A declarative mapping
language

Motivations for a declarative style
Abstract from underlying representations
Abstract from implementation language
Capture of intent of a mapping
Able to generate mapping code

VML (View Mapping Language)
Bi-directional mapping specification

COMPSCI 732 FC §4. A declarative mapping language

Structure of VML

inter_view
Describes the 2 schemas being mapped between
Versions being mapped between

Type of information transfer required (read-only, read_write,
integrated)

Whether this is a complete or partial mapping
inter_class
Describes sets of classes that need to combine for a mapping
Three parts to each inter_class description
Invariants: what must hold true for this mapping to proceed
Equivalences: the mappings to perform
Initialisers: values to be set when a new object is created

COMPSCI 732 FC §4. A declarative mapping language

inter_class example

inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[male],

invariants(gender = 'male’), person
equivalences(name = name, name
age = age, age person
inity = masculinity) gender name
). inity age
inter_class([person],[female], / \
invariants(gender = 'female'),
. _ male female
equivalences(name = name, — i
masculinity | | femininity
age = age,
inity = femininity)

).

COMPSCI 732 FC §4. A declarative mapping language

inter _class classes

Can specify one or more classes from each schema
If one class then inter_class is applied to every object of that
class (as long as the invariants are satisfied)
If more than one class then the cross product of objects is used
for the mapping
For example:
Class a has objects o1 and 02
Class b has objects 03, 04, and 05
inter_class([a, b], [c], ...) evaluates the mapping for:
[01, 03], [01, 04], [01, 05], [02, 03], [02, 04], [02, 05]
group() function allows all objects of a class to be grouped
E.g., inter_class([a, group(b)], [c], ...) evaluates the mapping for:
[01, [03, 04, 05]], [02, [03, 04, 05]]

COMPSCI 732 FC §4. A declarative mapping language

invariants

Define the conditions under which an inter_class is
applicable (e.g., gender = ‘male’)

Reduce the set of objects which are evaluated
Each individual invariant may only reference attributes
and objects from one of the schemas.
A constraining condition applied in one direction is a
default value in the opposite direction.

E.g., when creating a ‘person’ object from one of type ‘male’ in
the previous example then the ‘gender’ attribute of the ‘person’
object is set to ‘male’.

COMPSCI 732 FC §4. A declarative mapping language

initialisers

Assignment statements for attributes

Only applicable to newly created objects
Can call methods of new objects

initialisers(
idm_space_face.face_property = 'idm_space_face',
idm_material_face.face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_window_material’,
idm_material_face.material=>type_of_window = 'idm_single',
idm_material_face.material=>window_subtype = 'clear’,
fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space’, 0, O,
idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y,
idm_material_face.material=>window_subtype)
)

COMPSCI 732 FC §4. A declarative mapping language

equivalences

Equations, functions, and procedures to perform a mapping
Ordering of specification is unimportant

Types of equivalence equations include:
Initialisers (e.g., gloss_factor = 90.0)
Equality (e.g., name = planeName)
Pointer equality (e.g., plane = fe_face_window)
Simple equations (e.g., r*sin(theta) = y_coord)
Pointer references (e.g., apex1=>x = apex2=>X
Functions (e.g., exists(end_point=>z)
Aggregate functions (e.g., sum(windows=>(height*width))) = area

COMPSCI 732 FC §4. A declarative mapping language

equivalences

Types of equivalence equations include:

List and array references (e.g., axes[2] = v_ref)

List and array iteration (e.g., classified_by[] = material[].name)

Conditional list and array iteration, for example,
bijection(spaces[]@class('idm_space’), spaces=>list[])
bijection(spaces[]@class(‘'idm_roof”), roofs=>list[])

Functions (e.g., list_splitter(vals, splitvals))

Procedures (e.g., map_to_from(procA(), procB()))

Method invocation (e.g., plane@view_plane = fe@create_view(name))

Type conversion — implicit evaluation or cast explicitly

Unit conversion — explicit modelling

Temporary/intermediate attributes (e.g., _temp)

COMPSCI 732 FC §4. A declarative mapping language

