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Report Grading Schedule
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10 Approx. 5 pages (including figures) IEEE style
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0. IEEE style (5%), Abstract (5%)
1. Introduction (10%):

Introduced & motivated the project and its aims?
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2. Related Work (20%):
Cited & described academic related work (≥4)?
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nd 3. Requirements (10%): What needed to be done & why?
4. Design (20%): How did you design your solution? 

Why? Design alternatives? Strengths & weaknesses?
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5. Implementation (20%): How did you implement it? 
What did you contribute? The team work? Challenges?

Th
e 

U
ni

ve
r

6. Conclusion (10%): Achievements? Conclusions? 
Lessons? Future/unfinished work? 4
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Type Systems
20
10 • Detect potential runtime errors in source code
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• Some errors cannot be detected in general, 
e.g. division by zero, array boundary violations etc.

• Idea: only detect some errors (“forbidden errors”)
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• General type-checker algorithm:
– Use type rules that define how elementary parts 
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– Type rules give program parts a type

If a type can be derived 
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for a program, then it 
does not contain any 

int m(String s) {
int y = s + 1;
m(y,3);

t
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forbidden errors return s;
}



The Environment Gamma 
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10 •  is the scope at a particular place in the program
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• It contains the signatures of the variables and 
methods that can be accessed there
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class MyClass {
int x;
String y;

int m1(int z) {
2 = { int x;
String y;
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nd int m1(int z) {
int a = 0;
return a + z;

}
1 = { int x;
String y;
i t 1(i t )

String y;
int m1(int z);
void m2();
int z; int a; }
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void m2() {
String a = "hello";
System.out

println(a);

int m1(int z);
void m2(); }3 = { int x;

String y;
int m1(int z);
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.println(a);
}

}

void m2();
String a; }



Judgements
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10 Statements about the correctness of program parts, e.g.
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Symbols Meaning
{ int x; }├  “{ int x; } is a correct environment”

{ i t }├ +1 i t “ +1 is  c ct xp ssi n f t p

d
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O
M { int x; }├ x+1:int x+1 is a correct expression of type
int in environment { int x; }”

{ int x; }├ x=x+1; “x=x+1 is a correct statement in 
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{ int x; }├ 

void m(){x=x+1;}
“void m(){x=x+1;} is a correct 
method definition in env  { int x; }”
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├ class A {int x;
void m(){x=x+1;} 
}

“A is a correct class in an empty 
environment”
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Type Rules
20
10 Rule [expr +] can be used to derive/check additions of 

integer expressions (e g  1+1)
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integer expressions (e.g. 1 1)

R l  N

Precondition
(everything above the line)

Judgements “is correct in 
environment”
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M Rule Name “has type”
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Postcondition
J d
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“If expr1 is a correct int expression in environment 
and is a correct i t expression in environment 

n n
(everything below the line) Judgement

Th
e 

U
ni

ve
r and expr2 is a correct int expression in environment 
then expr1 + expr2 is also a correct int expression in 
environment “
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Type Derivation
20
10 Idea: derive smaller parts, combine them into big parts

From smallest to biggest:YEAR
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From smallest to biggest:
1. Environments for methods

(containing signatures for accessible methods and vars)
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2. Expressions in methods
3. Statements in methods
4 The methods themselves N
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nd 4. The methods themselves
5. Member variables
6. The whole class

Not
covered
in 732
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Expressions 1
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Expressions 2
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10 Variable access
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Post: an expression that accesses the variable
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Pre: n correct expressions in an environment with a 
method signature (has n parameters with same types)
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Post: method call using the expressions as arguments
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Statements
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10 Expressions as statements
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Blocks of statements

If st t m t
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Derivation Example 1
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10 Given the environment  = { boolean x; int y;}

derive the following code: if (x) y = y + 1;
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derive the following code: if (x)  y = y + 1;
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1. Derive expression x
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2. Derive expression y
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3 Derive expression 1
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Derivation Example 1 Cont.
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10 Given the environment  = { boolean x; int y;}

derive the following code: if (x) y = y + 1;
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derive the following code: if (x)  y = y + 1;
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4. Derive y+1
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5. Derive y=y+1
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Derivation Example 2
20
10 Given the environment  = { int x; int m(String s);}

derive the following code: x = m("hello") + 7;
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derive the following code: x = m( hello ) + 7;
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2 Derive m("hello")
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Derivation Example 2 Cont.
20
10 Given the environment  = {int x; int m(String s);}

derive the following code: x = m("hello") + 7;
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derive the following code: x = m( hello ) + 7;
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4. Derive 7
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5. Derive addition
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6. Derive assignment
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Today’s Summary
20
10 • Type systems detect potential runtime errors in code

• Environment  contains the signatures of the accessible YEAR
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• Environment  contains the signatures of the accessible 
variables and methods in a method

• Type rules with pre- and postcondition & judgements, e.g.
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• Type derivation: using the type rules  first derive smallest 
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parts, then combine them into larger parts
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Luca Cardelli. Type Systems.
http://www.eecs.umich.edu/~bchandra/courses/papers/Cardelli_Types.pdf
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Quiz
20
10 1. What is a type system?

2 Wh t is n n i nm nt  ? Wh  d   n d it?YEAR
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2. What is an environment  ? Why do we need it?
3. What is a judgement? Give examples.
4 Given the environment

d
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M 4. Given the environment

 = { String s; String m(int a, int b);} 
Derive the following program:
if( "h ll ") (1 2) l " b "
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nd if(s=="hello") s = m(1,2); else s = "abc";
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