Approaches to mapping

XSLT

RDBMS views

CORBA IDL

A declarative approach

‘Web Services Made Easier’, Sun Microsystems Technical White Paper,
http://java.sun.com/xml/webservices.pdf

The Java Web Services Tutorial, http://java.sun.com/webservices/tutorial.html

COMPSCI 732 FC §3. Approaches to mapping

XSL/XSLT

Extensible Stylesheet Language (XSL) and XSL

Transformations (XSLT)

XSL is a formatting language, for converting XML
documents into formatted documents (building upon

style sheets)
Higher level approach

Codes transformations as rules

Condition patterns specified using Xpath expressions
Little Java coding needed — a scripting approach

Uni-directional mapping specification

COMPSCI 732 FC §3. Approaches to mapping

XSLT

Basic approach, transform
from DOM to DOM using
XSL stylesheet to specify
the transformation

Resultant DOM represents BOM
formatted document which | Tree
is then walked to produce N
OUtDUt Tran}gcl;rmer

XML

Some implementations
handle SAX inputs directly
(so don't need a DOM)

Error
Listener

URI
Resolver
X5SL Transformer
Factory

COMPSCI 732 FC §3. Approaches to mapping

XSL Basic Approach

XSL uses a rule-based template matching approach
XSL uses a XML encoding so it has a tagged structure (which makes

it difficult to read)

Example with the coffee price list DTD from the web services paper:

<VELEMENT priceList (coffee)+>
<VELEMENT coffee (name, price) >
<IELEMENT name (#PCDATA) >
<IELEMENT price (#PCDATA) >

COMPSCI 732 FC §3. Approaches to mapping

<priceList>
<coffee>
<name>Mocha Java</name>
<price>11.95</price>
</coffee>
<coffee>
<name>Sumatra</name>
<price>12_50</price>
</coffee>
</pricelList>

XSL Rules

XSL is a rule-based language. Rules (template rules) have:
A match pattern, to match against XML elements specified as an Xpath
expression
A template which specifies the form of the document to produce if an
element matches
A template may cause further rules to be applied

<xsl:stylesheet version="1.0“ xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform>
<xsl:template match="name"> Matches elements with tag name
<tr><td> Constructs a html table row
<xsl:apply-templates/> Apply a stylesheet to bits of name element
Result goes in this place
</td></tr> Completes the html table row
</xsl:template>

COMPSCI 732 FC §3. Approaches to mapping

XSL for Coffee Pricelist

<xsl:stylesheet version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="pricelList'">
<html><head>Coffee Prices</head>
<body>
<table>
<xsl:apply-templates />
</table>
</body>
</html>
</xsl:template>
<xsl:template match="name">
<tr><td>
<xsl:apply-templates />
</td></tr>
</xsl:template>
<xsl:template match="price'>
<tr><td>
<xsl:apply-templates />
</td></tr>
</xsl:template>
</xsl:stylesheet>

Application to an example

<priceList> <html><head>Coffee Prices</head>
<body>
<table>
<coffee>
<name>Mocha Java</name> <tr><td>
Mocha Java
</td></tr>
<price>11.95</price> <tr><td>
11.95
</td></tr>
</coffee>
<coffee>
<name>Sumatra</name> <tr><td>
Sumatra
</td></tr>
<price>12.50</price> <tr><td>
12.50
</td></tr>
</coffee>
</pricelList> </table>
</body>
</html>

Xpath and More Complex
Matching

See the handout from Java Web Services Tutorial for a more
complete description of Xpath expressions

“” The root element

“/priceList/name” name elements of priceList
“SECT|PARA|NOTE” Only SECT, PARA, or NOTE elements
“LIST/@type” The type attribute of LIST elements

Using these can pull a XML structure apart and reorder the results
to give a very different tree shape as a result

COMPSCI 732 FC §3. Approaches to mapping

RDBMS views

Allow database information to be accessed (and

sometimes modified) in different forms

Based on SELECT statement

CREATE VIEW titles_view AS

SELECT title, type, price, pubdate FROM titles
Allows any alternate structure possible through selections, joins,
orderings, grouping, and calculations
However, to be updatable there are severe restrictions

No aggregate functions, grouping, unions, distincts, derived
columns (calculations)

Insert and update can only reference columns from one table when
a join is utilised

Delete can only work on views based on one table

COMPSCI 732 FC §3. Approaches to mapping

RDBMS view example

CREATE VIEW publication_view AS

SELECT title, creator AS author, isbn, subject AS classification, description,
tableOfContents AS contents, cost AS price
FROM publication

CREATE VIEW publication_view AS

SELECT title, creator AS author, isbn, subject AS classification, description,
tableOfContents AS contents, cost/0.5855 AS price
FROM publication

COMPSCI 732 FC §3. Approaches to mapping

CORBA IDL

IDL: Interface Description Language

CORBA IDL is a language-independent interface
specification (declarative)

Consists of modules, interfaces, types (structs,
enumerated, ints, reals, strings etc.)

Also might include exceptions, references to other IDL
module specifications

C++/Java-like syntax, but limited number of types
available

COMPSCI 732 FC §3. Approaches to mapping

IDL Components

Types Interfaces (are a type)
Basic types Contain Operations
Named types Return result type
Enumerations Operation name
Structures Zero qr more parameters

. in, out, inout
Unions

User exceptions

Arrays -
Sequences System exceptions
Recursive structures Attributes

Constants Modules
Allow expressions Forward declarations

Inheritance

COMPSCI 732 FC §3. Approaches to mapping

IDL Types Examples

typedef long Millimeter;

enum WallTypes { interior, exterior, trombe, underground };

struct Walllnfo {
WallTypes type;
Millimeter height;
Millimeter width;

union WallAtts switch (WallTypes) {

case trombe: struct Node {
long glazingArea; long value;

case underground: sequence<Node> children;
Millimeter soilDepth; };

typedef Walllnfo RectangularRoom[4];
typedef sequence<Walllnfo> GeneralRoom;

COMPSCI 732 FC §3. Approaches to mapping

IDL Interfaces Examples

module Building { // like a Java package
interface Wall {
exception Incomplete { string missingAtts };
// attribute definitions here..
long wallArea() raises(Incomplete);
void setHeight(in Millimeter newHeight);
void setWidth(in Millimeter newWidth);
}
interface TrombeWall : Wall {
void setGlazingArea(in long newArea);
}
interface Room {
boolean fixWalls(inout sequence<Wall> wallPieces);

3

COMPSCI 732 FC §3. Approaches to mapping

XSLT, RDBMS VIEW, IDL

Allow for the transformation of data in one
representation into a new representation

Limitations on the types of transforms supported
XSLT and IDL are uni-directional

RDBMS VIEW is bi-directional in very constrained
circumstances

What can we do which is better than this?

COMPSCI 732 FC §3. Approaches to mapping

A declarative mapping
language

Motivations for a declarative style
Abstract from underlying representations
Abstract from implementation language
Capture of intent of a mapping
Able to generate mapping code

VML (View Mapping Language)
Bi-directional mapping specification
http://www.cs.auckland.ac.nz/~trebor/pub/phd/Ch5.pdf

COMPSCI 732 FC §3. Approaches to mapping

Structure of VML

inter_view
Describes the 2 schemas being mapped between
Versions being mapped between
Type of information transfer required (read-only, read_write,
integrated)
Whether this is a complete or partial mapping
inter_class
Describes sets of classes that need to combine for a mapping
Three parts to each inter_class description
Invariants: what must hold true for this mapping to proceed
Equivalences: the mappings to perform
Initialisers: values to be set when a new object is created

COMPSCI 732 FC §3. Approaches to mapping

inter_class example

inter_view(idm, integrated, viewl, read_write, complete).

inter_class([person],[male],

invariants(gender = 'male’), person
equivalences(name = name, name
age = age, age person
inity = masculinity) gender name
). inity age
inter_class([person],[female], / \
invariants(gender = ‘female’),
. _ male female
equivalences(name = name, — Ny
masculinity | | femininity

age = age,
inity = femininity)
).

COMPSCI 732 FC §3. Approaches to mapping

inter_class classes

Can specify one or more classes from each schema
If one class then inter_class is applied to every object of that
class (as long as the invariants are satisfied)
If more than one class then the cross product of objects is used
for the mapping
For example:
Class a has objects 01 and 02
Class b has objects 03, 04, and 05
inter_class([a, b], [c], ...) evaluates the mapping for:
[01, 03], [01, 04], [01, 05], [02, 03], [02, 04], [02, 05]
group() function allows all objects of a class to be grouped
E.g., inter_class([a, group(b)], [c], ...) evaluates the mapping for:
[01, [03, 04, 05]], [02, [03, 04, 05]]

COMPSCI 732 FC §3. Approaches to mapping

invariants

Define the conditions under which an inter_class is
applicable (e.g., gender = ‘male’)

Reduce the set of objects which are evaluated
Each individual invariant may only reference attributes
and objects from one of the schemas.
A constraining condition applied in one direction is a
default value in the opposite direction.

E.g., when creating a ‘person’ object from one of type ‘male’ in
the previous example then the ‘gender’ attribute of the ‘person’
object is set to ‘male’.

COMPSCI 732 FC §3. Approaches to mapping

initialisers

Assignment statements for attributes

Only applicable to newly created objects
Can call methods of new objects

initialisers(

idm_space_face.face_property = 'idm_space_face’,

idm_material_face.face_property = 'idm_material_face’,

idm_material_face.material=>type_of material = 'idm_window_material',

idm_material_face.material=>type_of window = 'idm_single’,

idm_material_face.material=>window_subtype = ‘clear’,

fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space’, 0, O,
idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>Xx, 0 - idm_space_face.max=>y,
idm_material_face.material=>window_subtype)

COMPSCI 732 FC §3. Approaches to mapping

equivalences

Equations, functions, and procedures to perform a mapping
Ordering of specification is unimportant

Types of equivalence equations include:
Initialisers (e.g., gloss_factor = 90.0)
Equality (e.g., name = planeName)
Pointer equality (e.g., plane = fe_face_window)
Simple equations (e.g., r*sin(theta) = y_coord)
Pointer references (e.g., apex1=>x = apex2=>x
Functions (e.g., exists(end_point=>z)
Aggregate functions (e.g., sum(windows=>(height*width))) = area

COMPSCI 732 FC §3. Approaches to mapping

equivalences

Types of equivalence equations include:

List and array references (e.g., axes[2] = v_ref)

List and array iteration (e.g., classified_by[] = material[].name)

Conditional list and array iteration, for example,
bijection(spaces[]@class(‘idm_space’), spaces=>list[])
bijection(spaces[]@class(‘idm_roof’), roofs=>list[])

Functions (e.g., list_splitter(vals, splitvals))

Procedures (e.g., map_to_from(procA(), procB()))

Method invocation (e.g., plane@view_plane = fe@create_view(name))

Type conversion — implicit evaluation or cast explicitly

Unit conversion — explicit modelling

Temporary/intermediate attributes (e.g., _temp)

COMPSCI 732 FC §3. Approaches to mapping

