IZEL IDSdINOD | QO'[OZI

AL

pue[ea7Z MaN | puepny jo ANSIvAIUN

Software Tools
Version Control

Part Il - Lecture 6

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Today's Outline

1) Introduction to Version Control
2)Managing Concurrency

0t0Z|

YEAR

Introduction to
Ve rsi_.CotroI

<

The only constant is change.
(Heraclitus)

pue[eaZ M3N | pueppPNy Jo ANSIDATUN YT,

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Version Control

Common problems in a software project:
- A change needs to be undone
- Old code that was overwritten would be useful
again
- Several developers work on the same program part
simultaneously

- How do | get the latest version of the code?

The solution: a Version Control System (VCS)
- Manages a common repository for all artefacts
- Controls concurrent access

- Creates new version for each change (redo/undo
possible)

- Helps to merge several contributions to same part

4

IZEL IDSdINOD | §0[02|

pue[ea7Z MaN | puepny jo ANSIvAIUN 9y,

Version Control System
Net\{vork -
@@ ‘COogtlan 5< :
e
@ 5 <—

* Developers work on their local working copies
* Developers synchronize their working copy with the

repository

* Repository usually uses delta encoding for the versions
* Two ways to avoid conflicts: locking and merging

0t0Z|

=<
m
>
o

I €L 1DSdINOD I

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Product Space and Version
Space

Product space: What is versioned? How is the data
organized?

* Just files: each file has a version number which is increased
when the file is changed (e.g. CVS)

* Files and folders: the whole file-folder structure has a single
version number which is increased for any change done to
any file/folder (e.g. SVN)

Version Space: How is the data versioned? How are versions
organized?

* Serial number (1, 2, 3, ...), build date (e.g. 20060901), ...

* X.Y.Z (major version . minor version . build)
- Sometimes odd Y signifies development branch (e.g. Linux)
- Usually:

* Change of X: breaks compatibility, adds substantial new
features

* Change of Y: compatible, new features added
* Change of Z: maintenance/bugfix release

* Special versions: alpha, beta, RC (Release Candidate)

IZEL IDSdINOD | g()'[()zl

pue[ea7Z MaN | puepny jo ANSIvAIUN 9y,

Delta Encoding

Storing every version of a file takes up a lot space
|ldea: just store differences between versions

Differences ("deltas” / “diffs”) can be calculated
automatically with various algorithms

Deltas can be recorded in a separate file and used to
update files (e.qg. for “patches”)

Version 1; Version 2:
1 class X { class X {
2 //_todo j‘> . <: int m() {
3 void m() { | | return 0;
4} ¥
5) - }

Delta:

Line 2: delete

Line 3: "int" for "void"

Line 4: insert "return 0;"

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Index: X.java

--- X.Java (revision 6094)
+++ X.java (working copy)
@@ -1,5 +1,5 @@
class X {
- // todo

void m() {
+ return;

}
}

L

* Used by most VCSs
* Only line insertions and deletions

The Unified Diff Format

Example:
remove comment and
insert “return:;”

Filename
Old and new version id

List of chunks:
@@ -OrigStart, #lines
+NewStart, #lines

@@
Lines with + are

added, lines with - are
removed

* Some leading and trailing lines for each change for
“fuzzy” patching (applying patch to version where it

does not fit exactly)

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Branches & Tags

Branches: different copies of a project which are developed
simultaneously; “self-maintained lines of development”
(/branches)

One main branch (/trunk)

Maintenance branches: used for maintaining old
versions which are still widely used (e.g. commercial
0S)

Experimental branches: used for trying out new
features before merging them into the trunk

Personal developer branches: for people trying out
their own ideas

: particular marked versions of the project (/tags)

Can be used to refer to and recreate an old version

Actually also like a copy of the project at a particluar
point in time
Difference to branches: usually not changed any more

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Version Control
Best Practices

1.

Complete one change at a time and commit it

- If you committing several changes together you cannot
undo/redo them individually

- If you don't commit and your hard disk crashes...

Only commit changes that preserve system integrity

- No “breaking changes” that make compilation or tests
fail

Commit only source files (e.g. not .class files)

Write a log entry for each change

- What has been changed and why

. Communicate with the other developers

- See who else is working on a part before changing it
- Discuss and agree on a design

- Follow the project guidelines & specifications i

IZEL IDSdINOD | g()'[()zl

AL

pue[ea7Z MaN | puepny jo ANSIvAIUN

Managing Concurrency

11

0t0Z|

=<
m
>
o

I €L 1DSdINOD I

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Concurrent File Access:
“Lost Update” Problem

* When sharing files
developers can accidentally ; fwouesreadihesame fie > They bothbeginto edi theircapes
overwrite each others Repository Repository
changes A]
* Consider two developers o b
working on the same file I Iy _
* Two approaches for solving B @
this: Harry sally Harry Sally
— LOCking (reserved Harry publishes his version first Saly accidentally overwrites Hary's version
checkouts) 3 Repository 4 Repasitory
- Merging (unreserverd
checkouts) . -
. € Fife
* Many old version control . .
systems support only @
locking (e.g. RCS, SCCS) Harry Sally Harry Sally
* Newer systems offer
merging) Images taken from
° B th h h S0MIE RIGHTE RESERVED the SVN BOOk 12
oth approacnes have (see resources

disadvantages page)

0t0Z|

=<
m
>
o

I €L 1DSdINOD I

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Locking
(Reserved Checkouts)

Only one person can edit - s tiesneas

it for eliting

a file at a time Reposiory
Before getting write

A
access developer has to Lock i
[Read
Harry

acquire the lock of the
file

Attempts to get lock e
while someone else has it 3 weostised

fail ﬁ
1

Sally has to wait for e

Harry to release the lock e T
Access to files is D

serialized Harry Sally

Workflow:
lock-modify-unlock

]

Sally

2 While Harry edits, Sally's lock
attempt fails

Repository

a0

Harry Sally

4 Now Sally can lock, read and
el the lofest version

Repository

[,
Read
oK l

ﬁ

Harry Sally

13

0t0Z|

=<
m
>
o

I €L 1DSdINOD I

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Merging

(Unreserved Checkouts)

want

Everybody can modify their working copy whenever they

But own changes have to be merged with changes of others

before they can be written to repository (copy-modify-merge)

1 Tweo wsers copy the same file
Repository

2 They both begin ta edit their copies
Repository

A

I—ﬁ'-ﬁm' HE'E'-E'T

Harry Sally Harry Sally

5 Harry compares the hatest version 6 A mew merged version is created

T i oum
Repository Repository
- e
J“I.
I_ fead
[, [™ [,
Harry Sally Harry Sally

3 Sally publishes her version first
Repository

Harry Sally
7 The merged version is published
Repository

— I-'I-’n'rE'—I

Harry Sally

4 Harry gets an “oul-of-dafe” errar

Repository
=
Wite *]

Harry Sally

8 Miowr botfh wsers have each

athers” changes
Repository
A"
Read
Harry Sally

0t0Z|

=<
m
>
o

I €L 1DSdINOD I

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Merging Example

Developer A
makes a
change

class Test {
String m() {
return "test";

I

Developer B
akes a
ange

=

class Test {

String m() {
return s;

I

String s = "test";

=

class Test {
String m(String t) {
return t;

}o}

—~Merge =

class Test {
String s =

I

"test";

String m(String t) {
Conflict: return s; or return t; 777

15

IZEL IDSdNOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Merging: Textual and
Semantic Conflicts

* Textual conflicts

Changes of different developers are very close or
overlapping each other (“overlap”)

Merge tool cannot automatically combine them

Merge tool detects such conflicts & reports them to the
user

Version control system will refuse to write a file with
unresolved textual conflicts to the repository

* Semantic conflicts (logical conflicts)

Changes are semantically incompatible, but may not be
overlapping (e.qg. in different files)

E.g. developer A changes method signature of method m,
developer B inserts method calls to m using the old
signature

Non-overlapping semantic conflicts are not detected by a
generic merge algorithm!!!

Can be avoided by following specifications and
communicating with others

* Both textual and semantic conflicts have to be resolved by 16
the user

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Locking vs. Merging

Arguments against locking and for merging

1. Administrative problems: people forget releasing
their locks; frequently administrators have to do it

2. Unnecessary serialization: very counter-productive

- Locking prevents people from editing different
parts of the same file

- In reality conflicts occur rarely and can be resolved
without problems

- Conflicts usually indicate lack of communication
* Developers have not agreed on a proper design

« With mutual agreement on design conflicts are
usually straightforward to merge

3. False sense of security: locking does not prevent
semantic conflicts of distributed changes (i.e. in
different files)

17

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Locking vs. Merging

Arguments for locking and against merging

1. “Unmergeable” files: a generic merging tool
does not work for all file types

- For some formats (e.g. for graphics) generic
merging leads to many conflicts

- Conflicts can be very hard to resolve (e.g. for
binary formats)

— One of two conflicting changes get lost
(because they cannot be merged)

2. Tradition: an organization might have always
used a locking VCS

18

IZEL 1DSdWOD I QO'[OZI

AL

PUB[EIZ MIN] | PUBPPNY JO ANSISATUN

Summary

19

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Today’'s Summary

* A Version Control System manages the
different versions of all artefacts in a project

- Many local working copies and one shared
repository, compressed with delta encoding

* Prevents lost updates through reserved
(locking) or unreserved (merging) checkouts

- Supports automatic merging and detects
textual conflicts, but cannot detect non-textual
sematic conflicts

- Conflicts always have to be resolved manually

20

IZEL IDSdINOD I QO'[OZI

PUB[E3Z MIN] | PUBPPNY JO ANSISAIUN YT,

Quiz

1. What is delta encoding? Give an example.
2. What is the difference between locking and

merging? When should each of it be used?

3. What is a semantic conflict? Why can it be a

problem?

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

