Today's Outline

COMPSCI 732

The University of Auckland | New Zealand

Introduction to
Static Analysis

"Use the source, Luke.”

COMPSCI 732

The University of Auckland | New Zealand

=) =)

S S

SOfTWGI"@ TOO.IS — - Introduction to Static Analysis

Static Analysis | - Static Analysis with JLint

8 . + Detecting Null Pointers

E Part IT - Lecture 11 E

Static Analysis

g g * Analyzing programs by looking at their code
X Nl (i.e. before running them)

* Sad result from theory:

In general, many analysis problems are undecidable,
e.g. Turing's halting problem

However: /

- Many important cases that occur in practice D
can be analyzed and errors detected

- For most cases analysis can be approximated, i.e.
we can give warnings if something is likely to beA
wrong

+ Static analysis is usually done on the AST

False Positives
and False Negatives

Control Flow and
Data Flow Analysis

COMPSCI 732

The University of Auckland | New Zealand

- Buffer overrun: trying to write over end of array
- Memory leaks: allocating but never freeing memory
- Use after free: freeing memory and then accessing
- Uninitialized variables: using variable before init
- Dead code/data: code or data never used

* Uses mostly heuristics, not precise analysis rules

* Produces false positives and false negatives

* Has helped many open-source projects to fix
numerous bugs

COMPSCI 732

The University of Auckland | New Zealand

g False Positive: g Control Flow Analysis i 1 JE 53
2 + The analysis tool gives a warning but there is no error 2| Looking at the different paths of printC"hellof) 3|
2| + More work for the developers (distinguishing true execution in a program
i positives from the false positives) ¢ | Eg. the red arrows
False Negative: Data Flow Analysis
z| + There is an error but the analysis tool does not give a 2 Looking at the po.ssibl.e VG!UCS that while (x++<10
g warning g occur at certain points in a program print("boo™)}]
2 2
=| + Errors go undetected 2] E.g. the blue arrows
E Z| Pseudo-Evaluation ¥ 4
; Conservative -analysis means no f_alse negatives are ; Analyzing a program by simulating its execution
£ produced (i.e. no errors are missed) £| (with simplified execution semantics,
2 5 2 e.g. only one iteration is executed per loop) 6
Example: Coverity Prevent gcoverity
g + Commercial tool for static analysis through pseudo g
| evaluation, e.g. to detect: o

!

e

,Ilr ‘ww.

JLint

Data Flow Problems

COMPSCI 732

The University of Auckland | New Zealand

* = and == possibly confused, e.g. if (x = y) {3

Unclear nested block structure [while (x '= 0)
X >>= 1;
n+=1;

Unclear else-association, return X;

eg. it (x) 1T (y) i++; else j++;

* Method is overridden by method with the same name

but different parameters
Field in class shadows field of superclass

 Local variable name shadows field of class

11

COMPSCI 732

The University of Auckland | New Zealand

g - JLint is a simple static checker for Java g * Null-pointers

| * It works directly on the compiled classes 2| - Amethod is possibly invoked with null as

. : . parameter but the method does not check for null

i - Does not require the source code 8 argument

- Does not require human specification - Value of dereferenced variable may be null
- Very easy to use, but limited capabilities 1+ Value range

_| = JLint can give warnings for some concurrency, data . - Range of assigned expression value has no

¢l flow and code clarity problems & intersection with target type range

| - Some warnings might be false alarms 2| - Possible overflow, e.g. int z = (int)x * (int)y;

] + Call JLint from the command line with a class file N Redundancy

2| eg.jlint MyClass.class < - Comparison always produces the same result

gl + Call JLint without parameters to get help information £ e.g. 1+1==3 will always be false

E 9 E 10
Unclear Code Problems

g * Checked with a separate tool called AntiC g

2 + Unclear operator precedence, e.g. x || y == z o

Detecting Null Pointers

12

Null Pointers

* Null pointers are one of the main causes for runtime

:2010|

Detecting Null Pointers

Define analysis functions:

COMPSCI 732

The University of Auckland | New Zealand

String s = null;
if (n/ 10 + 1 > 100)

s = "hellol"; // VarMaybeNull (s)==false
else
s = t; // VarMaybeNull (s)==true

// VarMaybeNull (s)==true
s.substring(1); // Warning!!!

4

+ If we dereference variable x and VarMaybeNull(x)==true

+ If we don't know much about x: VarMaybeNull(x) is true
+ After assigning non-null value to x: VarMaybeNull(x) is false

VarMaybeNull(x)==true after an if-statement, if
VarMaybeNull(x)==true after the if- or after the else-part

then give warning ("NullPointerException may happen”) *°

COMPSCI 732

The University of Auckland | New Zealand

—
Sl errors MayReturnNull: Method — {true, false}
= . In Java, if a null reference is dereferenced then a § varMaybeNull: Variable — {true, false}
! - ExprMaybeNull: Expression — {true, false}
g NullPointerException is thrown g
| - Method call: xm() and x==null i - For every method M:
old ' m — u” % MayReturnNull(M) tells us if M may return null
. - Field access:)_<'y and x==nu _ _| + Af every point in the program, for every variable X
g Often problems n code that lead to null pointer §| defined at that point: VarMaybeNull(X) tells us if X
5| errorsarequite simple, e.g. (| may be null (depends on program state)
g| - Forgot toinitialize variable properly | + For every expression E defined in a program:
2 - Forgot an if-statement checking for a special case 2| ExprMaybeNull(E) tells us if E may be null
2|+ Can we detect potential null pointer errors? 2| (depends on VarMaybeNull and MayReturnNull)
5 5|+ If an expression that may be null is dereferenced,
F v #| then generate a warning "
VarMaybeNull Example Defining ExprMaybeNull
g We_;alitélta‘r_e MiybfaNtull)a:r[all/fo\fi‘riMonsbir,\\l a| f::)gmtm: g Defined on a simple Java subset using MayReturnNull
Vol m rin , 1INt N arviaybeiNu ==true .
2 2 // VarMaS//beNull(s)::true o and Var'MaybeNull.

- Constant expressions: c

ExprMaybeNull(c) = (¢ == "null")
If a constant is null, then true, otherwise false

+ Method calls: m(...)

ExprMaybeNull(m(...)) = MayReturnNull(m)
If m may return null, then the expression may be null

Variable access: x
ExprMaybeNull(x) = VarMaybeNull(x)
The expression may be null if the variable may be null

* Most other expressions can never be null,e.g. x + y

16

Defining VarMaybeNul|

Defining MayReturnNull

COMPSCI 732

The University of Auckland | New Zealand

for (int i=0; i<n; i++)

s = "hello"+1; // VarMaybeNull(s)==false
// VarMaybeNull (s)==true
return s; // MayReturnNull(ml)==true

}

int m2(String x) { // VarMaybeNull (x)==true
String y = "foo'"; // VarMaybeNull(y)==false

if (x.equals('hello™))

y = "hello"; // VarMaybeNull (y)==false
else
y = X; // VarMaybeNul I (y)==true

// VarMaybeNull (y)==true

return y.length; // Warning: y may be null Il
{;19

COMPSCI 732

The University of Auckland | New Zealand

? Goﬂj\h::ﬁh:he s’rTas’rzmen’;s c:cr;e bTy\;)neAIA beNull(x) ? Look at all return statements "return e;" in method m:
* Mo atements do not affect VarMaybeNull(x),
o e.g. statements where variable x is no‘ryinvolved 2|+ If for all these statements ExprMaybeNull(e)==false,
18 A'séi nment: X = expr: then MayReturnNull(m)==false
: 3ar'May.beNt:I|(x)p: I,ExprMaybeNull(expr') ¢ | - If for least one statement ExprMaybeNull(e)==true,
If the expression may be null, then the var may be null then MayReturnNull(m)==true
. Tf: iF(.) sl: else s2; + If we do not know enough about a method m (e.g. we
z Var;\)\aybéNull(x) - ,Var'MaybeNuII(x) after s1- 2| don't have the source code) then let's be careful and
g | | VGFMGYbeNU”(X) after 52; g say MGYRCTUT‘”NU”(m)::Tf‘Ue
Z| - For loop: for(..) si; | + Similar with VarMaybeNull for method parameters:
;ﬁ VarMaybeNull(x) = VarMaybeNull(x) after s1; ;ﬁ we do often not know what
3 || VarMaybeNuli(x) before For H actual parameters a method gets,
£| If the loop is executed, then look at the loop body:; £ .::/o W/& sag Null ter)e=t
2 if it is not executed then VarMaybeNull is unchanged1 S arMaybeNull(parameter)==true 18
Null Pointer Detection
Example
? String ml(int n) { ?
g@ String s = null; // VarMaybeNul l (s)==true g3

Summary

N
w¥x AW

20

2010|

P
g
2
%

COMPSCI 732

The University of Auckland | New Zealand

Today's Summary

Static Analysis:

Analyzing programs by looking at their code

Tools can do it automatically, e.g. finding resource leaks,
buffer overruns, dead code

Many analysis problems are undecidable; heuristics are
used that produce false positives and false negatives

Null pointer detection can be done by defining functions on
variables, expressions and methods

References:

Security Report. Static Analysis Tools.
http://www.securityinnovation.com/security-
report/november/staticAnalysisl.htm

Peter Schachte. A Gentle Introduction to Static Analysis.
http://www.cs.mu.oz.au/~schachte/lpanalysis.html 21

2010|

P
g
2
%

COMPSCI 732

The University of Auckland | New Zealand

Quiz

What are false positives and false negatives?

. What are controls flow and data flow analysis?
. Take a small Java program and try o do the null

pointer detection on it.

22

