Pounamu: a metatool for multi-view visua language environment construction

Nianping Zhut, John Grundy" 2 and John Hosking®
Department of Computer Science' and Department of Electrical and Computer Engineering?,
University of Auckland, Private Bag 92019, Auckland, New Zealand
{nianping | john-g | john} @cs.auckland.ac.nz

Abstract

We describe a meta tool for specification and generation
of multiple view visual tools. The tool permits rapid
specification of visual notational elements, underlying
tool information model requirements, visual editors, the
relationship between notational and model elements, and
behavioural components. Tools are generated on the fly
and can be used for modelling immediately. Changes to
the meta tool specification are immediately reflected in
any tool instances. The tool has been used to generate a
wide range of visual environments, and is designed for
ready extension and integration with other tools.

1. Introduction

Multi-view, multi-notational visual environments are
popular tools in a wide variety of domains. Examples
include software design tools [16], circuit designers [27],
visual programming languages [4], user interface design
tools [25], and children’s programming environments [7].
In our own work we have developed a variety of such
applications [1], [13]. Many frameworks, meta-tool
environments and toolkits have been created to help
support the development of such visual language
environments. These include MetaEdit+ [18], Meta-
MOOQOSE [9], Escalante [23], PEDS [35] and DiaGen [24].
We have had a long term interest in developing
frameworks and meta tools supporting development of
such tools, including the MViews/JViews framework and
JComposer/BuildByWire meta-tools[12], [14].

However, current approaches to developing multiple-
view visual language tools suffer from several
deficiencies. Tools may be easy to learn and use but
usually these provide support for only a limited range of
target visual environments. Alternatively, the tools are
very flexible but require considerable programming
ability to develop even small environments, providing
high barriers to use. In addition, most meta-tools have a
standard edit-compile-run cycle, requiring complex tool
regeneration each time a minor notation change is made.

Our aim in this work was to produce a hew metatool,
Pounamu*, that could be used to rapidly design, prototype

1 Pounamu is the Maori word for greenstone jade,
used by Maori to produce tools, such as adzes or knives,
and objects of beauty, or taonga, such as jewellery.

and evolve tools supporting a very wide range of visual

notations and environments, ameliorating these

deficiencies. To achieve this we based Pounamu'’ s design
on two overarching requirements:

- Smplicity of use. It should be very easy to express
the design of a visual notation, and generate an
environment to support modelling using the notation.
Smplicity of extension and modification. It should be
possible to rapidly evolve proof of concept tools by
modification of the notation, addition of back end
processing, integration with other tools, and
behavioural extensions (eg complex constraints).

In this paper we first survey related work. We then
overview our Pounamu toolset and describe its visual tool
specification and modelling support, illustrating with a
simple UML-based diagram tool. We discuss Pounamu’s
architectural support for tool evolution and briefly
describe Pounamu’s design. A survey of applications we
have developed to evaluate the utility of the tool is
followed by a summary of the contributions of this
research and overview of possible future work.

2. Redated Work

Three main approaches exist for the development of
the types of visual, multiple view environments described
in the previous section: the use of reusable class
frameworks; meta-tools; and visual language toolkits.

Frameworks provide low-level yet very powerful sets
of reusable facilities for building specific kinds of visual
language tools or quite general-purpose applications,
depending on their degree of domain specialisation.
General purpose frameworks include MVC [17], Unidraw
[32], COAST [30], and HotDoc [3]. These typicaly lack
abstractions specific to multi-view, visual language
environments, so construction of tools is time-consuming.
Special purpose frameworks include Meta-MOOSE [9],
JViews [14], and Escalante [23]. These offer more easily
reusable facilities for visual language environments, but
require detailed progranming knowledge and a
compile/edit/run cycle, limiting their ease of use and
flexibility for exploratory development.

Many general-purpose toolkits that are suitable for
visual language development have been produced,
including Tcl/Tk [33], Suite [8], and Amulet [25]. These
combine rapid applications development tools and
programming extensions. As they lack high-level

abstractions for visual, multi-view environments, more
targeted toolkits have been produced to make such
development easier. These include Vampire [22], DiaGen
[24], VisPro [34], JComposer [14] and PROGRES [28].
Some of these use a code generation approach from a
specification model, e.g DiaGen and JComposer. Others,
such as PROGRES and VisPro, are based on formalisms
such as graph grammars and graph rewriting which are
used for high-level syntactic and semantic specification
for visual language tools. Code generation approaches
suffer from similar problems to many toolkits: edit/
compile/run cycle needed and difficulty in integrating
third party solutions. Formalismbased visual language
toolkits may limit the range of visual languages supported
and are often difficult to extend in non-planned ways e.g.
adding code generation or collaborative editing facilities.

Meta-tools provide an integrated environment for
developing other tools. These include MetaEdit+ [18],
MOOT [26], GME [21], MetaEnv [2] and IPSEN [19].
Usually they aim for a degree of round-trip engineering of
the target tools. Typically meta-tools provide good
support for their target domain environments. However
they are often limited in their flexibility and degree of
integration with other tools[12].

The majority of the above approaches require detailed
programming and class framework knowledge or
understanding of complex information models (eg graph
grammars). Few of these environment development tools
support round trip engineering and live, evolutionary
development. Regeneration of code can be a large
problem when integrating backend code.

3. Overview of Our Approach

Figure 1 shows the main components of the Pounamu
metatool. A user of Pounamu initially specifies a meta-
description of the desired tool. Specification tools allow
definition of the appearance of visual language notation
components (“Shape Designer”), views for graphical
display and editing of information (“View Designer”), the
tool’s underlying information model as meta-model types
(“Meta-model Designer”), and event handlers to define
behaviour semantics (“Event Handler Designer”). Tool
projects are used to group individual tool specifications.

Having specified a tool or obtained someone else’s
tool project specification, users can create multiple project
models associated with that tool. Modelling tools allow
users to create modelling projects, modelling views and
edit view shapes, updating model entities.

To support ease of use, the shape, view and meta-
model designers use high-level visual programming tools
with relatively simple appearance and semantics. To
provide flexibility, the event handler designer allows tool
designers to choose predefined event handlers from a

library or to write and dynamically add new ones as Java

plug-in components. Event handlers can be used to add:

- view editing behaviour e.g. “if shape X is moved,
move shape Y the same amount”;
view and model constraints e.g. “al instances of
entity Z must have a unique Name property”;
user-defined events e.g. “check model is consistent
when user clicks button”;
event-driven extensions e.g. “generate C# code from
the design model instance information”; and
environment extension plug-ins e.g. “initialise the
collaboration plug-in to support synchronous editing
of ashared Pounamu diagram by multiple users”.

Pounamu Metatool Application

Specification Tools Modelling Tools
Shape Designer Modelling Views
—
Meta-model
Designer 'ﬁo =T
Event handler Event
Handlers

Designer [
View Designer IELI
\‘;\ / Model Entity instances

Tool Specifcations

— XML documents

]
— 3 i
— —— 9 | Web Services
Tool specification Modelling APls
projects (XML) projects (XML)

Figure 1. The Pounamu approach.

Pounamu uses an XML representation of all tool
specification and model data, which can be stored in files,
a database or a remote version control tool. Pounamu
provides a full web services-based APl used to integrate
the tool with other tools, or to remotely drive the tool.

4. Tool Specification using Pounamu

Figure 2 (a) shows an example of the Pounamu shape
designer in use. On the left a hierarchical view provides
access to tool specification components and models
instantiated for that tool. In the centre are visua editing
windows for defining tool specification components and
model instances. Here, a shape is defined representing a
generic UML classicon. To the right is a property editing
panel supplementing the visual editing window. General
information is provided in apanel at the battom.

Figure 2 (b) shows a UML class diagramming tool, the
shape icon of which has been partially defined in Figure 2
(a), in use modelling a person class, with two subclasses
student and staff. This shapespecification could be reused

connector shown in Figure 3. The tool permits
specification of line format, end shapes, and labels or edit
fields associated with the connector’ s ends or centre.

for other modelling tools e.g. UML class diagrams. e T
Pounamu; Model things with your own taol fExX T
Pounamu Help.
Rectangle ® gi
[stroke font:
attribute
é AaBbCocDdEsr fiGg
method lineColor-
5@ sonector_crotr — 1 hehae
@ hancler_definer filColor I
2@ meta_model_definer
W/ eta wotlel view 0 endShape
5@ view type_definer IneVisible
o/ classeliagram shapes cornectors | model event_handlers HQ:L|
5" model projects Jj mode user_handers | visusl_evert_handers firue | |
Ld_| » wisual_user_handlers | meta_model_views | _view fypes - = T R | R SR
gerersl | undo st | recoiist| todel_User_randers | visual_event_hanclers -
6 classshape has been registered to LML Tocl | visugl_user_handlers | meta_model_views | view_types 1| jo®
y)
e Figure 3. Example of the Connector designer.
Potnamu: odel things with your o tol B The underlying tool information model is specified

Fonamu Help

Menager Tree | Too!icans | classiogram_0 | ol props | visusl props | E|
e = =] [istte ot props
i v/ association type 0
| y — bt ALnesTest
5@ view_type_definer J hame m
Classdiagram e S
ockelprojects th
! Using_UMLTool wethame
5+ modein etage methoc ML nesText
@ classcliagra —
=0/ classdiagram_0 lgetProgranne
@ ertty
e nareString
V' classsperson et
+ classstart [st [Stucert
¢ Bassystusten department i 5]
@ assocition itie Yorogramme e o e
5@ mplemerts
+ inplemerts 1 etDepartment etiD
o inglemeris 2 wetrie getPragramme
@ ventype0 =
| e J L
|l > [|| clesssiagrem [view type 0

wreral|

& the e
o the rew
10 ML
“

‘e project! using LMLTool has been crested!

bum (2

felcome to use Pounsmy

Figure2. Pounamu in use: (a) specification of a visual
notation shape element and (b) modelling using this
shapein a UML class diagram tool.

Five separate sub-tools are used to create a Pounamu
tool meta description. The shape designer shown in
Figure 2 (a) allows visual elements (generalised icons) to
be defined. These consist of Java Swing panels, with
embedded sub-shapes, such as labels, single or multi-line
editable text felds (with formatting), layout managers,
geometric shapes, images, borders, etc. For example, the
UML class icon in Figure 2 (a) consists of a bordered,
filled rectangular panel, with three sub-shapes, a single
line textfield for the name, and two multi-line textfields
for the attribute and operation parts of the class icon. The
property sheet pane (right) allows names and formatting
information to be specified for each shape component.
Fields that are to be exposed for mapping to the
underlying information model are also specified using a
property sheet tab. Form-based interfaces can also be
defined using asingle shape specification.

The connector designer allows specification of inter-
shape connectors, such as the UML generaisation

using the meta model designer, as in Figure 4. This uses
an Extended Entity Relationship (EER) model as its
representational metaphor. This was chosen because the
representation is simple and hence accessible to a wide
range of users. For example, the meta model in Figure 4
contains two entities representing a UML class and UML
object, each with properties for their names attributes and
methods, class type etc. An “instanceOf” association links
class and object entities and an “implements” association
links classes. The meta model tool supports multiple
views of the meta model, allowing complex meta models
to be presented in manageabl e segments.

e |

The current atirioutes st

meta mosel visw 0 |

hehsviourMutiLinesText nonkey

Property MuliLinesTextnonkey
| Class
attripute:MultiLinesTextnonkey Instancef
method:MultiLinesTextnonkey
name:Siring-key
|t B R
‘ et or delete stirbude here
Object
[mpemerts Mtrioute name narme
nroperyhMuliLinesTextnonkey tribLte type [String -
label:String: ke MultiLinesTextnankey P =
\name Siringkey oke Vibsinot ey i)
L fiF H [

Figure 4. Example of the meta-model designer.

The view designer, shown in Figure 5, is used to
define a visual editor and its mapping to the underlying
information model. Each view type consists of the shape
and connector types that are alowed in that view type,
together with a mapping from each such element to
corresponding meta model element types. Menus ad
property sheets for the view editor and view shapes can
also be customised using this tool. For example, Figure 5

shows the specification of a simple UML class
diagramming tool, consisting of UML class icon shapes,
and generalisation connectors. Figure 5 shows that the
classshape icon maps to the class meta-model entity type,
and their selected properties map as shown. Mappings
supported in this tool are simple 1-1 mappings of
elements (single or multi-vdued) between view instance
and information model instance. More complex mappings
can be specified using event handlers described below.
Multiple view types can be defined mapping to a common
information model. For example, other view types for
sequence diagrams or package diagrams can aso be
defined for the simple UML tool.

classdiagram | objectdiagram |

3

Ertity Type I Associstion Type I “isual Event Handler] isual User Handler]

Please select allowed meta model types

oz | addto =

Cilue

lirk == TEMOVE

ohject

YRE

Please map meta model types and icons
classshape Fiapping == Clas
glueshape
link=hape =2 FEOVE
ohjectshape
vpeshape

Flease map properties here

& attribute |attr\bute ﬂ
& method fmethoa |
=

= name |name

Figure5. Example of the view designer.

WizualEventHanderd]
Pleaze specify the events this visual handler will response to *
[MewShapeEvert [V MewConnectorEvent ™ RemoveShapeEvert
[+ RemoveConnectarEvent [MoveShapeEvent [ResizeShapeEvent
[ChangePropertyEvert [al
Please import sy class you want here
Java.util.*; =
4 b
Pleaze input the action code here
if(entities.contains (entity)) =
selectedIcon. setColor(jave.awt. Color.blue);
elae
selectedIcon, setColor(jave.awt, Color.red) ;
v | f
»

Figure 6. Example of the event handler designer.

Event handlers are used to add complex behaviour to a
tool via an Event-Condition-Action (ECA) model. Each
handler specifies the event type(s) that causes it to be
triggered (eg shape/connector addition/modification,
information model element change, or user action), any
event filtering condition that needs to be fulfilled e.g.
property value of shape or entity, and the response to that
event (i.e. action to take) in the form of a piece of Java
code. An APl provides access to the underlying tool

representation, permitting complex querying and
manipulation of tool data. Event handlers may be
parameterised and reused from multiple tool specification
project libraries. Handlers are typicaly used to add
constraints, complex mappings, back end data export or
import e.g. code generation, and access to remote services
to support tool integration and extension. Handlers are
specified using the handler designer and included in a
tool viathe view and meta-model designer tools. A simple
example of an event handler being developed is shown in
Figure 6. Event handler code is compiled on the fly as the
tool is specified or when atool project is opened.

5. Modédling Tool Example Usage

When wanting to use a tool specification, a user opens
the tool project(s) required and Pounamu dynamically
initialises the modelling tool facilities specified by the
tool project(s). Generation of the tool happens
automatically and immediately following specification of
any view editor associated with the tool. Users can create
model views using any of the specified view editors. Each
view editor provides an editing environment for diagrams
using the shapes and connectors it supports. Consistency
between multiple views is implicitly supported via the
view mapping process with no programming required to
achieve this, unless very complex mappings are required
that need event handlers to implement them.

Figure 7 shows the simple UML class diagramming
tool in use. View (1) shows a simple class diagram. The
user has created a class diagram view from the available
view types, added two UML class shapes and an
association connector, and set various propertiesfor these,
including their location and size. View (2) shows another
class diagram included in the same project model, reusing
the Customer class information. Changes to either view,
eg addition of a method or change of the class name, are
reflected through to the other view. View (3) shows a
simplified object diagram view, including an object of
class Order. Changes to the class name are automatically
reflected in this view and only methods defined or
inherited by a class may be used in the message calling.
The latter is controlled by event handlers managing the
more complex consistency requirements.

6. Tool Modification and Extension

Our second requirement for Pounamu was simplicity
of use and conceptua foundations along with power of
extension and modification. We support this in a several
ways. Firstly, users can a any time modify tool
specifications. Changes made are immediately reflected in
models being edited using that tool, creating a live
environment. This provides powerful support for rapid
prototyping and evolutionary tool development.

classcliagram_1 madel props | visual =
classdiagram 0 moe! props | visusl props | classdiagram 0 oram_1 | visual props
B Wisihle model props
l - Visible model props [customer
sttribuiz:MuliLinesTexdt
sttribute:MUbLinesText CustomenD 2
address accountiunber
orderID N
creditRate
[orer [customer jdate getAddressi)
oetEMail) 5
arderD custarnerD ethod MultiLinesTest Tt resTon
date aa0TESS, W erfreditRate |)
repare getadr 4 LI_I
cancel(getEMail DbJEﬁdiEQI’SmJ‘
name:String
3 [Corperstecustamer | PersonalCustomer
lrorperstecustanr
accounthumber age =
Fl glereditRate occupation Inwisible model props
OrdlerEntryMindow: e
taccountNumber getage
classtliagram | obiectdizgram e
d getCreditRate(getOccupationg
1:prepare J;l
4 »
classdiagram | Objectdisgram R »
Zrew)
E :Deliveryttem
R ;I_‘
classdiagrar objectdiagran e [

Figure 7. Example modelling tool usage.

Changes to the specification may result in information
creation or loss in the open or saved modelling projects
e.g. on addition or deletion of new properties or types.
Reuse is supported by allowing shapes, connectors, meta
model elements, and event handlers to be easily imported
from other tools or libraries. Multiple tool specification
projects may be open when modelling, with specification
of parts of the modelling tool coming from different tool
specification projects.

Having defined a simple tool, and experimented with
its notation, additional behaviour can be added using
event handlers to implement more complex constraints.
Examples include type checking (e.g. UML associations
must be between classes); constraints (e.g. UML class
attributes must have unique names for the same class);
layout constraints and behaviour (e.g. autodayout of a
UML sequence diagram view when edited); more
complex mappings (e.g. changes to class shape method
names automatically modifiying method entity properties
in the modelling tool information model); or add back end
functionality (e.g. generate C# skeleton code from model
instances). These handlers can be generic for reuse (eg a
generic horizontal alignment handler). As with other meta
specification components, adding or modifying a handler
results in “on the fly” compilation of handler code and
incorporation of that code in any executing tool instances.

Back end support e.g. for code generation can be
implemented by event handlers. In addition, as al tool
and model components are represented in XML format, it
is straightforward to add back end support using XSLT or
other XM L-based transformation tools. This approach can
allow back ends to be developed independently of the
editing environment providing good modularisation.

An additional approach for back end support is via a
web services-based API. This exposes Pounamu

modelling commands, menu extensions, etc, allowing
tight and dynamic integration of third party tools, and
other Pounamu environments. We have, for example,
used this APl to implement peer to peer based

synchronous and asynchronous collaboration support
between multiple Pounamu environments, © implement
generic GIF and SVG web-based thin client interfaces (an
example of this is shown in Figure 8), and to integrate a
Pounamu based process modelling tool with a process
enactment engine.

vt [oo o e ok R e F i

Figure8. Thin client, web-basedediting interface
generated for Pounamu UML tool.

The extendibility of Pounamu also extends to the meta
environment itself. For example, we have recently
incorporated support for zoomable user interfaces as an
aternative to the conventional editing interfaces described
earlier. This extension uses the Jazz ZUI APl framework
to implement a context and focus metaphor. Integration of

the zZUI framework was simplified by using event
handlers to manage and control changesin the ZUI views.

7. Design and Implementation

The architecture of Pounamu is based on the set of
tool facilities outlined in Figure 1. We chose to represent
both specification tool information and modelling tool
information in an XML format, both internally using a
Domain Object Model API and externally in XML files or
database. We chose an XML representation to enable
ready extension to the tool and model formats, ease of
exchange with other tools, and for the ability to use
existing translation support tools. These XML formats
also enabled us to adopt a web services-based API
extension and integration approach for Pounamu. We
have used XSLT translation scripts to support translation
of Pounamu model and view data into other formats for
information import and export [31].

The Pounamu design and modelling tools use Java
Swing to implement the design tool interfaces, Java JAX
XML API for representing tool data, and Java's file
management APIsfor information storage and retrieval. A
specialised class loader is used to support on-the-fly event
handler class compilation and reloading, enabling
dynamic code addition and replacement in the tool. We
use the Java web services APIs to support XML
messaging between Pounamu and other tools. The web
services APl has been used to build a generic
collaborative editing component for any Pounamu
modelling tool and a set of Java servlets providing the
generic thin-client editing of any Pounamu view in a web
browser using GIF or SV G-format diagrams.

8. Evaluation and Example Applications

We have evaluated Pounamu'’ s suitability for multiple-
view visual language environment development by using
it to implement a wide variety of tools and evaluating the
development process against our primary requirements.
These include tools for design in UML supporting all
Some of these include a full UML tool supporting all
major view types; electrical circuit modelling (Figure 9),
semantic modelling using Traits [29] (Figure 10), web
services system design using Tool Abstraction [11]
(Figure 11), and software process modelling Figure 12),
the latter integrated with a process enactment engine.

In each case Pounamu permitted rapid development of
an environment for a simple version of the supported
notation, satisfying our first requirement. These tools
were then iteratively expanded in a manner matching the
second of our requirements. Thisinvolved, for example:

elaboration of notations, such as expansion of the
range of UML diagrams supported in the UML tool
addition of event handlers for constraint

management, particularly for visual constraints and
for consistency management between elements in the
information model. The Traits tool used this for
generating a combined conflict free method list
integration of backend code generation for the web
services and process modelling tools, and

use of the web services APl to integrate the process
modelling tool with a distributed process enactment
engine.

eletrical baisc_0]

|

—a

Figure 9. Example of Pounamu circuit designer.

wiew type 0_0 I

wiew type 0 [

Figure 10. Example Traits modelling tool.

The extended entity relationship based representation
chosen for the tool information model was adequate in all
cases. In particular it was able to directly support
implementation of the substantial UML meta model for
the UML tool. The simple mapping representation
supported by the view specification tool was adequate for
most view-model mappings with only afew, such as more
complex UML diagrams, requiring more complex
mappings implemented using event handlers.

Feedback from tool developers using Pounamu has
been very favourable. These include several PhD and
MSc students, two industry practitioners, and over 50
post-graduate coursework students, who have all used the

tool to develop non-trivial multi-view visual tools. The
specification facilities support a wide range of visual
multi-view environments and most developers have been
happy with the meta-toolset. Developers like the simple
conceptual foundations and interfaces of each of the meta-
tools. Suggested improvements from this user base have
been incorporated into Pounamu’ s devel opment.

view type_Data flow_0 I visws bype_Data Flov_Overvisw |

pracessinput
|
r 2
messagel typeChecking]
ioperation
operationo@.
bypeChecking2
Web servicet

Bheration2
Weh service2

operation3 —
data store

. | o

view type_Data Aow | view type_Control Flow | view type_Combined flow |

Figure 11. Example web services composition tool.

21| wT_pu_addonprocess model props | visusl props]

~ |/ || - vestate moset praps
ID:String

designisd
WS visio
designthe add-on save thi

view i For this entiy

descriptiortMutinesText

esign the add-on
‘ »

inputsMuliLinesText

2 Cade Addon
Coder code java
Icreator

code the add-on b ,ﬁ
SirmpleFlow
3 Test Add-on
Tester lest doc name:String

[pesign dd-on

outputs: MuliLinesText

[aesign conpleted
role:Strng

S Word
Testadd-on
Simpleflow

e
d .H
« 5

Jj viem |

Figure 12. Example process modelling tool.

For many of the example systems, we have carried out
user evaluations of the application visual language
environments, Cognitive Dimensions-based [10]
evaluation of the visual environment interaction and
information presentation features, and developer
evaluation of Pounamu itself. Our user survey of the
UML prototype software design tool included
experienced, industry modellers as well as novice users
[5]. Most of our Pounamu-built UML design tools were
found to be both usable and appropriate to their task.
Some problems were encountered with non-standard
notational symbols and limited editing capability in some
diagram types, especially UML sequence diagrams. These
limitations arose from limitations in Pounamu of shape

specification and editing event handler control. We have
since enhanced both facilities and substantially improved
the usability of the UML tools.

Both a user evaluation and a cognitive dimensions
evaluation were carried out on the process modelling
prototype tool. We evauated both its modelling
capabilities and its presentation of enacted process stage
information in Pounamu modelling views [15]. Users
reported they found the visual nodelling facilities to be
good, the multiple view support helpful, and consistency
management between different views and error reporting
to be good. However they found some modelling
functions, such as resizing, to be ungainly, alack of drag-
and-drop creation of model elements, and some bugs in
the modelling environment, problems we are addressing.
Our cognitive dimensions analysis of the process
modelling tool found a good closeness of mapping of the
visual notation to the problem domain, high consistency
of views and few hard mental operations were needed to
build models. However, at times there is insufficient
visibility and juxtaposibility. For example two views
could not be seen at the same time. These findings have
led to a number of further enhancements to Pounamu,
particularly in its view management facilities.

9. Summary

We have described Pounamu, a meta tool supporting
iterative design and development of multi-view, multi-
notation visual environments. Pounamu comprises five
tools for specifying the meta description of a tool. Tool
generation is automatic, and consistency between the
meta description and the generated tool is automatically
maintained. Tool extension is well supported by addition
of bespoke event handlers, integration using a web
services based APl or back end code generation from the
native XML model representation. The tool has
successfully been used to implement a wide range of
visual environments. The combination of live
modification of tools and the very open architecture
provided by back end XML transformation and web
services APl provides a highly customisable and
extensible tool development environment.

Future work we have planned includes the
incorporation of generic sketch and voice interfaces based
on the approaches used in the more specific UML tools of
[6] and [20] and the development of a tool to visualy
specify event handlers, similar to the approach taken in
our Serendipity action specifications[13].

Acknowledgements

We acknowledge the financial support of the New
Zedland Foundation for Research Science and
Technology’s New Economy Research Fund. We also

acknowledge the support of ShuPing Cao, Therese
Helland, Blazej Kott, and Karen Liu for construction of
several of the example systems described in section 8.

References

(1

(2]

(3]

(4]

(5]

(6]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

Amor, R. W, Hosking, J.G., and Mugridge, W.B.: ICAtect-
II: A framework for the integration of building design
tools, Automation in Construction, 8, pp 277-289, 1999.

L. Baresi, A. Orso, and M. Pezze. Introducing Formal
Methods in Industrial Practice. In Proc. |CSE 1997, Boston
MA, 1997, ACM Press, pages 56-66.

Buchner, J.,, Fehnl, T., and Kuntsmann, T., HotDoc a
flexible framework for spatial composition, In Proceedings
of the 1997 |IEEE Symposium on Visual Languages, |EEE
CS Press, pp. 92-99.

Burnett M, Goldberg A, Lewis T (eds) Visual Object-

Oriented Programming, Manning Publications,
Greenwich, CT, USA, 1995.
Cao, Shuping, Thin-client interface design for the

Pounamu Meat-Case Tool, MSc Thesis, Department of
Computer Science, University of Auckland, 2004, 164pp.
Chen, Q., Grundy, J.C. and Hosking, J.G. An E-whiteboard
Application to Support Early Design-Stage Sketching of
UML Diagrams, In Proc. HCC 2003, Auckland, New
Zealand, October 2003, pp. 219-226.

Cypher, A. and Smith, D.C., KidSim: End User
Programming of Simulations, In Proceedings of CHI’ 95,
Denver, May 1995, ACM, pp. 27-34.

Dewan, P. and Choudhary, R. 1991. Flexible user interface
coupling in collaborative systems, Proceedings of ACM
CHI'91, ACM Press, April 1991, pp. 41-49.

Ferguson R, Parrington N, Dunne P, Archibald J,
Thompson J, MetaMOOSE-an object-oriented framework
for the construction of CASE tools: Proc Int Symp on
Constructing Soft. Eng. Tools (CoSET'99) LA, May 1999.
Green, T.R.G and Petre, M, Usability analysis of visual
programming environments. a ‘cognitive dimensions
framework, JVLC 1996 (7), pp.131-174.

Grundy, J.C., Hosking, J.G. ViTABaL: A Visual Language
Supporting Design by Tool Abstraction, In Proceedings of
the 1995 |EEE Symposium on Visual Languages,
Darmsdart, Germany, September 1995, pp. 53-60.

Grundy, J.C., Mugridge, W.B. and Hosking, J.G.
Constructing component-based software engineering
environments: issues and experiences, J. Information and
Software Technology, Vol. 42, No. 2, pp. 117-128.

Grundy, J., and Hosking, J.. Serendipity: integrated
environment support for process modelling, enactment and
improvement, Aut. Soft. Eng., 5(1), 27-60, 1998.

Grundy, J.C., Mugridge, W.B. and Hosking J.G. Visual
specification of multiple view visual environments, In Proc
IEEE VL'98, Halifax, Nova Scotia, Sept 1-4, 1998, |EEE
CS Press, pp. 236-243

Helland T, A service oriented approach to software process
support, MSc Thesis, Department of Computer Sdence,
University of Auckland, 2004, 216pp.

IBM Corp, Rational Rose XDE Modeler, http://www-
306.ibm.com/software/awdtool s/devel oper/model er/

G.E. Krasner and S.T. Pope, A Cookbook for Using the
Model-View-Controller User Interfface Paradigm in

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31

(32]

(33]
(34]

(39]

Smalltalk-80, Journal Object-Oriented Programming, vol.
1, no. 3, pp. 26-49, Aug. 1988.

Kelly, S, Lyytinen, K., and Rossi, M., Meta Edit+: A Fully
configurable MultrUser and Multi-Tool CASE
Environment, in Proceedings of CAISE'96, LNCS 1080,
Springer-Verlag, Crete, Greece, May 1996.

P. Klein, A. Schiirr: Constructing SDEs with the IPSEN
Meta Environment , in Proc. 8th Conf. on Software
Engineering Environments SEE'97, Los Alamitos: |EEE
Computer Society Press (1997), 2-10

Lahtinen S, Peltonen J, Enhancing Usability of UML
CASE-Tools with Speech Recognition, In Proc HCC 2003,
Auckland, New Zeaand, October 2003, |EEE, 227-235.
Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G.: Composing Domain-Specific
Design Environments, Computer , 44-51, Nov, 2001.
Mcintyre, D.W., Design and implementation with
Vampire, Visual Object-Oriented Programming. Manning
Publications, Greenwich, CT, USA, 1995, Ch 7, 129-160.
J.D. McWhirter and G.J. Nutt, Escalante: An Environment
for the Rapid Construction of Visua Language
Applications, Proc. VL '94, pp. 15-22, Oct. 1994.

M. Minas and G. Viehstaedt, DiaGen: A Generator for
Diagram Editors Providing Direct Manipulation and
Execution of Diagrams, Proc. VL '95, 203-210 Sept. 1995.
Myers, B.A., “The Amulet Environment: New Models for
Effective User Interface Software Development,” |EEE
TSE, vol. 23, no. 6, 347-365, June 1997.

Phillips C, Adams S, Page D, Mehandjiska D, The Design
of the Client User Interface for a Meta Object -Oriented
CASE Tool, Proc TOOLS, 1998 M elbourne, p156-167.
Quasar Electronics, Visua Spice http://www.
quasarel ectronics.com/product -files/vs/visual _spice
support.htm

J. Rekers and A. Schuerr, Defining and Parsing Visual
Languages with Layered Graph Grammars, JVLC, vol. 8,
no. 1, pp. 27-55, 1997.

Schérli N, Ducasse S, Nierstrasz O and Black A, "Traits:
Composable units of behavior®, Tech Rep IAM -02-005,
Institut fur Informatik, Univ. Bern, Switzerland, Nov 2002.
Shuckman, C., Kirchner, L., Schummer, J. and Haake, JM.
1996. Designing object-oriented synchronous groupware
with COAST, Proceedings of the ACM Conference on
Computer Supported Cooperative Work, ACM Press,
November 1996, pp. 21-29

Stoeckle, H., Grundy, J.C. and Hosking, J.G. Approaches
to Supporting Software Visual Notation Exchange, Proc
HCC' 03, Auckland, New Zealand, Oct 2003, | EEE, 59-66
Vlissides, J.M. and Linton, M., Unidraw: A framework for
building domain-specific graphical editors, in Proc.
UIST’ 89, ACM Press, pp. 158-167.

Welch, B. and Jones, K. Practical Programmingin Tcl and
Tk, 4™ Edition, Prentice-Hall, 2003.

D -Q. Zhang and K. Zhang, VisPro: A Visua Language
Generation Toolset, Proc. VL'98, pp. 195-202, Sept. 1998.
K. Zhang, D-Q. Zhang, and J. Cao, Design, Construction,
and Application of a Generic Visual Language Generation
Environment", IEEE TSE, 27,4, April 2001, 289-307.

