
20
10

S ft T lsYEAR

2
M

P
S

C
I

73
2

Software Tools
Type Systems

d
C

O
M

d
| N

ew
 Z

ea
la

nd Part II - Lecture 9

rs
ity

 o
f A

uc
kl

an
d

Th
e

U
ni

ve
r

1

Today’s Outline
20
10

YEAR

2
M

P
S

C
I

73
2

• Introduction to Type Systems
• Simplified Java Type Rules

d
C

O
M

• Type Derivation

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

2

20
10

YEAR

2
M

P
S

C
I

73
2

d
C

O
M

Assignment 2

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

3

Report Grading Schedule
20
10 Approx. 5 pages (including figures) IEEE style

0 IEEE st l (5%) Abst ct (5%)YEAR

2
M

P
S

C
I

73
2

0. IEEE style (5%), Abstract (5%)
1. Introduction (10%):

Introduced & motivated the project and its aims?

d
C

O
M m p j m

2. Related Work (20%):
Cited & described academic related work (≥4)?

d
| N

ew
 Z

ea
la

nd 3. Requirements (10%): What needed to be done & why?
4. Design (20%): How did you design your solution?

Why? Design alternatives? Strengths & weaknesses?

rs
ity

 o
f A

uc
kl

an
d Why? Design alternatives? Strengths & weaknesses?

5. Implementation (20%): How did you implement it?
What did you contribute? The team work? Challenges?

Th
e

U
ni

ve
r

6. Conclusion (10%): Achievements? Conclusions?
Lessons? Future/unfinished work? 4

20
10

YEAR

2
M

P
S

C
I

73
2

I t d ti t

d
C

O
M Introduction to

Type Systems

d
| N

ew
 Z

ea
la

nd

yp y

rs
ity

 o
f A

uc
kl

an
d

Th
e

U
ni

ve
r

5

Type Systems
20
10 • Detect potential runtime errors in source code

S m s c nn t b d t ct d in n l YEAR

2
M

P
S

C
I

73
2

• Some errors cannot be detected in general,
e.g. division by zero, array boundary violations etc.

• Idea: only detect some errors (“forbidden errors”)

d
C

O
M y m (f)

• General type-checker algorithm:
– Use type rules that define how elementary parts

d
| N

ew
 Z

ea
la

nd of the source code should look like
– Type rules give program parts a type

If a type can be derived

rs
ity

 o
f A

uc
kl

an
d – If a type can be derived

for a program, then it
does not contain any

int m(String s) {
int y = s + 1;
m(y,3);

t

Th
e

U
ni

ve
r

6

forbidden errors return s;
}

The Environment Gamma 
20
10 •  is the scope at a particular place in the program

It c nt ins th si n tu s f th v i bl s nd YEAR

2
M

P
S

C
I

73
2

• It contains the signatures of the variables and
methods that can be accessed there

d
C

O
M

class MyClass {
int x;
String y;

int m1(int z) {
2 = { int x;
String y;

d
| N

ew
 Z

ea
la

nd int m1(int z) {
int a = 0;
return a + z;

}
1 = { int x;
String y;
i t 1(i t)

String y;
int m1(int z);
void m2();
int z; int a; }

rs
ity

 o
f A

uc
kl

an
d

void m2() {
String a = "hello";
System.out

println(a);

int m1(int z);
void m2(); }3 = { int x;

String y;
int m1(int z);

Th
e

U
ni

ve
r

7

.println(a);
}

}

void m2();
String a; }

Judgements
20
10 Statements about the correctness of program parts, e.g.

S b l M iYEAR

2
M

P
S

C
I

73
2

Symbols Meaning
{ int x; }├  “{ int x; } is a correct environment”

{ i t }├ +1 i t “ +1 is c ct xp ssi n f t p

d
C

O
M { int x; }├ x+1:int x+1 is a correct expression of type
int in environment { int x; }”

{ int x; }├ x=x+1; “x=x+1 is a correct statement in

d
| N

ew
 Z

ea
la

nd environment { int x; }”
{ int x; }├

void m(){x=x+1;}
“void m(){x=x+1;} is a correct
method definition in env { int x; }”

rs
ity

 o
f A

uc
kl

an
d void m(){x=x+1;} method definition in env. { int x; }

├ class A {int x;
void m(){x=x+1;}
}

“A is a correct class in an empty
environment”

Th
e

U
ni

ve
r

8

}

Type Rules
20
10 Rule [expr +] can be used to derive/check additions of

integer expressions (e g 1+1)
YEAR

2
M

P
S

C
I

73
2

integer expressions (e.g. 1 1)

R l N

Precondition
(everything above the line)

Judgements “is correct in
environment”

d
C

O
M Rule Name “has type”

d
| N

ew
 Z

ea
la

nd

Postcondition
J d

rs
ity

 o
f A

uc
kl

an
d

“If expr1 is a correct int expression in environment 
and is a correct i t expression in environment 

n n
(everything below the line) Judgement

Th
e

U
ni

ve
r and expr2 is a correct int expression in environment 
then expr1 + expr2 is also a correct int expression in
environment “

9

20
10

YEAR

2
M

P
S

C
I

73
2

d
C

O
M

Simplified Java Type Rules

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

10

Type Derivation
20
10 Idea: derive smaller parts, combine them into big parts

From smallest to biggest:YEAR

2
M

P
S

C
I

73
2

From smallest to biggest:
1. Environments for methods

(containing signatures for accessible methods and vars)

d
C

O
M

2. Expressions in methods
3. Statements in methods
4 The methods themselves N

d
| N

ew
 Z

ea
la

nd 4. The methods themselves
5. Member variables
6. The whole class

Not
covered
in 732

rs
ity

 o
f A

uc
kl

an
d

The start rule (for creating environments):

Th
e

U
ni

ve
r

11

Expressions 1
20
10 Literals

YEAR

2
M

P
S

C
I

73
2

O (f)

d
C

O
M Operators (e.g. + for int)

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

You can create analogous rules for other types, e.g. double 12

Expressions 2
20
10 Variable access

YEAR

2
M

P
S

C
I

73
2 Pre: a correct environment with a variable signature

Post: an expression that accesses the variable

d
C

O
M p

Method calls

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d

Pre: n correct expressions in an environment with a
method signature (has n parameters with same types)

Th
e

U
ni

ve
r g p yp

Post: method call using the expressions as arguments
13

Statements
20
10 Expressions as statements

YEAR

2
M

P
S

C
I

73
2 Assignments

d
C

O
M

Blocks of statements

If st t m t

d
| N

ew
 Z

ea
la

nd If statement

If-else statement

rs
ity

 o
f A

uc
kl

an
d

Y t l l f

Th
e

U
ni

ve
r You can create analogous rules for for, while, …

14

20
10

YEAR

2
M

P
S

C
I

73
2

d
C

O
M

Type Derivation

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

15

Derivation Example 1
20
10 Given the environment  = { boolean x; int y;}

derive the following code: if (x) y = y + 1;
YEAR

2
M

P
S

C
I

73
2

derive the following code: if (x) y = y + 1;

d
C

O
M

1. Derive expression x

d
| N

ew
 Z

ea
la

nd

. D p

2. Derive expression y

rs
ity

 o
f A

uc
kl

an
d . Der ve express on y

3 Derive expression 1

Th
e

U
ni

ve
r 3. Derive expression 1

16

Derivation Example 1 Cont.
20
10 Given the environment  = { boolean x; int y;}

derive the following code: if (x) y = y + 1;
YEAR

2
M

P
S

C
I

73
2

derive the following code: if (x) y = y + 1;

d
C

O
M

d
| N

ew
 Z

ea
la

nd

4. Derive y+1

rs
ity

 o
f A

uc
kl

an
d

5. Derive y=y+1

Th
e

U
ni

ve
r

6. Derive if
17

Derivation Example 2
20
10 Given the environment  = { int x; int m(String s);}

derive the following code: x = m("hello") + 7;
YEAR

2
M

P
S

C
I

73
2

derive the following code: x = m(hello) + 7;

d
C

O
M

d
| N

ew
 Z

ea
la

nd 1. Derive "hello"

2 Derive m("hello")

rs
ity

 o
f A

uc
kl

an
d 2. Derive m("hello")

Th
e

U
ni

ve
r

18

Derivation Example 2 Cont.
20
10 Given the environment  = {int x; int m(String s);}

derive the following code: x = m("hello") + 7;
YEAR

2
M

P
S

C
I

73
2

derive the following code: x = m(hello) + 7;

d
C

O
M

4. Derive 7

d
| N

ew
 Z

ea
la

nd

5. Derive addition

rs
ity

 o
f A

uc
kl

an
d

6. Derive assignment

Th
e

U
ni

ve
r

19

20
10

YEAR

2
M

P
S

C
I

73
2

d
C

O
M

Summary

d
| N

ew
 Z

ea
la

nd
rs

ity
 o

f A
uc

kl
an

d
Th

e
U

ni
ve

r

20

Today’s Summary
20
10 • Type systems detect potential runtime errors in code

• Environment  contains the signatures of the accessible YEAR

2
M

P
S

C
I

73
2

• Environment  contains the signatures of the accessible
variables and methods in a method

• Type rules with pre- and postcondition & judgements, e.g.

d
C

O
M

• Type derivation: using the type rules first derive smallest

d
| N

ew
 Z

ea
la

nd • Type derivation: using the type rules, first derive smallest
parts, then combine them into larger parts

Reference:

rs
ity

 o
f A

uc
kl

an
d Reference:

Luca Cardelli. Type Systems.
http://www.eecs.umich.edu/~bchandra/courses/papers/Cardelli_Types.pdf

Th
e

U
ni

ve
r

21

Quiz
20
10 1. What is a type system?

2 Wh t is n n i nm nt  ? Wh d n d it?YEAR

2
M

P
S

C
I

73
2

2. What is an environment  ? Why do we need it?
3. What is a judgement? Give examples.
4 Given the environment

d
C

O
M 4. Given the environment

 = { String s; String m(int a, int b);}
Derive the following program:
if("h ll ") (1 2) l " b "

d
| N

ew
 Z

ea
la

nd if(s=="hello") s = m(1,2); else s = "abc";

rs
ity

 o
f A

uc
kl

an
d

Th
e

U
ni

ve
r

22

