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Static Analysis

g g * Analyzing programs by looking at their code
X Nl (i.e. before running them)

* Sad result from theory:

In general, many analysis problems are undecidable,
e.g. Turing's halting problem

However: /

- Many important cases that occur in practice D
can be analyzed and errors detected

- For most cases analysis can be approximated, i.e.
we can give warnings if something is likely to beA
wrong

+ Static analysis is usually done on the AST




False Positives
and False Negatives

Control Flow and
Data Flow Analysis
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- Buffer overrun: trying to write over end of array
- Memory leaks: allocating but never freeing memory
- Use after free: freeing memory and then accessing
- Uninitialized variables: using variable before init
- Dead code/data: code or data never used

* Uses mostly heuristics, not precise analysis rules

* Produces false positives and false negatives

* Has helped many open-source projects to fix
numerous bugs
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g False Positive: g Control Flow Analysis i 1 JE 53
2 + The analysis tool gives a warning but there is no error 2| Looking at the different paths of printC"hellof) 3|
2| + More work for the developers (distinguishing true execution in a program
i positives from the false positives) ¢ | Eg. the red arrows
False Negative: Data Flow Analysis
z| + There is an error but the analysis tool does not give a 2 Looking at the po.ssibl.e VG!UCS that while (x++<10
g warning g occur at certain points in a program print("boo™)}]
2 2
=| + Errors go undetected 2] E.g. the blue arrows
E Z| Pseudo-Evaluation ¥ 4
; Conservative -analysis means no f_alse negatives are ; Analyzing a program by simulating its execution
£ produced (i.e. no errors are missed) £| (with simplified execution semantics,
2 5 2 e.g. only one iteration is executed per loop) 6
Example: Coverity Prevent  gcoverity
g + Commercial tool for static analysis through pseudo g
| evaluation, e.g. to detect: o

!
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JLint

Data Flow Problems
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* = and == possibly confused, e.g. if (x = y) {3

Unclear nested block structure [while (x '= 0)
X >>= 1;
n+=1;

Unclear else-association, return X;

eg. it (x) 1T (y) i++; else j++;

* Method is overridden by method with the same name

but different parameters
Field in class shadows field of superclass

 Local variable name shadows field of class
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g - JLint is a simple static checker for Java g * Null-pointers

| * It works directly on the compiled classes 2| - Amethod is possibly invoked with null as

. : . parameter but the method does not check for null

i - Does not require the source code 8 argument

- Does not require human specification - Value of dereferenced variable may be null
- Very easy to use, but limited capabilities 1+ Value range

_| = JLint can give warnings for some concurrency, data . - Range of assigned expression value has no

¢l flow and code clarity problems & intersection with target type range

| - Some warnings might be false alarms 2| - Possible overflow, e.g. int z = (int)x * (int)y;

] + Call JLint from the command line with a class file N Redundancy

2| eg.jlint MyClass.class < - Comparison always produces the same result

gl + Call JLint without parameters to get help information £ e.g. 1+1==3 will always be false

E 9 E 10
Unclear Code Problems

g * Checked with a separate tool called AntiC g

2 + Unclear operator precedence, e.g. x || y == z o

Detecting Null Pointers
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Null Pointers

* Null pointers are one of the main causes for runtime

:2010|

Detecting Null Pointers

Define analysis functions:
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String s = null;
if (n/ 10 + 1 > 100)

s = "hellol"; // VarMaybeNull (s)==false
else
s = t; // VarMaybeNull (s)==true

// VarMaybeNull (s)==true
s.substring(1); // Warning!!!

4

+ If we dereference variable x and VarMaybeNull(x)==true

+ If we don't know much about x: VarMaybeNull(x) is true
+ After assigning non-null value to x: VarMaybeNull(x) is false

VarMaybeNull(x)==true after an if-statement, if
VarMaybeNull(x)==true after the if- or after the else-part

then give warning ("NullPointerException may happen”)  *°
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—
Sl errors MayReturnNull:  Method — {true, false}
= . In Java, if a null reference is dereferenced then a § varMaybeNull: Variable — {true, false}
! - ExprMaybeNull:  Expression — {true, false}
g NullPointerException is thrown g
| - Method call: xm() and x==null i - For every method M:
old ' m — u” % MayReturnNull(M) tells us if M may return null
. - Field access: )_<'y and x==nu _ _| + Af every point in the program, for every variable X
g Often problems n code that lead to null pointer §| defined at that point: VarMaybeNull(X) tells us if X
5| errorsarequite simple, e.g. (| may be null (depends on program state)
g| - Forgot toinitialize variable properly | + For every expression E defined in a program:
2 - Forgot an if-statement checking for a special case 2|  ExprMaybeNull(E) tells us if E may be null
2|+ Can we detect potential null pointer errors? 2| (depends on VarMaybeNull and MayReturnNull)
5 5|+ If an expression that may be null is dereferenced,
F v #| then generate a warning "
VarMaybeNull Example Defining ExprMaybeNull
g We_;alitélta‘r_e MiybfaNtull)a:r[ all/fo\fi‘riMonsbir,\\l a| f::)gmtm: g Defined on a simple Java subset using MayReturnNull
Vol m rin , 1INt N arviaybeiNu ==true .
2 2 // VarMaS//beNull(s)::true o and Var'MaybeNull.

- Constant expressions: c

ExprMaybeNull(c) = (¢ == "null")
If a constant is null, then true, otherwise false

+ Method calls: m(...)

ExprMaybeNull(m(...)) = MayReturnNull(m)
If m may return null, then the expression may be null

Variable access: x
ExprMaybeNull(x) = VarMaybeNull(x)
The expression may be null if the variable may be null

* Most other expressions can never be null,e.g. x + y
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Defining VarMaybeNul|

Defining MayReturnNull
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for (int i=0; i<n; i++)

s = "hello"+1; // VarMaybeNull(s)==false
// VarMaybeNull (s)==true
return s; // MayReturnNull(ml)==true

}

int m2(String x) { // VarMaybeNull (x)==true
String y = "foo'"; // VarMaybeNull(y)==false

if (x.equals('hello™))

y = "hello"; // VarMaybeNull (y)==false
else
y = X; // VarMaybeNul I (y)==true

// VarMaybeNull (y)==true

return y.length; // Warning: y may be null Il
{;19
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? Goﬂj\h::ﬁh:he s’rTas’rzmen’;s c:cr;e bTy\;)neAIA beNull(x) ? Look at all return statements "return e;" in method m:
* Mo atements do not affect VarMaybeNull(x),
o e.g. statements where variable x is no‘ryinvolved 2|+ If for all these statements ExprMaybeNull(e)==false,
18 A'séi nment: X = expr: then MayReturnNull(m)==false
: 3ar'May.beNt:I|(x)p: I,ExprMaybeNull(expr') ¢ | - If for least one statement ExprMaybeNull(e)==true,
If the expression may be null, then the var may be null then MayReturnNull(m)==true
. Tf: iF(.) sl: else s2; + If we do not know enough about a method m (e.g. we
z Var;\)\aybéNull(x) - ,Var'MaybeNuII(x) after s1- 2| don't have the source code) then let's be careful and
g | | VGFMGYbeNU”(X) after 52; g say MGYRCTUT‘”NU”(m)::Tf‘Ue
Z| - For loop: for(..) si; | + Similar with VarMaybeNull for method parameters:
;ﬁ VarMaybeNull(x) = VarMaybeNull(x) after s1; ;ﬁ we do often not know what
3 || VarMaybeNuli(x) before For H actual parameters a method gets,
£| If the loop is executed, then look at the loop body:; £ .::/o W/& sag Null ter)e=t
2 if it is not executed then VarMaybeNull is unchanged1 S arMaybeNull(parameter)==true 18
Null Pointer Detection
Example
? String ml(int n) { ?
g@ String s = null; // VarMaybeNul l (s)==true g3

Summary

N
w¥x AW
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Today's Summary

Static Analysis:

Analyzing programs by looking at their code

Tools can do it automatically, e.g. finding resource leaks,
buffer overruns, dead code

Many analysis problems are undecidable; heuristics are
used that produce false positives and false negatives

Null pointer detection can be done by defining functions on
variables, expressions and methods
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report/november/staticAnalysisl.htm
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Quiz

What are false positives and false negatives?

. What are controls flow and data flow analysis?
. Take a small Java program and try o do the null

pointer detection on it.
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