Approaches to mapping

XSLT (+DTD)

Simple mapping example (books)
RDBMS views

CORBA IDL

‘Web Services Made Easier’, Sun Microsystems Technical White Paper,
http://java.sun.com/xml/webservices.pdf

The Java Web Services Tutorial, http://java.sun.com/webservices/tutorial.html

COMPSCI 732 FC §3. Approaches to mapping

XML Document Example

<?xml version="1.0"
encoding="I150-8859-1" standalone="yes"?>

<!DOCTYPE AddressList SYSTEM
"AddressList.dtd" >

<!-- Simple Address Example -->
<AddressList>
<Address Name="Fred Bloggs" >
<Work>

<Street>70 Symonds St</Street>
<City>Auckland</City>

</Work>

<Work>
<Street>38 Princes St</Street>
<City>Auckland</City>

</Work>

</Address>

COMPSCI 732 FC §3. Approaches to mapping

<Address Name="Myra Smith" >
<Work>
<Street>55 The Terrace</Street>
<City>Wellington</City>
</Work>
<Home>
<Street>18 Adams Terrace</Street>
<City>Wellington</City>
</Home>
</Address>
</AddressList>

XML Document Structure

The XML Declaration
Document Type Declaration
Document Body

Elements

Attributes

Character Data

Comments

COMPSCI 732 FC §3. Approaches to mapping

The XML Declaration -
Processing instructions

<?xml version="1.0"” encoding=“IS0-8859-1"” standalone=“yes” ?>
Processing instructions for the application consuming the document <2
target processing_instructions ?>
Identifies as an XML file and specifies version conformance
Encoding to specify character set used in document

standalone="“yes”

No external markup declarations which affect the XML information

COMPSCI 732 FC §3. Approaches to mapping

Document Type Declaration

<!DOCTYPE doc_name SYSTEM “{uri}”>
<!DOCTYPE ADDRESSLIST SYSTEM “AddressList.dtd”>
doc_name must be the root ELEMENT of the DTD
SYSTEM indicates the DTD is at the given URIL
<!DOCTYPE doc_name PUBLIC “{catalog id}”>
<!DOCTYPE doc_name PUBLIC “{catalog id}” “{uri}”>
<!DOCTYPE PERSON PUBLIC “//DSTC/PERSON”>
PUBLIC indicates the application knows where to find the DTD
Internal specification
<!DOCTYPE PERSON [
<!ELEMENT PERSON (name, address, phone+, company?)>

1>

COMPSCI 732 FC §3. Approaches to mapping

XML and DTDs

Define an instance of XML language (vocabulary)
Good points

Define document organisation in an easily shared manner
Understand full structure for further manipulation
Validating parser can ensure correctness

Can define required and optional information

Disadvantages

Different syntax from rest of XML
Validating parser required to read another file
Complexity of parsing with DTD is increased

COMPSCI 732 FC §3. Approaches to mapping

XML DTD

Identifies instance of XML language

Meta information about a document’s contents
Valid elements
Valid attribute names and values
Nesting structure allowed

DTD usually a separate document

DTD describes syntax of document - not semantics

XMLSchema is the preferred method to describe complex data structures as it
provides fine-grain control of structural specification of a schema (in an
object-oriented manner).

COMPSCI 732 FC §3. Approaches to mapping

XML DTD Example

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

catalogue (publisherDetails, (publication)+) >

publisherDetails (publisherName, phone?, fax?, email?) >

publication (title, creator, subject?, description?,
publisherName (#PCDATA) >

phone (#PCDATA) >

fax (#PCDATA) >

email (#PCDATA) >

title (#PCDATA) >

creator (#PCDATA) >

subject (#PCDATA) >

description (#PCDATA) >

cost (#PCDATA) >

COMPSCI 732 FC §3. Approaches to mapping

cost)

>

XML Document

<?xml version="1.0" encoding="UTF-8" 72>
<!DOCTYPE catalogue SYSTEM “BookBroker.dtd" >
<catalogue>
<publisherDetails>
<publisherName>Amorzon</publisherName>
<phone>83068</phone>
<fax>82651</fax>
<email>trebor@cs.auckland.ac.nz</email>
</publisherDetails>
<publication>
<title>A Reader in Planning Theory</title>
<creator>Faludi, A</creator>
<cost>15.99</cost>
</publication>
<publication>
<title>Gender, Planning and the Policy Process</title>
<creator>LITTLE, JO</creator>
<description>Planning has a central essential legitimacy in addressing
social goals.</description>
<cost>14.99</cost>
</publication>

Element Declarations

Map to tags in the final document
<!ELEMENT name content-model >
content-model specifies terminal and non-terminal content

? optional (0 or 1)

* 0 or more

+ 1 or more

(al b) either a or b but not both
(, b)) a followed by b

COMPSCI 732 FC §3. Approaches to mapping

Element Declarations

No look-ahead in processors so content-model must be parsable without back

tracking
(a, b, ¢, d) | (b, ¢, d) | (¢, d) | (d
(a, b, ¢, d) | (a, b, ¢) | (a, b) | (a

#PCDATA for terminal content
Parsed character data, allows text and markup
EMPTY for no content
<name></name> OF <name />
ANY to match any content

COMPSCI 732 FC §3. Approaches to mapping

DTD with attribute

<!ELEMENT AddressList (Address)* >

<!ELEMENT Address (Work|Home)+ >
<!ATTLIST Address Name CDATA #REQUIRED >

<!ELEMENT Work (Street, City) >
<!ELEMENT Home (Street, City) >
<AddressList>
<!ELEMENT Street (#PCDATA) > <Address Name="Fred Bloggs" >
<!ELEMENT City (#PCDATA) > <Work>
<Street>70 Symonds St</Street>
<City>Auckland</City>
</Work>
<Work>
<Street>38 Princes St</Street>
<City>Auckland</City>
</Work>
COMPSCI 732 FC §3. Approaches to mapping </Address>

- - - -
Attribute Declarations Attribute Declarations

Container for attributes associated with an element Default types

<!ATTLIST element name (att_name type default)+ > #REQUIRED - must be specified for the element

Attribute types #IMPLIED - attribute may not be specified, application will be able to calculate a value
CDATA character data (string) “default value” - if attribute is not specified then use this value
D unique ID within the document #FIXED “constant_value” - attribute will contain this value if specified
IDREF a reference to a unique ID within the document References have some conventions
IDREFS a list of references to unique IDs <node ID="nodel01” >This is 101</node>
ENTITY a reference to an entity within the document <start ref=“nodelOl” >
ENTITIES a list of references to entities also evolving standards Xlink, Xpointer
NMTOKEN a valid XML name token
NMTOKENS a list of valid XML name tokens Why use Entities rather than Attributes?
NOTATION an enumerated reference to a list of notation data types
(valuel | value2 | ..) an enumerated list of possible values

COMPSCI 732 FC §3. Approaches to mapping COMPSCI 732 FC §3. Approaches to mapping

XSL/XSLT XSLT

Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT) Basic approach, transform

XSL is a formatting language, for converting XML documents into fmlm IﬁOT tto DOM ustlr?g XSL e

formatted documents (building upon style sheets) fgnessfof;at?oipec'fy € Sheet

JAXP includes XSLT implementation as part of javax.xml.transform Resultant DOM represents —

package (actually wraps the Xalan XSLT implementation) formatted document which is | Tree
then walked to produce output "
Some implementations handle Tran);?‘l,'rmer
SAX inputs directly (so don't XML Error
need a DOM) Listener

COMPSCI 732 FC §3. Approaches to mapping

URI
Resolver
XSL Transformer
Factory

COMPSCI 732 FC §3. Approaches to mapping

XML Example

Coffee price list and DTD (from “Web Services Made Easier”)

<priceList>
<coffee>
<name>Mocha Java</name>
<price>11.95</price>
</coffee>
<coffee>
<name>Sumatra</name>
<price>12.50</price>
</coffee>
</priceList>

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

COMPSCI 732 FC §3. Approaches to mapping

XSL Basic Approach

XSL uses a rule-based template matching approach

XSL uses a XML encoding so it has a tagged structure (which makes it

difficult to read)

Example with the coffee price list DTD from the web services paper:

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

COMPSCI 732 FC §3. Approaches to mapping

XSL Rules

XSL is a rule-based language. Rules (template rules) have:
A match pattern, to match against XML elements specified as an Xpath

expression

A template which specifies the form of the document to produce if an element

matches

A template may cause further rules to be applied

xsl:stylesheet version="1.0" xmlns:xsl="“http://www.w3.0rg/1999/XSL/Transform™>

<xsl:template match="name">
<tr><td>
<xsl:apply-templates/>

</td></tr>
</xsl:template>

Matches elements with tag name

Constructs a html table row

Apply a stylesheet to bits of name element
Result goes in this place

Completes the html table row

COMPSCI 732 FC §3. Approaches to mapping

XSL for Coffee Pricelist

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="priceList">
<html><head>Coffee Prices</head>
<body>
<table>
<xsl:apply-templates />
</table>
</body>
</html>
</xsl:template>
<xsl:template match="name">
<tr><td>
<xsl:apply-templates />
</td></tr>
</xsl:template>
<xsl:template match="price">
<tr><td>
<xsl:apply-templates />
</td></tr>
</xsl:template>
</xsl:stylesheet>

Application to an example

<priceList> <html><head>Coffee Prices</head>
<body>
<table>
<coffee>
<name>Mocha Java</name> <tr><td>
Mocha Java
</td></tr>
<price>11.95</price> <tr><td>
11.95
</td></tr>
</coffee>
<coffee>
<name>Sumatra</name> <tr><td>
Sumatra
</td></tr>
<price>12.50</price> <tr><td>
12.50
</td></tr>
</coffee>
</priceList> </table>
</body>
</html>

Xpath and More Complex
Matching

See the handout from Java Web Services Tutorial for a more complete
description of Xpath expressions

" The root element

*/priceList/name” name elements of priceList
“SECT|PARA|NOTE" Only SECT, PARA, or NOTE elements
“LIST/@type” The type attribute of LIST elements

Using these can pull a XML structure apart and reorder the results to give
a very different tree shape as a result

COMPSCI 732 FC §3. Approaches to mapping

Phases

What does it mean for an application to be XML-based or to be a Web
Service?
Typically three phases
XML input processing
Parsing and validating
Recognising/searching/extracting information
Binding information to business objects
Business logic
Processing information
XML output processing
Constructing a model of document to be produced
Applying XSLT or directly serialising to XML

COMPSCI 732 FC §3. Approaches to mapping

Processing Models

SAX
Serial access with the Simple API for XML
Parser generates events as it encounters tokens (callback)
Need to do everything in a single cycle
Low memory use
DOM
Document Object Model
Constructs a parse tree of objects
Can walk through a tree multiple times extracting information
Ie random access but more memory intensive

Also JDOM — DOM tuned for Java — different and simpler construction and
access protocol

COMPSCI 732 FC §3. Approaches to mapping

Processing Models

XSLT
Extensible Stylesheet Language Transformations
Higher level approach
Codes transformations as rules
Condition patterns specified using Xpath expressions
Little Java coding needed — a scripting approach
XSLT is itself an XML-based grammar (as is Xpath)
JAXB
New Java API for XML/Java Binding

Produces object structure (as does DOM) but has compiler that generates
classes based on XML DTD

Children and attributes accessible as properties
Can subclass to provide behaviour

COMPSCI 732 FC §3. Approaches to mapping

Comparison

Processing Phase SAX DOM XSLT
XML input processing
Parsing and Built in Built in or based on Based on SAX or DOM
validating SAX
Recognizing/ Catching events with Searching the tree with | Xpath patterns
searching event handlers tree walkers
Extracting Catching events Getting attribute Getting attribute
values, node values, node
content: API contents: Xpath
methods statements
Mapping/ Creating business Creating business If ever, through DOM
binding objects from the objects from the or SAX (pipelining)
extracted extracted
information information
COMPSCI 732 FC §3_Approaches to mapping

Comparison

Processing Phase SAX DOM XSLT

XML output processing

Constructing No default support but | Implicitly part of the Implicitly part of the
can be done by model: API factory model: XSL
generating a methods statements

properly balanced
sequence of
method calls to
event handlers

Serializing No default support but | Implementation Implicitly part of the
can be done with specific support, model: XSL output
a custom event or through XSLT method statement
handler identity

transformation

COMPSCI 732 FC 3. Approaches to mapping

DOM

Document Object Model (DOM)
The DOM specification defines how a XML document can be represented as a
hierarchical object structure
Also specifies mechanisms for accessing elements within the tree
Allows for complex processing/manipulation of the document
More memory expensive than SAX as the whole document is in memory (but
memory is cheap)
Sun’s JAXP includes a DOM implementation with an API defined in
javax.xml.parsers

COMPSCI 732 FC §3. Approaches to mapping

DOM Construction DOM Processing
See example in “Web Services Made Easier”, pg 6 DOM
i i Tree .
Docgmentl?wlderi_:actory instance created Business
Configuration variables set i~ H Logic
DocumentBuilder instance created using newDocumentBuilder() DOM
DocumentBuilder object’s parse() method used to read in the XML HKML Document
document and construct the parse tree Builder Error
You then use the Node access methods to traverse or manipulate the tree Handler
Can access by tree walk or by search on tag name Er'ltlity
Resolver
F)
Document Builder
Factory
COMPSCI 732 FC §3. Approaches to mapping COMPSCI 732 FC §3. Approaches to mapping

Invoking a DOM parser using
DOM API JAXP

The DOM API defines interfaces for each of the entities of a XML document
org.w3c.dom.Node interface: a single node in the document tree

. . " import javax.xml.parsers.*;
Defines methods to access, insert, remove, replace the child nodes P J P ’

import org.xml.sax.*

Defines methods to access the parent node import org.w3c.dom.*;
Defines methods to access the document import java.io.*;
org.w3c.dom.Document interface is a Node that represents the entire XML)]
document DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
)) DocumentBuilder builder = factory.newDocumentBuilder () ;
org.w3c.dom.Element interface is a Node that represents a XML element Document document = builder.parse ("priceList.xml");
org.w3c.dom.Text interface is a Node that represents the textual content of a XML
document

COMPSCI 732 FC §3. Approaches to mapping COMPSCI 732 FC §3. Approaches to mapping

DOM Manipulation

Node rootNode = document.getDocumentElement () ;
NodeList list = document.getElementsByTagName ("coffee");

// Loop through the list.

for (int i=0; i < list.getLength(); i++) {
thisCoffeeNode = list.item(i);
Node thisNameNode = thisCoffeeNode.getFirstChild() ;

if (thisNameNode == null) continue;

if (thisNameNode.getFirstChild() == null) continue;

if (! thisNameNode.getFirstChild() instanceof org.w3c.dom.Text) continue;
String data = thisNameNode.getFirstChild() .getNodevValue() ;

if (! data.equals("Mocha Java")) continue;

//We’re at the Mocha Java node. Create and insert the new
//element.

COMPSCI 732 FC §3. Approaches to mapping

DOM Manipulation

//We’re at the Mocha Java node. Create and insert the new
//element.
Node newCoffeeNode = document.createElement ("coffee");

Node newNameNode = document.createElement ("name");
Text tnNode = document.createTextNode ("Kona");
newNameNode . appendChild (tnNode) ;

Node newPriceNode = document.createElement ("price");
Text tpNode = document.createTextNode ("13.50");
newPriceNode.appendChild (tpNode) ;

newCoffeeNode.appendChild (newNameNode) ;
newCoffeeNode.appendChild (newPriceNode) ;

rootNode.insertBefore (newCoffeeNode, thisCoffeeNode) ;
break;

CO&/IPSCI 732 FC §3. Approaches to mapping

Outputting XML

Can generate XML document from a DOM using a Transformer

Eg suppose coffee processor modified to output results as a new XML
document

Document document = builder.parse("priceList.xml");
// code that modifies the DOM in here

TransformerFactory transFactory = TransformerFactory.newInstance();
Transformer transformer = transFactory.newTransformer();

DOMSource source = new DOMSource (document) ;

File newXML = new File("newPriceList.xml");

FileOutputStream fos = new FileOutputStream (newXML) ;

StreamResult result = new StreamResult (fos);
transformer.transform(source, result);

COMPSCI 732 FC §3. Approaches to mapping

<priceList>
<coffee>
<name>Kona</name>
<price>13.50</price>
</coffee>
<coffee>
<name>Mocha Java</name>
<price>11.95</price>
</coffee>
<coffee>
<name>Sumatra</name>
<price>12.50</price>
</coffee>
</pricelList>

COMPSCI 732 FC §3. Approaches to mapping

RDBMS views

Allow database information to be accessed (and sometimes
modified) in different forms

Based on SELECT statement
CREATE VIEW titles view AS
SELECT title, type, price, pubdate FROM titles
Allows any alternate structure possible through selections, joins,
orderings, grouping, and calculations
However, to be updatable there are severe restrictions

No aggregate functions, grouping, unions, distincts, derived columns
(calculations)

Insert and update can only reference columns from one table when a join
is utilised

Delete can only work on views based on one table

COMPSCI 732 FC §3. Approaches to mapping

RDBMS view example

CREATE VIEW publication_view AS

SELECT title, creator AS author, isbn, subject AS classification, description,
tableOfContents AS contents, cost AS price
FROM publication

CREATE VIEW publication_view AS

SELECT title, creator AS author, isbn, subject AS classification, description,
tableOfContents AS contents, cost/0.5855 AS price
FROM publication

COMPSCI 732 FC §3. Approaches to mapping

CORBA IDL

IDL: Interface Description Language

CORBA IDL is a language-independent interface specification
(declarative)

Consists of modules, interfaces, types (structs, enumerated,
ints, reals, strings etc.)

Also might include exceptions, references to other IDL
module specifications

C++/Java-like syntax, but limited number of types available

COMPSCI 732 FC §3. Approaches to mapping

IDL Components

Types Interfaces (are a type)
Basic types Contain Operations
Named types Return result type
Enumerations Operation name
Stryctures Zero or more parameters
Unions in, out, inout
Arrays User exceptions
Sequences)
Recursive structures System exceptions

Constants Attributes
Allow expressions Modules

Forward declarations
Inheritance

COMPSCI 732 FC §3. Approaches to mapping

IDL Types Examples

typedef long Millimeter;
enum WallTypes { interior, exterior, trombe, underground };
struct WallInfo {
WallTypes type;
Millimeter height;
Millimeter width;
}
union WallAtts switch (WallTypes) {

case trombe: struct Node {
long glazingArea; long value;

case underground: sequence<Node> children;
Millimeter soilDepth; };

}
typedef WallInfo RectangularRoom[4];
typedef sequence<WallInfo> GeneralRoom;

COMPSCI 732 FC §3. Approaches to mapping

IDL Interfaces Examples

module Building { // like a Java package
interface Wall {
exception Incomplete { string missingAtts };
// attribute definitions here..
long wallArea() raises(Incomplete);
void setHeight (in Millimeter newHeight);
void setWidth(in Millimeter newWidth) ;

}
interface TrombeWall : Wall {
void setGlazingArea(in long newArea);

}
interface Room {
boolean fixWalls (inout sequence<Wall> wallPieces);

}

COMPSCI 732 FC §3. Approaches to mapping

XSLT, VIEW, IDL

Allow for the transformation of data in one representation
into a new representation

Limitations on the types of transforms supported
XSLT and IDL are uni-directional

RDBMS VIEW is bi-directional in very constrained
circumstances

What can we do which is better than this?

COMPSCI 732 FC §3. Approaches to mapping

