Visual Languages/Notations

Aims of this section
- Introduce use of diagrammatic/visual approaches to programming
- Look at several example visual languages
- Chimera (programming by demonstration)
- Forms/3 (spreadsheet-based)
* Prograph (OO visual dataflow)
+ Kidsim (visual rule based)
* UML (covered in more detail later)

* Introduce approaches for evaluating, designing visual notations and
environments

- Cognitive Dimensions
- Attention Investment
- Champagne Prototyping

Next lecture

- Domain specific visual languages
Later
* Marama meta tool for constructing VL editors

COMPSCI 732 83. Visual Languages & Notations

Resources

Much material in thise lecture from:

- "Visual Programming,"” Margaret Burnett, in
Encyclopedia of Electrical and Electronics Engineering
(John G. Webster, ed.), John Wiley & Sons Inc., New
York, 1999

- "Scaling Up Visual Programming Languages", Margaret
Burnett, Marla Baker, Carisa Bohus, Paul Carlson,
Sherry Yang, Pieter van Zee, Computer, March 1995,
45-54

- Cognitive Dimensions website
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/

COMPSCI 732 83. Visual Languages & Notations

"some visual representations (in addition to or in place of words
and numbers) to accomplish what would otherwise have to be
written in a traditional one-dimensional programming language”

- Shu, N Visual Programming, Van Nostrand Reinhold, NY, 1988

Visual programming is programming in which more than one
dimension is used to convey semantics. Eg:

- multi-dimensional objects
- use of spatial relationships

- use of the time dimension to specify “"before-after” semantic
relationships.

A Visual Programming Environment allows visual specification and
generation of code

NB some use of 2-D in conventional PLs
- use of indentation/layout to convey semantic info

COMPSCI 732 83. Visual Languages & Notations

Early work didn't scale
- Executable flowcharts
* Programming by demonstration

Followed by work in

* Programming environments that replaced some textual
programming by visual (eg VisualWorks, Visual Basic)

- Won't consider here

+ CASE tools - programming in the large

* General purpose VLs - the original nirvana

- Domain Specific VLs - constraining the task
- look at next lecture

COMPSCI 732 83. Visual Languages & Notations

Goals and Strategies of VP

Goals

- make programming more accessible to some audience (often
end users)

- improve correctness of performing programming tasks
- improve speed of performing programming tasks.

- NB what's a "programming task” - see attention
investment later

Strategies
- Concreteness: express program using specific instances
Directness: feeling of directly manipulating object
- Explicitness: making relationships explicit

- Immediate visual feedback or liveness: automatic display of
effects of manipulations, even to the extent of editing “code
of running programs (cf spreadsheets)

+ Small number of concepts

”n

Metaphor is important

COMPSCI 732 83. Visual Languages & Notations

Example VPLs: Chimera

Chimera (Kurlander, 1993) is an example of a programming
by demonstration environment using comic book metaphor

Captures concrete GUI editing operations and allows
conversion to macros by selecting from comic strip history

COMPSCT 732 §83. Visual Languages & Notations

Forms/3 (Burnett 1995,98) uses a spreadsheet metaphor

Programmer constructs forms with free format cells (not
fixed to a grid) using direct manipulation

Each cell has a formula which may refer to contents of
other cells, possibly in other forms

Linked formulae create a one-way constraint network -
consistency is maintained

Can construct types and instantiate them (prototype
approach to OO) - cells can reference instances

Can sketch shapes

COMPSCI 732 83. Visual Languages & Notations

- Aimed at non-programmers

* Much recent work on adding test tools (see EUSES project)

vertical gLine 0 80

COMPSCI 732 83. Visual Languages & Notations

B Testi i
MATRi —— G | —
— I if {inlist input (2 35 & 7 8 9 0)) ri‘ Testl
if (inlist inpu
1@ then horizontal |
EADIO| OPTION T
2@ if (inlist input (1 2 34 7 8 9 0)) I:I d
3Q then wertical CELL N HATRiX
if {inlist input (4 5 &6 8 9 0j)
4@ then vertical 1@
5 Q EADIO| OFTION 5 Q
3 I:Iif {inlist input (2 34 5 6 8 9))
@ then horizontal & @
9 | 15
5 Q if (inlist input (1 3 4 & & 7 & 8 01} 36 —
9 @ then wertical 5 @
il if (inlist input (2 & 8 0))
Q then wertical 7 @
input | 8@
if {inlist input (2 3 5 6 8 9 0;)
then horizontal o @
1Q
input

Example VLs: Prograph

* Prograph (Cox et al 1989) uses a visual dataflow metaphor

- dataflow metaphor very popular in VL - nodes for
processing elements, arcs for dataflows

1:1 notify observees

= A

&2 Classes of "NTT Obse

<<0Obserwve Element:> observer

|Enu:-t1'fl,| observees i PJJJJJJWfstnp observing all ﬁ

NTT Docunnent Dats
<‘?: W= 1:2 NTT Element/Get Undead? =EEE=
target object

NTT Element £ A - =

<?:§ 1:1 notify observees
NTT Cursor Element
=]
é@ s ﬁﬁg Factory ﬁ ybead? ﬁ
[u] [a] i

NTT Dbserve Element

<4Obzerve Elements: HULL &l TRUE El

“Observee List -

[JObserver D

TRUE

COMPSCT 732 §3. Visual Languages & Notations 9

Has a well developed OO framework
- Dataflow “"methods” for classes

+ GUI library framework allows rapid prototyping of
applcns

Has extensive debugging support

- Reuses dataflow diagrams during execution with values
instantiated to visualise execution behaviour

Probably the only "successful” commercial general purpose
visual programming language

COMPSCI 732 83. Visual Languages & Notations

10

Example VLs: KidSim/Cocoa

Cocoa (Smith et al 1994) uses a rule based metaphor
combined with a 2-D cellular grid

- Rules are specified using programming by demonstration

- Aim is to make programming accessible to kids
- The Wall Climber;~ain

Mascol 1

& Nules J|E |_
oiE ~ Ea

Ih i .Jl.rrq:l o fhe lap

B 2 Clmb spiece of wall

i T

ll & e 4l e rend

3

I & ety

b Uarlalies =]

COMPSCI 732 83. Visual Languages & Notations

11

Characters are defined

Rule preconditions specify character proximities/
orientations

Rule actions may remove or relocate characters, introduce
new characters, etc

Order-based disambiguation of rules if multiple rules for a
character can fire

Developed into commercial product: Stagecast Creator

Several other similar languages, most notable of which is
AgentSheets (Repenning). Alice has similarities.

COMPSCI 732 83. Visual Languages & Notations

12

- UML is a collection of visual notations used for
programming in the large

- Will explore in more detail in later lectures

: Order Entry Window‘ ‘ : Order ‘ ‘ order Iin_es H
Order Customer Order Li
o 1: prepare
* 1 2: prepare ‘
: 8
Lo *
line items | 1.. BusinessCustomer PersonalCustomer
Order Line
1 salesrep | g1
Product Employee

COMPSCI 732 83. Visual Languages & Notations 13

How "good” are the languages we have just looked at?

How can we design such languages so they meet users
needs?

Difficult:

Combination of psychology, user interface design,
abstraction skills, expressability, narrowness of task,
efc, etc

* Typical usability studies are VERY expensive

- Need some lightweight "tools” to help us understand
the impact of design decisions

Look at:
- Cognitive Dimensions
- Attention Investment
- Champagne Prototyping

COMPSCI 732 83. Visual Languages & Notations

14

Green and Petre 1996 (since developed by Blackwell)

Establishes a set of “"dimensions” to think about the
tradeoffs made in implementing visual programming
environments

- Has had very strong influence on the VL community
* Means of explaining effects of design decisions

Comes out of cognitive psychology community

Lightweight - doesn't need large usability studies to get
useful insight

Can be used for evaluation and also as a design aid

COMPSCI 732 83. Visual Languages & Notations

15

Cognitive Dimensions

Abstraction gradient What are the minimum and maximum levels of
abstraction? Can fragments be encapsulated?

Closeness of mapping What ‘programming games’ need to be learned?

Consistency When some of the language has been learnt, how much of
the rest can be inferred?

Diffuseness How many symbols or graphic entities are required to
express a meaning?

Error-proneness Does the design of the notation induce ‘careless
mistakes'?

Hard mental operations Are there places where the user needs to
resort to fingers or penciled annotation to keep track of what's
happening?

Hidden dependencies Is every dependency overtly indicated in both
directions? Is the indication perceptual or only symbolic?

COMPSCI 732 83. Visual Languages & Notations

16

Premature commitment Do programmers have to make decisions
before they have the information they need?

Progressive evaluation Can a partially-complete program be executed
to obtain feedback on "How am I doing"?

Role-expressiveness Can the reader see how each component of a
program relates to the whole?

Secondary notation Can programmers use layout, color, or other cues
to convey extra meaning, above and beyond the ‘official' semantics of
the language?

Viscosity How much effort is required to perform a single change?

Visibility Is every part of the code simultaneously visible (assuming a
large enough display), or is it at least possible to compare any two
parts side-by-side at will? If the code is dispersed, is it at least
possible o know in what order to read it?

COMPSCI 732 83. Visual Languages & Notations 17

Note the tradeoffs that occur

May add an abstraction that makes it easier to change things
(reduced viscosity) but increases the difficulty of
understanding (increased abstraction gradient and increased
hidden dependencies).

- See Green and Petre L e _
paper for S viscosity +—— secondary notation
&
several examples o
illustrating need for care redice
tradeoffs made el > te
ceniucresse abstractions f
LHET LCTEREE
ORIT BarERRE
hidden dependencies
r
visibility “F&

Burnett provides a set of representation benchmarks that assist in
operationalising the use of the CD framework.

- See Burnett paper

COMPSCI 732 83. Visual Languages & Notations 18

Verbatim transcript from a newsgroup discussion (real words

from real users). Improved Discussion

NB: this discussion referred to a version of Framemaker that A: Framemaker is foo viscous.

is now obsolete. - B: With respect to what task?

A: ALL files in the book should be identical in everything . \ASE .

ex;:ep'r body pt:lges.h ij'rgr hc‘lges, paragraph formats, ::c' c\xﬂémkr. es f:; etfs ‘#%dﬁy\',‘g §°""i‘gg2$ms
reterence pages, should be The same. abstraction level, such as a style tree.

B: Framemaker does provide this ... File -> Use Formats .

: : « C: Watch out for the hidden
gﬂo::sm Z°?i|£§ cl::%\ :IL ggk?ome formatting categories to all dependencies of a style free.
A: Grrereeeeer Oh People Of Little Imagination M (further possible comments)

The abstraction level will be difficult to
master; getting the styles right may
impose lookahead.

Sure I can do this ... manually, every time I change a
reference page, master page, or paragraph format

What I was talking about was some mechanism that
automatically detected when I had made such a change. (
.....) Or better yet, putting all of these pages in a

central database for the entire book From: An Introduction to the Cognitive

Dimensions Framework, T R & Green

C: There is an argument against basing one paragraph
style on another, a method several systems use.” A
change in a ﬁarem‘ s}yle man cause unexpected problems
among the children. I have had some unpleasant surprises
of this sort in Microsoft Word.

http://homepage.ntlworld.com/greenery/work
Stuff/Papers/introCogDims/index. html

COMPSCI 732 83. Visual Languages & Notations 19

Theory to explain why people spend time doing programming
Programming defined very broadly

Defines “attention units”: nominal amount of
“concentration” applied

Applies a cost benefit analysis approach to programming
activities
* Programming => automation to save time in the future
* Has Cost: attention units to do the job

- Investment: attention units expended towards a
potential reward

* Pay-off: reduced future cost from investment
* Risk: probability that no pay-off or -ve pay-off results

See Blackwell's paper.

COMPSCI 732 83. Visual Languages & Notations

20

A “cheap” method for early design evaluation

Combines:
- simple prototyping
- used overlays and "look don't touch” approach
- cognitive walkthroughs with credible participants
- cognitive dimensions & attention investment for analysis

to assist in answering questions at early design phase of
visual environments

Blackwell, Burnett and Peyton Jones, Champagne Prototyping: a
research technique for early evaluation of complex end user
programming systems, IEEE VL/HCC, 2004, 47-54

COMPSCI 732 83. Visual Languages & Notations

21

Have looked at a variety of VLs/VPEs

Wide variety of metaphors and approaches used
- Some are executable, some are just design notations
- Some aimed at programmers, some at non programmers

Have examined several approaches to evaluating visual
language/environment design

+ Emphasis on “low cost” methods

Will explore domain specific visual languages in more depth
in next lecture

Lead on to later sections
* UML and the concept of meta modelling
- Marama meta modeller

COMPSCI 732 83. Visual Languages & Notations

22

