Today's Outline

COMPSCI 732

The University of Auckland | New Zealand

Software Development
Processes

He who fails to plan,
plans to fail
(Proverb)

COMPSCI 732

The University of Auckland | New Zealand

=) =

Software Tools — - Introduction to Software Development Processes
Software Development Processes | - eXtreme Programming (XP)

8 9] - Rational Unified Process (RUP)

E Part IT - Lecture 2 E

Software Development
Process

2] 2| Generic plan for a software project

S S

What has to be done? (-> tasks/activities/steps)
Why do a task? (-> outcomes, produced artifacts)
When should it be done? (-> schedule)

Who does it? (-> people, roles, responsibilities)

How should it be done? (-> methods, standards, tools)

oA W

Many different processes exist

No single process suitable for every project
(no “one size fits all")

Using a process can improve the quality of the product

4

Adaptive vs. Predictive

Processes

Agile Software Development

COMPSCI 732

The University of Auckland | New Zealand

eXtreme Programming (XP)

COMPSCI 732

The University of Auckland | New Zealand

— @ o —
> (fmsatecs > I : :
S @ Adaptive < % +> Predictive @i/’ S|+ Evolved in mid 1990s as part of a reaction against
N - Nl heavyweight methods
N Lightweight, ‘agile’ + Heavyweight, 'traditional’ o . : : ' s,
Control by feedback Control by planning Many short iterations (weeks), ‘prototyping"
g Many short iterations (weeks) Few long iterations (months) g lteration
8 Small scale (<10 developers) Large scale (>30 developers) s
Face-to-face communication Written documents #1 -—'-—'_!-
Code- & people-centric Rule-centric
§ Problems: Problems: §
z - Long -term results hardly - Inflexible with changing 2| #3 w-
z predictable requirements E
g - Needs good project - High integration and testin g (
N foundafion proj ? I I 5
2 - Cowboy-coding chaos - Con'rrol freak' bureaucrac Zz . ..
g yreodins 4 g| + Control by feedback: reevaluation & revision of
2]+ Eg.Xxp E.g. waterfall, RUP 2| project after each iteration .
| XP Overview
_ B X.B
» o
S S .Instead of cowboy coders we have software
X N sheriffs; working together as a team, quick on the

draw, armed with a few rules and practices that are
light, concise, and effective."
(James D. Wells, extremeprogramming.org)

+ XP=eXtreme Programming:
Nomen est omen, a code-centered approach

+ XP culture: not just about getting work done

+ Set of day-to-day best practices for developers and
managers that encourage and embody certain values

+ 5 values, 12 practices/rules

The 5 XP Values

1. Communication

The 12 XP Practices

‘ COMPSCI 732

The University of Auckland | New Zealand

- Work with latest version

- Integrate local changes ASAP
10. Refactoring

- Improve design whenever possible

- Remove clutter & unnecessary complexity
11. Small Releases

Programmer welfare

12. Sustainable Pace
No Overtime - change timing or scope instead

11

COMPSCI 732

The University of Auckland | New Zealand

? - Teamwork: consistent shared view of the system ? Fine scale feedback

S - Open office environment: developers, managers, customers K| 1. Pair Programming

- Verbal, informal, face-to-face conversation Programming in teams of two: driver and navigator

B 2. Feedback . Cost of ¥ | 2. Planning Game: method for project planning with the customer
i - Find required changes ASAP to avoid cost change £l 3 Test Driven Development

3 - From the customer, through early 8| Fi . h d

prototypes & communication - irst write test cases, then program code
- Testing, code review, team estimates Point of time - For each defect, introduce new test case

=| 3. Simplicity within project =| 4. Whole Team: teamwork of customer, developer/manager

g - Build the simplest thing that works for today g

H - No work that might become unnecessary tomorrow % | Shared understanding

S - Simple design easier o communicate z| 5. Use an agreed Coding Standard

z| 4. Courage . Y %] 6. Collective Code Ownership

s - To change and to scrap, “embrace change 3 Everybody is responsible for and can change all code

'?T - Better changg now (cheaper) § 7. Simple Design

s - Never ever give up! £] 8. System Metaphor

2| O Respect your teammates and your work 9 2 Consistent, intuitive naming of program parts 10

The 12 XP Practices Some XP Terminology
Z| Continuous process | -+ User story
N 9. Continuous Integration N - Things the system needs to do for the users

- Written on a card in a few sentences

- Should take 1-3 weeks to implement

Release: running system that implements important user stories
Spike

- Small proof-of-concept prototype

- Explores the feasibility of an implementation approach
Iteration

- Phase of implementation, 1-3 weeks long

- Consists of tasks, each of which is 1-3 days long
Project velocity: used to estimate progress

- Either #stories / time (time)

- Or time / #stories (scope)

12

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

XP Workflow Overview

Project velocity Defects

........................
.....................
,,,,,,

New Next
User Story Iteration

Uncertain
Estimates

Confident

Estimates — =is followed by

""" > =result goes into

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

XP Criticism

Relies on on-site customer
- Single point-of-failure
(-> source of stress, lack of technical expertise)
- May not be representative for all users (-> user conflicts)

Unstable Requirements because of informal change requests
instead of formal change management (-> rework, scope creep)

Lack of documentation, e.g. tests instead of requirements
documents

Incremental design on-the-fly (-> more redesign effort)
Pair-programming required

Interdependency of practices requires drastic organizational
changes

Scalability? Distributed development?

14

12009

‘ COMPSCI 732

The University of Auckland | New Zealand

The Rational Unified
Process (RUP)

15

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

RUP Overview

Extensible, customizable process framework

Created by the Rational Software Corporation in the
1980s and 1990s, which was sold to IBM in 2003

Now software process product of IBM

IBM sells RUP tools, e.g. Rational Method Composer
for authoring, configuring and publishing processes

Business-driven development
Tied fo UML

Heavyweight, i.e. of considerable size, but recent
changes influenced by lightweight, agile processes

16

6 RUP Best Practices:
The RUP ABC

The RUP ABC Cont'd

The University of Auckland | New Zealand

- Justification or business case

- Project scope, use cases, key requirements

- Candidate architectures

- Risks, preliminary project schedule, cost estimate
2. Elaboration Phase

- Requirements, risk factors

- System architecture (Executable Architecture Baseline)

- Construction plan (including cost and schedule estimates)
3. Construction Phase: building the rest of the system (longest)
4. Transition Phase: deployment, feedback, user training

19

The University of Auckland | New Zealand

§ Adap‘r the process § Demons‘rm‘re value iteratively

S]

N - right-size the process to project needs o - incremental value to enable early and continuous feedback

N - adapt process ceremony to lifecycle phase = - adapt your plans

; - continuously improve the process g - embrace and manage change

¢ - balance project plans and associated estimates with the : - drive out key risks early
o uncertainty of a project °

B . S Eleva‘re the level of abstraction
alance competing stakeholder priorities reusing existing assets

2 . . k= - | ISTI

s - understand and prioritize business and stakeholder needs = _ lever'age hi heg-level tools. frameworks. and languages

3 - center development activities around stakeholder needs 3 ot 9 gh' tect ' ' E

= - balance asset reuse with stakeholder needs S ocus on architecture

;; Collabor‘GTe across teams § Focus continuously on quality

z - motivate individuals on the team to perform at their best z - the entire team owns quality

2 - encourage cross-functional collaboration 2 - fest early and continuously

2 - provide effective collaborative environments 17 2 - incrementally build test automation 18

RUP Lifecycle RUP Lifecycle
"] © 4 phases divided into a series of timeboxed /ferations = ‘ : _ | : ———
S Each iteration results in an increment (release) S Inception ! Flaboration’] Soustencton ; Franticon
|

2|+ Disciplines (like traditional phases) which happen with varying B = e b g 3

” emphasis in every phase B (Reaskements I ll

= = I I ; H [

g g | 1 [| I | I

g | 1. Inception Phase = | [Design M

I
I

Implementation

Test

Proj. Mgml,

>

Ier.l | Mer.2 | Ier3 | Iterd | lter5 | Iter6 | Iter,7 | lter8 | ler | Iter.10

SOME RIGATS RESERVED

2006 Giles Lewis 20

COMPSCI 732

The University of Auckland | New Zealand

:2009)|

RUP Criticism

+ "High ceremony methodology”

Bureaucratic: process for everything

* Slow: must follow process to comply

Excessive overhead:
rationale, justification, documentation, reporting,
meetings, permission
Very customizable: can be everything and nothing

But:
* RUP can be used in traditional waterfall style or in

agile manner

Example: dX process

- Fully compliant instance of RUP

- Identical to XP 21

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Summary

22

12009

COMPSCI 732

The University of Auckland | New Zealand

Summary

* Adaptive vs. predictive Processes
+ eXtreme Programming (XP)

- Agile process focused on programming as a team
- Short iterations, as much feed back as possible
- Best practices include collective code ownership,
refactoring, pair programming
Rational Unified Process (RUP)
- Heavyweight process framework
- Phases divided into iterations,
several disciplines happening simultaneously

- Best practices include risk & change management,

use of tools, models & components e

:2009)|

COMPSCI 732

The University of Auckland | New Zealand

Quiz

Describe three differences between adaptive and
predictive processes.

. Name five of the XP best practices.

. What are the characteristics of the RUP lifecycle?

24

