
Indexes and storage organisation in

the eXist NXD

COMPSCI 732 2

eXist

eXist is an open source NXD

eXist is best suited for applications dealing with small to

large collections of XML documents that are updated

occasionally

from http://exist-db.org/

COMPSCI 732 3

Index and data organisation
eXist uses four index files at the core of the XML storage

backend:

•dom.dbx collects DOM nodes and associates unique

node identifiers to the actual nodes

•collections.dbx manages the collection hierarchy

•elements.dbx indexes elements and attributes

•words.dbx keeps track of word occurrences and is used

by the fulltext search extensions

From http://exist-db.org/webdb.pdf

eXist: An Open Source Native XML Database

All indexes are based on B+-trees.

COMPSCI 732 4

dom.dbx

Represents the central component of eXists native storage

structure.

<contact>

<name>Bill Smith</name>

<phone>

<office>3737599</office>

<home>5993737</home>

</phone>

</contact>

contact

name phone

office home

1

2 3

6 7

Bill Smith

3737599 5993737

10

4

11

5

8 9

5

dom.dbx continued

7

6

3

2

1

11 “5993737”

7 home

10 “3737599”

6 office

3 phone

4 “Bill Smith”

2 name

1 contact

Used to find ancestor/descendant, parent/child, sibling.
6

dom.dbx generally

Node_id

Node_id

Document d1

Document d2

Address

Address

Node n1 Node n2 Node n3

DOM nodes

Data pages

Multi-root B+-tree

Only top-level elements are indexed in the B+-tree.

Lower level nodes are just written to the data pages without

adding a key to the B+-tree.

The cases where direct access to these nodes is required is

very rare.

COMPSCI 732 7

Collections
Documents can be divided into collections. From a users point of

view, this is like storing files in a file system. e.g. one collection might

contain documents describing the initial design of a computer system,

another might contain documents in the detailed design, and yet

another might contain the manuals for the system.

The collections can be arranged in a collection hierarchy.

Arbitrary documents may be mixed within the same collection.

Users usually query entire collections or even several collections at

once. This is an assumption underlying the design of the indexes in

eXist.

COMPSCI 732 8

collections.dbx
Manages the collection hierarchy and maps collection

names to collection objects.

For performance reasons, document descriptions are stored

with the collection object they belong to.

Improves queries that ask for all sections in c0 that have

‘XML’ in their title.

c0, EFTPOS

System
c1, Initial Design

c2, Detailed Design

c3, Manuals

d1, System description

d2, Customer requirements

d6, High level description

d7, High level description

d4, User manual

d5, Installation manual

COMPSCI 732 9

elements.dbx and words.dbx

elements.dbx and words.dbx are organised by collection

and not by document. E.g., all occurrences of a “section”

element are stored as a single index entry in the elements

index. This helps to keep the number of inner B+-tree

pages small and yields a better performance for queries

on entire collections. This is based on experience with

previous versions which showed that creating an index entry

for every single document in a collection leads to

decreased performance for collections containing a

larger number (>1000) of small documents (<50 KB).

COMPSCI 732 10

elements.dbx

c1, home

c1, office

c1, phone

c1, name

c1,contact

d1 1 d1 2 d1 3 d1 6 d1 7

Find all the documents in collection c that have an

element “phone”.

COMPSCI 732 11

element.dbx generally

<collection_id, name_id>

Doc_idNode_idNode_idDoc_id … …

B+-tree keys

B+-tree value: array of node_ids separated by doc_id

COMPSCI 732 12

words.dbx

C1, 5993737

C1, 3737599

C1, Bill Smith

d1, 11

d1, 10

d1, 4

Find all elements that contain the keyword “3737599”.

By default, eXist indexes all text nodes and attribute values.

It is possible to exclude distinct parts of documents or switch

full-text indexing off completely.

COMPSCI 732 13

Indexes are used to…

• Access distinct nodes by their node ids

• Retrieve a list of node ids for a given node

name

• Retrieve a list of node ids for text or

attribute nodes containing a specified

keyword

COMPSCI 732 14

Example of how indexes used
Used a publicly available collection of Shakespeare plays.

play

act

scene

speech

speaker line

/play//speech[speaker = ‘Hamlet’]

1 Find play//speech

1.1 find root element play for all documents

using elements.dbx

1.2 find speech elements using elements.dbx

1.3 compare <doc_id, node_id>s

1.4 result is set of descendants <doc_id, node_id>

2 Find speaker using element.dbx and for each

descendant do comparison with result above

3 Output speech node where speaker = ‘Hamlet’

