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Abstract—Mobile devices such as smart phones are increas-
ing permeating society. With strides in computational power,
coupled with the ability to connect to other small devices,
smart phones are able to host novel services. To address the
repetitive problems associated with mobile service development,
namely service reachability, scalability and availability, we have
developed Odin, which is a middleware platform for mobile
service provisioning. Beyond providing a provisioning solution,
Odin conserves scarce resources such as network bandwidth
and device power supply. However, Odin has previously lacked
an ability to take into account operational context. In this
paper, we present context-aware extensions to Odin that further
optimise resource usage. Augmented with support for context
types that include location, performance, power and network,
Odin is able to propagate context information to applications
and dynamic adapt the middleware’s behaviour. Novelty of
the work lies in a solution whose device overhead is very
low, and one that offers a coherent approach to context dis-
semination and adaptation. Based on quantitative evaluation,
context-aware Odin’s low overhead is demonstrated along with
significant gains in resource conservation.

I. INTRODUCTION

Mobile devices such as PDAs and smart phones are
increasingly becoming integral part of our daily lives. The
recent advances in technology have enabled them to be
equipped with GPS, accelerometers, cameras and multiple
network interfaces such as Bluetooth, Wi-Fi and 3G. Such
developments, along with substantial improvements in pro-
cessing capacity, have allowed mobile devices to shift their
role from service consumer to provider, enabling new and
unique types of services.

To demonstrate the potential of mobile services, consider
a patient monitoring service (PMS) [1]. A mobile patient
could be monitored by a smart phone augmented with body
sensors. Remote healthcare professionals would consume the
service to observe the patient less intrusively than using
conventional monitoring equipment. This would enable data
to be sent on an as needed basis, leading to reduction in
costs and efficient bandwidth usage. In addition, PMS could
enable health professionals to remotely control monitoring
of the patient’s essential signs.

While creation of mobile services on todays devices is
technically feasible, the lack of middleware support causes
developers to repeatedly address unique challenges posed

by mobile service provisioning. Such challenges stem from
services’ inherent mobility and the constrained resources of
small devices, and include reachability, availability, scal-
ability and heterogeneity. Reachability is concerned with
maintaining connectivity between a roaming service and
its clients [2]. Availability is an issue because of the lim-
ited power supply of mobile devices. Despite advances in
computational power, mobile devices remain limited in this
respect relative to desktop and server hardware, hence the
need for scalable infrastructure. To address these challenges,
we have developed Odin, an intermediary-based middleware
for mobile service provisioning [2].

Being aware of dynamic operational conditions pertaining
to mobile service provisioning would enable Odin to better
optimise resources. Operational attributes, such as device lo-
cation and network signal strength, are collectively referred
to as context [3]. For example, a PMS could switch over to
a low-power network interface such as Bluetooth [4] upon
detecting low battery levels and a nearby intermediary based
on its current location. This would help to keep the device
operational for longer, hence improving service availability
and allowing the device to be used by its user for other tasks.
Similarly, the service could switch to a higher bandwidth
network interface such as Wi-Fi or 3G based on usage,
thereby effecting scalability and cost. An ability to detect
fluctuations in wireless signal strength could help the PMS
to switch points of network attachment or to select a reliable
network interface based on previous knowledge; in both
cases the motivation for the adaptation would be to improve
service availability.

Odin has previously lacked the ability to leverage con-
textual information. This paper presents our research in
extending Odin with context-awareness support to improve
the quality of mobile service provisioning.

II. ODIN

Odin is a middleware solution that facilitates the de-
sign, development and deployment of mobile services [2].
It extends the Jini Surrogate Architecture specification to
allow mobile devices to expose their services as a Jini
federation. As shown in Figure 1, Odin comprises three
key components: i) a service running on a mobile device



known as the device-service, ii) a surrogate that represents
the device-service in a fixed-network, and iii) a fixed in-
termediary called the surrogate-host (SH) that facilitates
communication between a device-service, its surrogate and
the clients consuming the mobile service.

Figure 1. High level overview of Odin architecture

A device first registers with the SH by making available
its surrogate as a JAR file. The SH will then register the sur-
rogate as a Jini service, which will enable clients to discover
and consume the device-service. All client requests will be
first handled by the surrogate, which can communicate with
the device if necessary. Communication between a device
and the SH occurs over an interconnect channel (IC).

Odin provides HTTP and Bluetooth based interconnect
channels to allow devices to leverage their multihoming
capabilities [5] when communicating with the SH. The
use of HTTP interconnect also allows Odin to overcome
the reachability problem introduced in Section I. This is
accomplished by the SH piggybacking service requests on
replies to periodic HTTP keep-alive messages initiated by
the device [2], [5]. Therefore, Odin allows mobile ser-
vices to be provided independent of a particular mobile
network operator. In addition, Odin supports device/user
initiated (proactive) and reactive vertical handover between
heterogeneous network interfaces; such as Bluetooth and IP
based Wi-Fi/3G networks. The reactive handover transpar-
ently switches over to an available network if the current
interconnect fails, without any data loss, thus improving
service availability [5].

Odin also provides the ability to migrate a surrogate from
one SH to another during runtime, transparently to clients
[1]. With the aid of surrogate-migration, a patient’s PDA
hosting the PMS could switch from using Wi-Fi to a nearby
SH with Bluetooth support under low power conditions to
improve service availability [4]. Similarly, switching to a
more able SH would help to better address scalability, when
the current SH is under heavy loads. However, currently, the
device-service has to manually initiate a request to migrate
its surrogate to an alternate SH.

The use of an intermediary allows Odin to mask device
mobility from clients. The additional computational power

of SHs can also be leveraged by service developers offload-
ing computationally intensive tasks from the device to its
surrogate. The effect of this is to preserve battery life and to
better address scalability. For detailed information on the
architecture and design rationale for Odin, we direct the
reader to [1], [2].

III. RELATED WORK

In this section we focus on mobile specific context-aware
systems found in the literature. All investigated systems
support three common tasks [6]; i) context acquisition,
which involves gathering contextual information (CI), such
as device location and weather information, from context
sources; ii) context processing, which is concerned with how
CI is modeled and represented, and iii) context management
that looks at how other applications and software modules
interact with the system and use CI. Context-sources that
provide CI can be hardware sensors (e.g. GPS), software
modules (e.g. weather service) or logical entities that infer
CI based on multiple sources (e.g. planned route based on
location, time and calendar information).

The Network Abstraction Layer (NAL) [7] and di Costa’s
Aspect-Oriented Middleware Architecture (AOMA) [8] are
two systems that are deployed directly within a mobile
device. Content Distribution Framework (CDF) [9] and
Contory [10] are examples of distributed frameworks that
act as context brokers to collect CI from multiple devices.
Context-aware Mobile Service Platform (CA-MSP) [11]
aims to improve end-to-end quality of services hosted on
a mobile service platform similar to Odin. Unlike other
systems, which can gather context information both within
the device and from external sources, AOMA and NAL are
restricted to sources within the device they are deployed on.

A. Context Acquisition

Contory and AOMA acquire CI through polling their
context-sources, whereas the others support both polling
and subscription based mechanisms. Periodic polling is
potentially wasteful and reduces battery life. Conversely,
a subscription based mechanism can be used to acquire
context as and when it changes. Hence, subscription-based
mechanisms are preferable to conserve device resources.

Other than CDF and AOMA – where the former repre-
sents context sources as services whilst the latter uses aspect
oriented techniques – the remaining systems lack support for
adding context-sources at runtime.

B. Context Processing

Once acquired, raw CI must be modelled in order to
better facilitate context management. There is no universally
accepted standard for context representation, but a set of
widely used approaches can be found in the literature [6].
For example, NAL uses a custom XML based markup
scheme, whilst CDF uses OWL [12], an ontology based



model. The other systems use object oriented models to
represent context. Of these, the XML approach is relatively
computationally expensive, and this is an issue for mobile
devices. Object oriented models become harder to maintain
and reason with as context models become more complex.
Conversely, ontology based models provide richer seman-
tics and expressiveness to perform reasoning with complex
context models [6], [13]. Of the investigated systems, only
Contory takes the quality of context (QoC) [14] into account
when processing CI. Use of QoC attributes, such as freshness
and precision, can be used to resolve ambiguities when
conflicting data are present.

C. Context management

Except for AOMA and CA-MSP, the surveyed systems
provide a means of exposing CI to be used by other
entities (both software running within the device, and on
other machines). However, only the former systems support
dynamic adaptation of middleware to optimise behaviour
according to the current operational conditions. For example,
CA-MSP uses CI to improve its quality of service (QoS)
by dynamically performing vertical handover. AOMA is the
only system that allows an application to specify adaptation
strategies at runtime. However, both AOMA and CA-MSP
perform the reasoning logic within the devices, thus using
valuable device-side resources. This may impact other ap-
plications running on the device, diminish battery life and
lower service availability.

NAL, CDF and Contory can notify external applications
of changes in CI, enabling them to augment their capabili-
ties. Contory and CDF allow clients to subscribe and query
both raw and processed CI, whereas NAL only exposes the
raw CI. However, none of the systems provide the ability for
clients to perform complex queries on CI within the systems
themselves. Moreover, they lack support for aggregating CI
and have limited expressiveness. Acharya et al has proposed
a generic formalised method to address these issues by
enabling clients to extract CI at different granularities and
to offload computation logic to context-aware servers [15].

IV. CONTEXT-AWARE ODIN

A. Design and Architecture Overview

Figure 2 illustrates the three main stages to support
context-awareness within Odin.

1) Context Acquisition: As shown in step 1 (Figure 2),
Odin supports CI acquisition from context-sources residing
within both the device and its SH. CI captured by the
device is sent to the SH, via the currently active interconnect
channel, where all the reasoning takes place. To improve
CI management, various context-attributes are grouped into
conceptually similar entities called context-types. Odin de-
fines both the meaning and representation format for each
supported context-type, as shown in Table I.

Figure 2. Key components within context-aware Odin

Table I
CONTEXT-TYPES AND ATTRIBUTES SUPPORTED BY ODIN

Context Type Description Attributes
Location Location of

device/SH.
Latitude and Longitude
in decimal degrees.

Performance CI that determine
the load within the
device and SH.

Overall CPU usage
(%age), memory usage
by the SH/device-
service in MB, free
system memory (%age).

Power Power consumption
within the device.

Remaining battery life
as a percentage.

Network Interconnect
specific attributes
(Wi-Fi, 3G and
Bluetooth) within
the device.

Received signal
strength in decibels,
IC type, whether IC
is alive and/or active,
bandwidth in Mbps.

Odin provides service developers with an API to abstract
context-acquisition and which decouples context-sources
from Odin. For example, developers specify and interpret in
a standard form (decimal degrees), even when the context-
source natively represents it in a different format (e.g.
decimal minutes seconds). Combined with clearly defined
context-types, this allows heterogeneous context-sources to
expose information to Odin without any ambiguities.

Service developers specify the supported context-sources
to Odin, and the middleware takes care of transparently
acquiring CI. The developers can specify whether Odin
should poll (including the frequency to poll) and/or subscribe
to notifications from supported context-sources.

2) Context Processing: Upon receiving raw CI, the
context-processor-module (CPM) within the SH maps the
data onto an OWL model (step 2 in Figure 2). OWL was
chosen for representing the context-model due to its richer
semantics, greater expressiveness, support for advanced rea-
soning capabilities and existence of well developed third
party tools [6], [12], [13]. Consequently, OWL enables



context to be modeled, validated and reasoned more easily
compared to alternatives discussed in Section III. Odin
performs all context processing within the SH, freeing
the device’s CPU from computationally intensive reasoning
tasks, and therefore prolonging battery life.

3) Context Management: The CPM performs two types
of context management tasks; i) handling developer-defined
context notifications, and ii) middleware-level adaptations.

Figure 3. Context-aware processing within Odin

The context notification mechanism allows CI to be eas-
ily shared between different surrogates and device-services
based on context-type. Each device-service/surrogate can
subscribe to the CPM for updates concerning desired CI
(step 3 in Figure 3). Odin allows service developers to
control the visibility of CI exposed by a device-service to
other surrogates deployed within the same SH.

With the aid of the context notification mechanism, surro-
gates can listen to changes in CI and utilise them to augment
their service offerings. For example, this allows the parcel
tracker service to be notified whenever the device location
is changed. This is done without the involvement of service
developers, thus minimising their development efforts.

Section IV-B presents more details about the specific
adaptations that are enabled by Odin’s context awareness
provision.

B. Adaptation Support

Odin supports three adaptation strategies to dynamically
change the middleware’s behaviour.

i. Proactive vertical handover transparently switches the
interconnect channel used by the device to com-
municate with its SH. This helps to optimise both
device-side and SH resources. For example, to address
scalability, the CPM will automatically migrate the
surrogate to a more able SH if the current SHs load
exceeds specified thresholds.

ii. Middleware initiated surrogate-migration dynamically
migrates a surrogate to a different SH. This adap-
tation optimises bandwidth, power consumption and
improves service availability based on a devices mul-
tihoming capabilities.

iii. Dynamic keep-alive management adjusts the frequency
of sending keep-alive messages. This helps to optimise
bandwidth usage and conserves power consumption at
the device-side when the service is inactive.

Odin allows service developers to specify rudimentary
policies as name-value pairs to determine how the adap-
tations are performed. For example, a policy used with the
PMS might specify Wi-Fi as the preferred interconnect in
order to minimise service costs. The CPM will perform
vertical handover, based on the minimum required signal
strength specified in the policy, if the Wi-Fi signal strength
degrades.

As shown in step 5 of Figure 3, upon detecting the
need for adaptation, a recommendation is forwarded to
the appropriate entity (SH or device). The recommendation
contains the information necessary to apply the adaptation.

V. EVALUATION

In this section, we present a quantitative evaluation of
the impact of adding context-awareness support to Odin.
A simple service deployed on a HTC Hero smartphone
running Android OS 2.1 was used for hosting a simple
mobile service. The SH was deployed on a fixed machine
running Windows Vista 64-bit OS on an Intel Core 2 Duo
3.66 with 3GB of RAM. The device and the SH were
communicating using the HTTP interconnect over a 54Mbps
802.11g wireless network.

A. Performance impact of Context-Sources

Several experiments were conducted to monitor the de-
vice’s battery life and the service’s memory usage. In
addition to a baseline test where no context-source was used,
four experiments were conducted, each using one of four
context-sources: power, location, network and performance.
These sources map to the four context-types defined in Table
I (e.g. the location context-source monitors the longitude and
latitude). Finally, an additional test was performed with all
four context-sources being enabled simultaneously. CI were
polled from each context-source every 5 minutes. The results
captured over a 24 hour period are summarised in Figures
4 and 5.

According to Figures 4 and 5, use of context-sources
consumes more power and memory. The results reveal
that memory usage remains approximately the same (24
MB) when using one or more context-sources. Therefore,
simultaneous use of context-sources has minimal impact on
the performance of a device.

As evident in Figure 4, the baseline experiment resulted
in 20% power remaining after a 24-hour period. There was



Figure 4. Power usage by context-aware Odin

Figure 5. Memory usage by context-aware Odin

only 3% power left when using the phone’s internal GPS
as the location context-source, whilst other sources had 10-
11% power remaining at the end of the experiments (when
run individually). However, when used in combination, the
device lasted for only 23 hours, before exhausting its power
supply.

B. Adaptation responsiveness

Adaptation overheads can be separated into two cate-
gories; average time taken to determine an adaptation by
CPM (identification time), and the time taken to apply
the adaptation by the receiver (application time). Table II
summarises the overheads for the three adaptation strategies
introduced in Section IV.

The identification time involves processing CI as well as

Table II
ADAPTATION RESPONSIVENESS

Adaptation
Strategy

Identification
time (ms)

Application time (ms)

Vertical han-
dover

720 ms 20 ms (select new IC if both
interconnects are active)

Surrogate mi-
gration

860 ms 591 ms (to migrate to a new
SH)

Dynamic
keep-alive

69 ms 12 ms (to compute the new
keep-alive period)

Table III
COMPARISON OF KEEP-ALIVE MECHANISMS

Mechanism Power
left
after 24
hrs

Message
size
(bytes)

No. of mes-
sages sent
(in 24 hrs)

Total
bandwidth
consumed
(KB/24
hours)

Dynamic
Keep-alive

10% 150 321 (338) 47 (49)

Fixed
Keep-alive

10% 150 6780
(17280)

993 (2531)

checking the context model using the adaptation algorithm
(steps 1 - 4 in Figure 3), which are performed within
the SH. Therefore, the identification times given are only
experienced by the SH. The only quantifiable effects on
device resources are those shown previously in Section
V-A. Compared to other adaptations, the dynamic keep-alive
mechanism takes a relatively small identification time since
adaptation only depends on the surrogate load. Conversely,
both the vertical handover and surrogate-migration strate-
gies depend on multiple CI such as locations and network
properties of both the device and current/other known SHs.

C. Benefits offered with dynamic-keep alive

The total number of messages and the power consumption
was measured when using both the dynamic keep-alive
mechanism (range of 5 seconds to 5 minutes) and a fixed
keep-alive period of 5 seconds. Table III summarises the
results for an idle service. The numbers in brackets in the
last two columns refer to the expected values.

Note that both mechanisms send less than the theoretically
expected number of messages. This is due to network
latencies and processing carried out within both the SH and
device. In addition to the 6% saving in battery life, the
results clearly demonstrate that the use of dynamic keep-
alive helps to minimise bandwidth usage by over a factor of
20. Consequently, this can have significant benefit in terms
of reducing costs associated with running a mobile service.

In a typical usage scenario, where a mobile service is
prone to long periods of inactivity, the dynamic keep-alive
mechanism would send more messages than that shown in
Table III due to fluctuations in device usage. Based on
the observed results, we hypothesise that bandwidth savings
would remain significant.

VI. FUTURE WORK AND CONCLUSIONS

A. Future Work

Currently Odin supports only there specific adaptations
and lacks support to infer new information based on the
current context. We are currently investigating to extend
Odin to support aggregation of CI and inference support
based on the ideas outlined in [15]. This would help to
enhance the expressiveness of surrogate queries beyond



simply registering to be notified when a particular context-
type is changed. For example, surrogates would be able to
specify when to be notified based on multiple pieces of CI;
such as when another SH is in proximity of its device’s
Bluetooth range.

In addition, we are improving the reliability of context-
reasoning algorithm with the use of QoC attributes men-
tioned in Section III. Overall, these enhancements will help
to enrich context provisioning within Odin, to make it more
flexible for service developers to utilise CI.

B. Conclusions

In this paper we have presented context-awareness ex-
tensions to Odin, our middleware for mobile service pro-
visioning. Our approach distinguishes itself from existing
solutions in two ways. First, we perform context reasoning
within the SH to prolong service availability by reducing
power consumption. Second, our solution supports both
context notifications - to augment mobile services - and three
middleware-level adaptations. Furthermore, context-aware
Odin supports context acquisition through both polling and
subscription mechanisms and provides a well defined API
to assist service developers to easily plugin heterogeneous
context-sources to the middleware.

The adaptations help tackle challenges faced by mobile
service provisioning – such as reachability, service avail-
ability and scalability – by making best use of available re-
sources based on current operational conditions. In addition,
experiments reveal that the dynamic keep-alive adaptation in
particular helps to reduce bandwidth and therefore minimises
service provisioning costs. The quantitative analysis further
demonstrates that adaptations are identified and applied in a
timely manner. Though the use of context-sources slightly
reduces the devices battery life, we believe the aforemen-
tioned advantages provide a greater benefit in improving
quality of service overall.
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