COMPSCI 732 Software Tools
Course introduction

* Aims of the Course

— This paper is concerned with advanced topics in tools
that assist in the production of software, with a strong
emphasis on practical aspects

e This is very much a research oriented paper — we
will be talking but our active research interests
and their application -

* Lecturers:

— John Hosking room 303.487
— Karen Li room 303.495
— Christof Lutteroth (supervisor) room 303.494

COMPSCI 732 Lecture 1 1

Course outline

e John and Karen’s part (6 weeks):

— Visual language design, application and evaluation
(John) 1 week

— Meta tools and visual language
implementation(Karen) 2 weeks

— Collaboration and knowledge management tools
(John) 3 weeks

e Christof’s part (6 weeks)
— data access layers
— version control
— compiler generators
— static analysis and type systems

COMPSCI 732 Lecture 1 2

Assessment

 There are two assignments and a final exam.
The mark breakdown is
— Two assignments 25% each
— Final Exam 50%

e You must gain a pass in each of the
assignment component and examination
component to pass the course as a whole.

COMPSCI 732 Lecture 1

Assignment topics

e Visual language implementation

— This assignment will involve the construction of a
small visual language environment (or part of an
environment) using our Marama meta tool which
is Java based or Microsoft’s DSL Tools meta tool.

e Tool project

— This assignment will involve the development of a
small software engineering tool .

COMPSCI 732 Lecture 1

Lectures and labs/tutorials

Monday 1pm and Tuesday 1pm slots will
mostly be used for lectures

— Held in 303.279
Thursday 1pm slot will mostly be used for lab
demonstrations or tutorials/group exercises

— Lab demos/tuts will be in
GCL lab (3035-G91)

— Some tuts may use 279
— We'll advise locn each week

COMPSCI 732 Lecture 1

Readings @

We will be assigning regular readings G

— Typically research papers

You will be expected to read these BEFORE the
lectures

You will be expected to contribute to the lectures
using insights gained from the readings

— Class discussions

— Group activities

Building understanding of how to read and

critique research papers is an important skill for a
PG student

COMPSCI 732 Lecture 1 6

Some context: software tools

Tools to support the development of software
— Covers all aspects of the software development lifecycle

— Covers support for a wide variety of methodologies and
technologies
* Both general purpose and domain specific

Much research and commercial activity in this area

Strong research focus in the CS Department at
Auckland

Resource: Software Tools, Grundy and Hosking
(Chapter in Wiley Encyclopaedia of Software
Engineering)

COMPSCI 732 Lecture 1

Context: software tools

Rapid change in software development practice in recent
times:

— Newer development methodologies, eg RAD, XP/Agile
development, Open Source development, that focus on
iterative & collaborative development

* Need for round trip engineering support
* Need for collaboration support

— New technologies to support, partic wrt distributed
systems (eg middleware, component based approaches,
web services, aspects)

* Need new modelling and support tools

COMPSCI 732 Lecture 1

Some context: software tools

Process/workflow/project

< >
management (PM) tools/PCSEEs
<“4-Requirements —--%
<-- CASE Smmmmmm o] >
<---- —— Formal methods tools — - ———————___ »
<- Software architecture —---------------—- »
<- 4GLs/application generators ———-------------] >
<- Visual Programming tools ———----- »
User interface
development tools
- <- Database/middleware >
Requirements tools
% P Programming o
- tools/IDEs e
Design Debuggers/Program
% Visualisation tools
Implementation %
Testing/Deployment
P R— Simulation tools >
______ Libraries/Repositories —y,
< P < Testing/monitoring
<----- Reverse engineering —p» tools >
D I Version Control ————————————— - »
<----- — Configuration Management ————————————— >
< Collaborative Work Tools —— _______ >
COMPSCI 732 Lecture 1 9

Five issues for software tool design

* |n pairs come up with five general issues for _
software tool design 5 mins

— Things you need to be aware of as a
tool designer

— Things that strongly influence the way in which
you would approach a tool design task

In pairs of pairs exchange and discuss your
lists and come up with 1-2 top issues 2-3 mins

COMPSCI 732 Lecture 1 10

Visual languages

“some visual representations (in addition to or in place of words and
numbers) to accomplish what would otherwise have to be written in a
traditional one-dimensional programming language”

— Shu, N Visual Programming, Van Nostrand Reinhold, NY, 1988

Visual programming is programming in which more than one dimension is
used to convey semantics. Eg:

— multi-dimensional objects
— use of spatial relationships

— use of the time dimension to specify “before-after” semantic
relationships.

A Visual Programming Environment allows visual specification and
generation of code

NB some use of 2-D in conventional PLs
— use of indentation/layout to convey semantic info

COMPSCI 732 Lecture 1 11

Why visual languages?

Make good use of human

cognitive capabilities

— A picture is worth a thousand
words

Arise naturally in many design
situations

Often allow a “higher level”
approach to design

Often useful for complex
configuration tasks
— Evolving frameworks pattern language

Much research on VLs at UcA ©

COMPSCI 732 Lecture 1 12

History

e Early work didn’t scale
— Executable flowcharts H
— Programming by demonstration

* Followed by work in

— Programming environments that replaced some
textual programming by visual (eg VisualWorks, Visual
Basic)

* Won’t consider here
— CASE tools — programming in the large
— General purpose VLs — the original nirvana

— Domain Specific VLs — constraining the task

HISTORY

COMPSCI 732 Lecture 1 13

Example Visual Languages: UML

e UML is a collection of visual notations used for
programming in the large

e Originally purely a design language but
MDA/MDE approaches ar changing that

: Order Entry Window Order order lines : : Product Reorder Item :
Order Line

_ 1: prepare
Customer 2: prepare

1

line items | 1.* BusinessCustomer ‘ ‘ PersonalCustomer ‘
| I |

| | |
:

77777

1 salesrep | 9.1

Product Employee

COMPSCI 732 Lecture 1 14

Example Visual Languages: Circuit
diagrams

| smcriom
¥

[maren Laouts Fom swcies swi ssws|

| wLan |

5 WS Fhas
| et e fao ot gun. |

FIG. 10 CIRCUIT DIAGRAM,

COMPSCI 732 Lecture 1 15

Example VLs: Prograph
* Prograph (Cox et al 1989) uses a visual dataflow
metaphor

— dataflow metaphor very popular in VL — nodes for
processing elements, arcs for dataflows

1:1 notify observees

&2 Classes of "NTT Obse

4¢Observe Elementr> abserver

[Enotify observees 1p23333:F% Fstop abserving allZ]

NTT Docament Dats
3 1:2 NIT Element/Get Undead?
i
NTT Element P targed object
@ 1:1 notify observees

NTT Cursor Element

My Factory 4 Dead? 4
! T o
NTT Observe Element . : J—E 4[—.
Observee List 2] ¢<Duserve Element>> NULL TRUE

TRUE

B e

<a]

Prograph

Has a well developed OO framework

— Dataflow “methods” for classes

— GUI library framework allows rapid prototyping of applcns
Has extensive debugging support

— Reuses dataflow diagrams during execution with values
instantiated to visualise execution behaviour

Probably the only “successful” commercial general
purpose visual programming language

Example VLs: Forms/3

Forms/3 (Burnett 1995,98) uses a spreadsheet
metaphor

Programmer constructs forms with free format cells
(not fixed to a grid) using direct manipulation

Each cell has a formula which may refer to contents of
other cells, possibly in other forms

Linked formulae create a one-way constraint network
— consistency is maintained

Can construct types and instantiate them (prototype
approach to 0O0) — cells can reference instances

Can sketch shapes

Forms/3

e Aimed at non-programmers

* Much recent work on adding test tools (see
EUSES project)

T8 60

€00000

000000060600

ngut

0000

Example VLs: KidSim/Cocoa

e Cocoa (Smith et al 1994) uses a rule based
metaphor combined with a 2-D cellular grid

— Rules are specified using programming by
demonstration

The Wall Climbor:Main
— Aim is to make T
H I
programming ki A
: Da
accessible to p?"j"qmmfﬁ‘
kKjS ggg "ﬂ%%iﬁg
n!ui I+ 2 Clmbspiece of wall
oy
B S el
:r_ﬂ: E‘m t" & [Fove along the groong
o B Ry
I 4 Arariy

P larialies : s .

KidSim/Cocoa

e Characters are defined

e Rule preconditions specify character proximities/
orientations

* Rule actions may remove or relocate characters,
introduce new characters, etc

* Order-based disambiguation of rules if multiple rules
for a character can fire

* Developed into commercial product: Stagecast Creator

e Several other similar languages, most notable of which
is AgentSheets (Repenning). Alice has similarities.

Goals and strategies of visual programming

e QGoals

— make programming more accessible to some audience (often end
users)

— improve correctness of performing programming tasks
— improve speed of performing programming tasks.
* NB what’s a “programming task” — see attention investment later
* Strategies
— Concreteness: express program using specific instances
— Directness: feeling of directly manipulating object
— Explicitness: making relationships explicit
— Immediate visual feedback or liveness: automatic display of effects of

manipulations, even to the extent of editing “code” of running
programs (cf spreadsheets)

— Small number of concepts
* Metaphor is important

COMPSCI 732 Lecture 1 22

Domain Specific VLs

* A domain specific visual language is one where the
notation is customised for a particular problem
domain

e Have trade off between generality of language (ie
range of problems able to be solved) and terseness
of notation and closeness of mapping (cognitive
dimensions concepts — see later)

* Look at:
— A few widely used DSVLs
— Some locally developed DSVLs

LabView

e LabView uses a visual dataflow metaphor like Prograph, but is a domain specific
language rather than a GP one

e Domain is lab instrumentation: access and analysis of sensor data attached
to computer

e Processing elements include math data transformations (eg FFTs,
integrators, differentiators)

e Very successful commercial Domain Specific VL http://www.ni.com/labview/

B Untitiad 1 Diagram *

Ele Ek Doeesle Tool Hiowss ldndiey Helo E!

3 o 2 e | = =
Add Ay
Jgfjm s lf e

-
rap S

5
e
5

(R andom Mumbs: (0-1 Handar Piol]
f LW
ra Ul vy,

Write T o S prasdshesl Fie v

Labview example

-ioix
File Edit Operste Tools Browse Window Help l{j
=

Acquisition Rate Set velocity (km/hr)

500 KHz- 100.00
s0.00 1 '1_ 150.00
ye)\
250 KHz ~ 3 3
o
(04 200.00

100 KHz -

3100
-

40 g 140
20 180

Actual ¥elocity (km/hr) experiment with this system

by changing the Acquisition

Rate and the Set Velocity, As

the velocity increases, the
acquisition rate must alsa be
increased o prevent aliasing
of the waveform and to
accurately calculate the

component frequenties of the

displacement.

Displacement (mm)

5.0-) |
3 i:: B vibration Analysis.vi Diagram =l
2.5 File Edt Operate Iooks Browse Window Help =27
-Sﬁ?;é+u 2.0E-4 40E-4 B.OE-4 B.0E-4 E Dﬁ | Lpiippication font |'” tﬂ'”:ﬁ'”tr’" ||_|"\"
=

Power Spectrum (dB)
0-

MORE INFO...
[Fs]
STOP [F4]

Execution Rate q

| E

Etop Application i

Labview Success

* Metaphor used — dataflow wiring plus computation blocks — has high
closeness of mapping

— End users are electronic engineers — very familiar with circuit wiring

* Modularity via blocks — again very similar to electrical circuit concepts
hence low abstraction gradient for end users and hidden dependencies
are of a sort that end users are familiar with

* Problems of high viscosity due to layout reorganisation not an issue with
user audience — familiar with these problems from circuit design tools

e Language relatively terse at one level (general concepts) but quite diffuse
at another (many predefined operations with their own iconic
representation)

* Attention to front end — ability to create realistic looking virtual
instrument front panel

Spreadsheets

* Very successful DSVL

4 Microsolt Excel - BFTS15Mar04-1 @ s =lol=l
DEEan &0 8 - -4 jwe -5 2*ltostufonn ~w «|B 7 7 EESFE 8 & _-5-4. *
— 5o successful R
S) pe £ Yew oot Fome ook [sta Wdow Heb =
K150 - 3
spreadsheets have e R e
r s Il'l}i;J :I':: ‘.Ml EFTS |2 NZI)th‘
become a more 18| 15857 132 18.857| B N4
1
22| mime| 6| earsT) L T
general tool R R ; @
m| nmm 37| 45206 3 snla um
P = oml a4 miol i a 2i0 v
e Original target — o o A -
. . 280,143 w2714 208420 21987 D429
financial and other D R . -
22 ool w7 Eaket] = s) o 1) 108 14| 8,714
. . 54| %.-ﬁo 134] _'ill.l ng| 1] 204 435 Frari n 20| !f{:l .
numeric calculations = xol ool S xoffal ool e aol S v s
115 a1 162] AT T4 2714 | 1 ko .| 1103 1,071
| ':us - Jl.l) |Er| il 0EX 1% A n| Iu:o 0.393
° M h — f' M I | f.zlf 1 ‘:l?? 04 0714 34 -:9Id3 "y a4 30| 43::6 1.429 T
etaphor —financia BEE OE O E BE EEEm
159 10357 18] 12429 124] a5 1M 1417 104 A% &) 478 3143
tables + Calculator 223250 263387 9403 259.107] 09036 17632| dded| 2sas0|
120] 7143 137] 1950 [0000 (] 0000 [0000] 0000
L/ | 2000| 135 s m| 1aam 24l 1200 FEx 2429
248 saTial 03| 43 | 3| a4 29| axTia) N 4 Msn -
Sowts [11] (|

Spreadsheet success

» Strong and consistent metaphor providing high
closeness of mapping to typical balance sheet etc
problems

e At one level notation is quite terse (sheet and cell
metaphor), at another it is quite verbose (extensive
range of functions that stretch the bounds of the
matephor)

* Progressive evaluation well supported: values
calculated immediately a formula entered

e Hidden dependencies a real issue — a strong cause of
errors, ie leading to error proneness

Business process modelling

Since the early 1970s many languages, standards,
methodologies and tools for business modelling have
been created

Methodologies: ER Models, DFDs, Flow Charts,
Scenarios, Use Cases, IDEF, etc.

Notations: UML, BPMN, BioOpera, WTD, AOM etc.

Tools: JOpera, T-Web, ZenFlow, ARIS, WebSphere,
Visio etc.

Box-and-line Style Diagrams

’..,,...i..;'] BookPrices - DataFlow/Search
1 BookPrices Input
i L W
e l'—m.-) =
r— Diseumr: | e
— = Q | “Soem oo | @
ey] T ' _vanny
H [y 5 ;
[Fa=) .8
" — o
™
® [s
..... e e | uthor
Er—_—_
S
- GoogleSearch
1ihe D
results
ggggggg
Requests)]
- tite results author
oy b | N
" Order = MergeReport
nnnnnnnnnn o R
eem | E=w | - I
Purch] Customer
o - Ryt o o
P Management [)
Lbs :
1 BookPrices Qutput
Ascount

nnnnnnn

Motivation for MaramaEML

* Most of these approaches only emphasize process
modelling, missing the ability to model system
functional architecture

 Common source of difficulty: appropriate visual
methods to reduce the complexity of large business
modelling diagrams

e Existing modelling technologies are:

— effective in only limited problem domains or

— have major weaknesses when attempting to scale to large
systems modelling

* e.g. “cobweb” and “labyrinth” problems

MaramaEML

- [&]%]

i
[£ vt 10 Eryod thes Course

Ervolment Offbe
¥
P e N
- |
4 .
i

[Rihcaderdc Record? r.rlnecliqem 14] crie form
T 1

|| Department

Distortion-based view for scalability

W “EML_UnivesityEnrollmentService. pouDiagram X =5
[Select
[, Marquee (a) .
h Sketching tool Useversty Enrobment Service
h Fizsheye Zoom L > - s *
(= Shapes > nverazy Serdce
B EMLException
B EMLProcess End -
B EMLProcess Start
.
B EMLService > e
B EMLNameLabel :
B Handle
B EMLOperation s
S
B Focus ! 3
= Connec tors * cemste E _D Modi
} EMLExceptionFlow 4 Verify Payment
[o
| EMLiterativeFlow ' et _D Send
| EMLProcessFlow : Credit Anoice; .
: L Check Confirm with
* o | _D StudyLink i
I
| TreeBranch ; Update i
| EMLNameLink ! Information
| Link E Scholarship
Pay Back
Inform
Chang [b]

Design and Evaluation of Visual Languages

 How “good” are the languages e
we have just looked at? %;f

e How can we design such languages O e
so they meet users needs?

e Difficult:

— Combination of psychology, user interface design,
abstraction skills, expressability, narrowness of
task, etc, etc

— Typical usability studies are VERY expensive

— Need some lightweight “tools” to help us
understand the impact of design decisions

COMPSCI 732 Lecture 1 34

VL Design aids

Two aids to design and evaluation of VLs:

— Usability Analysis of Visual Programming Environments: a
cognitive dimensions framework
* Green and Petre

— The "Physics" of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering
* Moody

Will explore both next time

Readings: you MUST read both papers for next
lecture

Available from the Resources page of the 732
website

COMPSCI 732 Lecture 1

35

