
   COMPSCI 734 

 1 of 9  

THE UNIVERSITY OF AUCKLAND 
 

 
FIRST SEMESTER, 2018 

Campus:  City 
 

 
 

COMPUTER SCIENCE 
 

Web, Mobile and Enterprise Computing 
 
 

(Time Allowed:  TWO hours) 
 
 
 

NOTES: Attempt all questions. 

Marks for all questions total 70. 

This exam counts for 70% of your final grade. 

Write as clearly as possible. 

The appendix recalls a few definitions and samples based on the standard F# 
core library – you can use them in your answers, as appropriate. 

 
 
 
 



   COMPSCI 734 

 2 of 9 CONTINUED 

1. [9 marks] Monad Laws 

a) State the three fundamental monad laws in terms of unit and bind functions. 

b) State the three fundamental monad laws in terms of Kleisli operators. 

c) Prove that laws in version (a) imply laws in version (b) –justify all intermediate steps. 

 
a)   

1) bind unit = id 
2) unit >> bind g = g 
3) bind f >> bind g = bind (f >> bind g) 

 
b)   
I. f >=> unit = f 

II. unit >=> g = g 
III. (f >=> g) >=> h = f >=> (g >=> h) 

 
c)  (1), (2), (3) are the unit/bind monad rules of (a) 

 (A) is the associativity of (classical) function composition 
 (K) is the Kleisli fish definition: let (>=>) f g = f >> (bind g) 

 
I. f >=> unit  

=K f >> bind unit  

=1 f >> id  

=id f 

II. unit >=> g  

=K unit >> bind g  

=2 g 

III. (f >=> g) >=> h  

=K (f >> bind g) >> bind h  

=A f >> (bind g >> bind h)  

=3 f >> bind (g >> bind h)  

=K f >> bind (g >=> h)  

=K f >=> (g >=> h) 

 
 
  



  - 3 - COMPSCI 734 

CONTINUED 

 

2. [8 marks] Monad Builders and Sugared Monads 

For this question, refer to the skeletal monad builder given in the Appendix. 

a) Discuss how monad builder methods map to unit and bind functions (cf. Appendix). 

b) Discuss how the following sugared monad expressions map to monad builder methods: 
let!, do!, return!, return; e.g. return t maps to m.Return t 

c) Translate the following computations into equivalent sugared monad expressions: 

let a = unit t   e.g. let a = m { return t } 

let b = bind f m   ? 

let c = map h m   ? 

let d = flat mm   ? 

 
a)  Also, a short discussion 

o MBuilder.Bind (m, f) = bind f m 

o MBuilder.ReturnFrom m = m 

o MBuilder.Return t = unit t 

 
b)  Also, a short discussion 

o let! do! map to m.Bind 

o return! maps to m.ReturnFrom 

o return maps to m.Return 

 
c)   

let a = m { return t } 

let b = m { let! t = m; return! f t } 

let c = m { let! t = m; return h t } 

let d = m { let! m = mm; return! m } 

 
 
  



  - 4 - COMPSCI 734 

CONTINUED 

 

3. [9 marks] Unbounded Non-Determinism 

Discuss how the Actor model supports unbounded non-determinism. Show a specific 
example, in F#-like code or pseudo-code. 

 
Unbounded nondeterminism is a property of concurrency by which the amount of delay in 
servicing a request can become unbounded. 
 
In Actor systems, unbounded non-determinism is supported by not bounding the transit 
time of messages, but guaranteeing their eventual delivery. 
 
A textbook example is an actor system which is can non-deterministically return any natural 
number (however large) and is also guaranteed to terminate. 
 

let rec und = MailboxProcessor.Start (fun inbox -> 
    let rec loop count = 
        async { 
            und.Post 1 
            let! msg = inbox.Receive () 
            match msg with 
            | -1 ->  
                printfn "%d" count 
                return () 
            | _ ->  
                return! loop (count+1) 
        } 
    loop 0) 
 
... 
und.Post -1 
... 

 
  



  - 5 - COMPSCI 734 

CONTINUED 

4. [7 marks] Actor Supervision 

Discuss the concepts of actor supervision and monitoring, with reference to Akka.NET. 

 

Supervision describes a dependency relationship between actors: the supervisor delegates 
tasks to subordinates and therefore must respond to their failures. When a subordinate 
detects a failure (i.e. throws an exception), it suspends itself and all its subordinates and 
sends a message to its supervisor, signalling failure. Depending on the nature of the work to 
be supervised and the nature of the failure, the supervisor has a choice of the following four 
options: 

o Resume the subordinate, keeping its accumulated internal state 

o Restart the subordinate, clearing out its accumulated internal state 

o Stop the subordinate permanently 

o Escalate the failure to the next parent in the hierarchy, thereby failing itself 

Top-level supervision: Root Guardian, User Guardian (user actors), System Guardian (system 
actors). 

 

Monitoring. In contrast to the special relationship between parent and child described 
above, each actor may monitor any other actor. Since actors emerge from creation fully 
alive and restarts are not visible outside of the affected supervisors, the only state change 
available for monitoring is the transition from alive to dead. Monitoring is thus used to tie 
one actor to another so that it may react to the other actor's termination, in contrast to 
supervision which reacts to failure. 

 

Short discussion possible: different ways to terminate an actor. 

 

Provided as a built-in pattern the Akka.Pattern.BackoffSupervisor implements the so-called 
exponential backoff supervision strategy, starting a child actor again when it fails, each 
time with a growing time delay between restarts. 

 

There are two classes of supervision strategies which come with Akka: OneForOneStrategy 
and AllForOneStrategy. Both are configured with a mapping from exception type to 
supervision directive and limits on how often a child is allowed to fail before terminating 
it. The difference between them is that the former applies the obtained directive only to the 
failed child, whereas the latter applies it to all siblings as well. 

  



  - 6 - COMPSCI 734 

CONTINUED 

 

5. [7 marks] Actor/Mailbox vs. CMC/Hopac 

Discuss the conceptual similarities and differences between the Actor model, implemented 
by F# Mailbox, and the Concurrent ML (CML) model, implemented by F# Hopac. 

 

Both Actors/Mailbox and CML/Hopac are models of message passing concurrency, between 
asynchronous processes. Major differences: 

o Different thread weights: 
o Actors use usual (i.e. rather heavyweight and costly) system or managed threads. 
o Hopac uses a huge numbers of lightweight “threads”, called jobs, served by their 

own thread pool. Unlike usual threads, lightweight jobs can be blocked without 
affecting the system. 

o Different basic message passing primitives: 
o Actors are based on asynchronous post/receive primitives for actors, supported 

by mailbox-type queues. 
o Hopac is based on synchronous channels, essentially rendezvous primitives 

which do not need queues. 
o However, one can build synchronous communications on top of actors and, vice 

versa, communications channels on top of Hopac jobs. 

Where applicable, queue-less rendezvous operations are faster and less demanding on 
system resources. Hopac is designed and optimized to scale as the number of such relatively 
independent lightweight elements is increased, e.g. on parallel systems. 

However, there is no direct support for distributed computing, e.g. clusters or clouds. 

Bonus if example(s) - but not required. 

 



   COMPSCI 734 

 7 of 9 APPENDIX FOLLOWS 

6. [8 marks] Software Extensibility 

Discuss the pros and cons of using plugins as an architectural means to allow software 
extensibility. 

 

7. [8 marks] Caching 

a) What are the strengths and weaknesses of using caching within the context of software 
development. Discuss how the strengths can be used to improve the software and how 
the weaknesses could be overcome.  

b) Discuss the caching support HTTP provides and how it could be used in software 
development. 

 

8. [7 marks] Compression 

a) Discuss pros and cons of using compression in software development. 

b) What is the support that HTTP offers for compression and discuss how such support 
might be useful in software development. 

 

9. [7 marks] Software Security 

Discuss how data at rest and in transit could be protected, and how such protection affects 
software development. Your discussion should include the strengths and weaknesses of the 
methodologies. 

 

 



   COMPSCI 734 

 8 of 9 APPENDIX CONTINUES 

APPENDIX 
 

The F# maybe type (an alias for the option type): 

type option<'T> = 

    | Some of 'T 

    | None 

type Maybe<'T> = option<'T>  // ‘T option 

 

Sample F# functions from the Seq module (signatures): 

Seq.singleton : 'T -> seq<'T>       unit 

Seq.map : ('T -> 'U) -> seq<'T> -> seq<'U>     map 

Seq.collect : ('T -> seq<'U>) -> seq<'T> -> seq<'U>    bind 

Seq.concat : seq<seq<'T>> -> seq<'T>     flat 

 

Kleisli operators on options 

// ( >>= ) : m:'a option -> g:('a -> 'b option) -> 'b option 

let (>>=) m g = bind g m 

// ( >=> ) : f:('a -> 'b option) -> g:('b -> 'c option) -> ('a -> 'c option) 

let (>=>) f g = f >> (bind g) 

 

Skeletal monad builder 

type MBuilder () =  

    member this.Bind (m, g) = … ? 

    member this.ReturnFrom m = … ? 

    member this.Return t = … ?   e.g. = unit t 

let m = MBuilder () 

 

 



   COMPSCI 734 

 9 of 9  

Skeletal actor implementation 

let rec agent = MailboxProcessor.Start (fun inbox -> 

  let rec loop … = 

   async { 

    let! msg = inbox.Receive () 

    match msg with … 

    return! … or return … 

   } 

   loop …) 

 

Diagram chasing 

 

 

 

 

______________________________________ 


	THE UNIVERSITY OF AUCKLAND
	COMPUTER SCIENCE
	APPENDIX

