:

e The ACK policy makes the protocol self-clocking. Therefatelynamically adapts its transmis-
sion speed to both the speed of the network and the speed pé#nesending acknowledgements.
If the conditions change in the network, so does the senttarismission rate.

e The “credit” given by the window size makes possible an effituse of the link.

e The receiver can regulate the information arriving rate diysting the sender’s transmission win-
dow.

CONTINUED

COMPSCI 742S2 C 7 Assignment 1

Animation 1: shows the first two issues explained above.
script used: acklock.tcl

Parameters for this animations ack_cl ock.tcl 0.2M 40nms 100 20 2

Description: Links n0-n1 and n2-n3 have 1Mbit/s bandwidttl &0ms delay. Link n1-n2 has 0.2Mbit/s
bandwidth, 40ms delay. Queue size at n0 is 100 segments aRAUTES a 20-segment window size.
For the sake of simplicity, the TCP in nO models the first TCEBcfffcation which sends as much data
as the send window allows at the beginning of the transmiss@urrent TCP implementations use a
less aggressive start (slow-start). After the connectgtat#ishment, we start sending as much data as
the send window allows us. Note how the queue grows fast ai@éhaning of the bottleneck. Around
t=3.8 we have sent the first 20 segments that the window allmythen we run out of window and we
have to wait for the first acknowledgement to open the windgaira From now on, arrival of each new
acknowledgement triggers the transmission of a new segrttenfTCP source adapts to the effective
capacity of the path, and and we can see how the queue at tlenleck remains stable.

Animation 2: shows self-clocking

Self-clocking is an interesting property of TCP that allomgomatic adjustment of the transmission
speed to the bandwidth and delay of the path. Therefore kempossible for TCP to operate over links
with very different speeds. As an example, we can make tkelkif in the previous animation more than
700 times faster and TCP will still work without any problems

script used: acklock.tcl

Parameters for this animations ack_cl ock.tcl 155Mo 2ns 100 20 1

Description: Links n0-n1 and n2-n3 are 1Mbit/s bandwid®ms delay. Link n1-n2 is 155Mbit/s, 2ms
delay. Queue size at n0 is 100 segments and TCP uses a 20rgegmdow size.

Animation 3: shows TCP works well even if we make the bottngower. However in this case we
discover the effect of the “data in transit” limitation dissed in (2): as long as the window size is smaller
than the actual size of the path we send bursts of data rdthera continuous flow. Therefore, we are
not able to use the link efficiently.

script used: acklock.tcl

Parameters for this animations ackclock.tcl 64kb 100ms 100 20 1

Description: Links n0-n1 and n2-n3 are 1Mbit/s bandwidtbims delay. Link n1-n2 is 64kbit/s, 100ms
delay. Queue size at n0 is 100 segments and TCP uses a 20ré@gnuow size. Around t=0.5 we run
out of window and we have to wait for acknowledgements to dpagain. We send bursts of packets
rather than a continuous flow of packets.

