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Abstract 

We describe a meta tool for specification and generation 
of multiple view visual tools. The tool permits rapid 
specification of visual notational elements, underlying 
tool information model requirements, visual editors, the 
relationship between notational and model elements, and 
behavioural components. Tools are generated on the fly 
and can be used for modelling immediately. Changes to 
the meta tool specification are immediately reflected in 
any tool instances. The tool has been used to generate a 
wide range of visual environments, and is designed for 
ready extension and integration with other tools. 

1. Introduction 

Multi-view, multi-notational visual environments are 
popular tools in a wide variety of domains. Examples 
include software design tools [16], circuit designers [27], 
visual programming languages [4], user interface design 
tools [25], and children’s programming environments [7]. 
In our own work we have developed a variety of such 
applications [1], [13] . Many frameworks, meta-tool 
environments and toolkits have been created to help 
support the development of such visual language 
environments. These include MetaEdit+ [18], Meta-
MOOSE [9], Escalante [23], PEDS [35] and DiaGen [24]. 
We have had a long term interest in developing 
frameworks and meta tools supporting development of 
such tools, including the MViews/JViews framework and 
JComposer/BuildByWire meta-tools [12], [14]. 

However, current approaches to developing multiple -
view visual language tools suffer from several 
deficiencies. Tools may be easy to learn and use but 
usually these provide support for only a limited range of 
target visual environments. Alternatively, the tools are 
very flexible but require considerable programming 
ability to develop even small environments, providing 
high barriers to use. In addition, most meta-tools have a 
standard edit-compile-run cycle, requiring complex tool 
regeneration each time a minor notation change is made. 

Our aim in this work was to produce a new meta-tool, 
Pounamu 1, that could be used to rapidly design, prototype 

                                                                 
1 Pounamu  is the Maori word for greenstone jade, 

used by Maori to produce tools, such as adzes or knives, 
and objects of beauty, or taonga, such as jewellery. 

and evolve tools supporting a very wide range of visual 
notations and environments, ameliorating these 
deficiencies. To achieve this we based Pounamu’s design 
on two overarching requirements: 
• Simplicity of use. It should be very easy to express 

the design of a visual notation, and generate an 
environment to support modelling using the notation. 

• Simplicity of extension and modification. It should be 
possible to rapidly evolve proof of concept tools by 
modification of the notation, addition of back end 
processing, integration with other tools, and 
behavioural extensions (eg complex constraints). 

In this paper we first survey related work. We then 
overview our Pounamu toolset and describe its visual tool 
specification and modelling support, illustrating with a 
simple UML-based diagram tool. We discuss Pounamu’s 
architectural support for tool evolution and briefly 
describe Pounamu’s design. A survey of applications we 
have developed to evaluate the utility of the tool is 
followed by a summary of the contributions of this 
research and overview of possible future work. 

2. Related Work 

Three main approaches exist for the development of 
the types of visual, multiple view environments described 
in the previous section: the use of reusable class 
frameworks; meta-tools; and visual language toolkits. 

Frame works provide low-level yet very powerful sets 
of reusable facilities for building specific kinds of visual 
language tools or quite general-purpose applications, 
depending on their degree of domain specialisation. 
General purpose frameworks include MVC [17], Unidraw 
[32], COAST [30], and HotDoc [3]. These typically lack 
abstractions specific to multi-view, visual language 
environments, so construction of tools is time -consuming. 
Special purpose frameworks include Meta-MOOSE [9], 
JViews [14], and Escalante [23]. These offer more easily 
reusable facilities for visual language environments, but 
require detailed programming knowledge and a 
compile/edit/run cycle, limiting their ease of use and 
flexibility for exploratory development. 

Many general-purpose toolkits that are suitable for 
visual language development have been produced, 
including Tcl/Tk [33], Suite [8], and Amulet [25]. These 
combine rapid applications development tools and 
programming extensions. As they lack high-level 



abstra ctions for visual, multi-view environments, more 
targeted toolkits have been produced to make such 
development easier. These include Vampire [22], DiaGen 
[24], VisPro [34] , JComposer [14] and PROGRES [28]. 
Some of these use a code generation approach from a 
specification model, e.g DiaGen and JComposer. Others, 
such as PROGRES and VisPro, are based on formalisms 
such as  graph grammars and graph rewriting which are 
used for high-level syntactic and semantic specification 
for visual language tools. Code generation approaches 
suffer from similar problems to many toolkits: edit/ 
compile/run cycle needed and difficulty in integrating 
third party solutions. Formalism-based visual language 
toolkits may limit the range of visual languages supported 
and are often difficult to extend in non-planned ways e.g. 
adding code generation or collaborative editing facilities. 

Meta-tools provide an integrated environment for 
developing other tools. These include MetaEdit+ [18], 
MOOT [26] , GME [21], MetaEnv [2] and IPSEN [19]. 
Usually they aim for a degree of round-trip engineering of 
the target tools. Typically meta -tools provide good 
support for their target domain environments. However 
they are often limited in their flexibility and degree of 
integration with other tools [12]. 

The majority of the above approaches require detailed 
programming and class framework knowledge or 
understanding of complex information models (eg graph 
grammars). Few of these environment development tools 
support round trip engineering and live, evolutionary 
development. Regeneration of code can be a large 
problem when integrating backend code. 

3. Overview of Our Approach 

Figure 1 shows the main components of the Pounamu 
meta-tool. A user of Pounamu initially specifies a meta-
description of the desired tool. Specification tools allow 
definition of the appearance of visual language notation 
components (“Shape Designer”), views for graphical 
display and editing of information (“View Designer”), the 
tool’s underlying information model as meta-model types 
(“Meta-model Designer”), and event handlers to define 
behaviour semantics (“Event Handler Designer”). Tool 
projects are used to group individual tool specifications.  

Having specified a tool or obtained someone else’s 
tool project specification, users can create multiple project 
models associated with that tool. Modelling tools allow 
users to create modelling projects, modelling views and 
edit view shapes, updating model entities. 

To supp ort ease of use, the shape, view and meta-
model designers use high-level visual programming tools 
with relatively simple appearance and semantics. To 
provide flexibility, the event handler designer allows tool 
designers to choose predefined event handlers from a 

library or to write and dynamically add new ones as Java 
plug-in components. Event handlers can be used to add:  
• view editing behaviour e.g. “if shape X is moved, 

move shape Y the same amount”;  
• view and model constraints e.g. “all instances of 

entity Z must have a unique Name property”;  
• user-defined events e.g. “check model is consistent 

when user clicks button”;  
• event-driven extensions e.g. “generate C# code from 

the design model instance information”; and  
• environment extension plug-ins e.g. “initialise the 

collaboration plug-in to support synchronous editing 
of a shared Pounamu diagram by multiple users”. 

 
Pounamu Meta-tool Application 

Modelling Tools Specification Tools 
 Shape Designer 

Meta-model 
Designer 

Event handler 
Designer 

View Designer 

Modelling Views 

 
 
 

Model Entity instances 

Tool Specifcations 
– XML documents 

Plug-ins 

Event 
Handlers 

Web Services 
APIs Tool specification 

projects (XML) 
Modelling 

projects (XML)  
Figure 1. The Pounamu approach. 

Pounamu uses an XML representation of all tool 
specification and model data, which can be stored in files, 
a database or a remote version control tool. Pounamu 
provides a full web services-based API used to integrate 
the tool with other tools, or to remotely drive the tool. 

4. Tool Specification using Pounamu 

Figure 2 (a) shows an example of the Pounamu shape 
designer in use. On the left a hierarchical view provides 
access to tool specification components and models 
instantiated for that tool. In the centre are visual editing 
windows for defining tool specification components and 
model instances. Here, a shape is defined representing a 
generic UML class icon. To the right is a property editing 
panel supplementing the visual editing window. General 
information is provided in a panel at the bottom.  



Figure 2 (b) shows a UML class diagramming tool, the 
shape icon of which has been partially defined in Figure 2 
(a), in use modelling a person class, with two subclasses 
student and staff. This shape specification could be reused 
for other modelling tools e.g. UML class diagrams. 

 
 

 

Figure 2. Pounamu in use: (a) specification of a visual 
notation shape element and  (b) modelling using this 

shape in a UML class diagram tool. 

Five separate sub-tools are used to create a Pounamu 
tool meta description. The shape designer shown in 
Figure 2 (a) allows visual elements (generalised icons) to 
be defined. These consist of Java Swing panels, with 
embedded sub-shapes, such as labels, single or multi-line 
editable text fields (with formatting), layout managers, 
geometric shapes, images, borders, etc. For example, the 
UML class icon in Figure 2 (a) consists of a bordered, 
filled rectangular panel, with three sub-shapes, a single 
line textfield for the name, and two multi-line textfields 
for the attribute and operation parts of the class icon. The 
property sheet pane (right) allows names and formatting 
information to be specified for each shape component. 
Fields that are to be exposed for mapping to the 
underlying information model are also specified using a 
property sheet tab. Form-based interfaces can also be 
defined using a single shape specification. 

The connector designer allows specification of inter-
shape connectors, such as the UML generalisation 

connector shown in Figure 3. The tool permits 
specification of line format, end shapes, and labels or edit 
fields associated with the connector’s ends or centre. 

 

 

Figure 3. Example of the Connector designer. 

The underlying tool information model is specified 
using the meta model designer , as  in Figure 4. This uses 
an Extended Entity Relationship (EER) model as its 
representational metaphor. This was chosen because the 
representation is simple and hence accessible to a wide 
range of users. For example, the meta model in Figure 4 
contains two entities representing a UML class and UML 
object, each with properties for their names attributes and 
methods, class type etc. An “instanceOf” association links 
class and object entities and an “implements” association 
links classes. The meta model tool supports multiple 
views of the meta model, allowing complex meta models 
to be presented in manageable segments. 

 

 

Figure 4. Example of the meta-model designer. 

The view designer, shown in Figure 5, is used to 
define a visual editor and its mapping to the underlying 
information model. Each view type consists of the shape 
and connector types that are allowed in that view type, 
together with a mapping from each such element to 
corresponding meta model element types. Menus and 
property sheets for the view editor and view shapes can 
also be customised using this tool. For example, Figure 5 



shows the specification of a simple UML class 
diagramming tool, consisting of UML class icon shapes, 
and generalis ation connectors. Figure 5 shows that the 
classshape icon maps to the class meta-model entity type, 
and their selected properties map as shown. Mappings 
supported in this tool are simple 1-1 mappings of 
elements (single or multi-valued) between view instance 
and information model instance. More complex mappings 
can be specified using event handlers described below. 
Multiple view types can be defined mapping to a common 
information model. For example, other view types for 
sequence diagrams or package diagrams can also be 
defined for the simple UML tool.  

 

Figure 5. Example of the view designer. 

 
Figure 6. Example of the event handler designer. 

Event handlers are used to add complex behaviour to a 
tool via an Event-Condition-Action (ECA) model. Each 
handler specifies the event type(s) that causes it to be 
triggered (eg shape/connector addition/modification, 
information model element change, or user action), any 
event filtering condition that needs to be fulfilled e.g. 
property value of shape or entity, and the response to that 
event (i.e. action to take) in the form of a piece of Java 
code. An API provides access to the underlying tool 

representation, permitting complex querying and 
manipulation of tool data. Event handlers may be 
parameterised and reused from multiple tool specification 
project libraries. Handlers are typically used to add 
constraints, complex mappings, back end data export or 
import e.g. code generation, and access to remote services 
to support tool integration and extension. Handlers are 
specified using the handler designer and included in a 
tool via the view and meta-model designer tools. A simple 
example of an event handler being developed is shown in 
Figure 6. Event handler code is compiled on the fly as the 
tool is specified or when a tool project is opened.  

5. Modelling Tool Example Usage  

When wanting to use a tool specification, a user opens 
the tool project(s) required and Pounamu dynamically 
initialises the modelling tool facilities specified by the 
tool project(s). Generation of the tool happens 
automatically and immediately following specification of 
any view editor associated with the tool. Users can create 
model views using any of the specified view editors. Each 
view editor provides an editing environment for diagrams 
using the shapes and connectors it supports. Consistency 
between multiple views is implicitly supported via the 
view mapping process with no programming required to 
achieve this, unless very complex mappings are required 
that need event handlers to implement them. 

Figure 7 shows the simple UML class diagramming 
tool in use. View (1) shows a simple class diagram. The 
user has created a class diagram view from the available 
view types, added  two UML class shapes and an 
association connector, and set various properties for these, 
including their location and size. View (2) shows another 
class diagram included in the same project model, reusing 
the Customer  class information. Changes to either view, 
eg addition of a method or change of the class name, are 
reflected through to the other view. View (3) shows a 
simplified object diagram view, including an object of 
class Order. Changes to the class name are automatically 
reflected in this view and only methods defined or 
inherited by a class may be used in the message calling. 
The latter is controlled by event handlers managing the 
more complex consistency requirements. 

6. Tool Modification and Extension 

Our second requirement for Pounamu was simplicity 
of use and conceptual foundations along with power of 
extension and modification. We support this in a several 
ways. Firstly, users can at any time modify tool 
specifications. Changes made are immediately reflected in 
models being edited using that tool, creating a live 
environment. This provides powerful support for rapid 
prototyping and evolutionary tool development.  



 
 

(1) (2) 

(3) 

 

Figure 7. Example modelling tool usage. 

Changes to the specification may result in information 
creation or loss in the open or saved modelling projects 
e.g. on addition or deletion of new properties or types. 
Reuse is supported by allowing shapes, connectors, meta 
model elements, and event handlers to be easily imported 
from other tools or libraries. Multiple tool specification 
projects may be open when modelling, with specification 
of parts of the modelling tool coming from different tool 
specification projects. 

Having defined a simple tool, and experimented with 
its notation, additional behaviour can be added using 
event handlers to implement more complex constraints. 
Examples include type checking (e.g. UML associations 
must be between classes); constraints (e.g. UML class 
attributes must have unique names for the same class); 
layout constraints and behaviour (e.g. auto-layout of a 
UML sequence diagram view when edited); more 
complex mappings (e.g. changes to class shape method 
names automatically modifiying method entity properties 
in the modelling tool information model); or add back end 
functionality (e.g. generate C# skeleton code from model 
instances). These handlers can be generic for reuse (eg a 
generic horizontal alignment handler). As with other meta 
specification components, adding or modifying a handler 
results in “on the fly” compilation of handler code and 
incorporation of that code in any executing tool instances. 

Back end support e.g. for code generation can be 
implemented by event handlers. In addition, as all tool 
and model components are represented in XML format, it 
is straightforward to add back end support using XSLT or 
other XML-based transformation tools. This approach can 
allow back ends to be developed independently of the 
editing environment providing good modularisation.  

An additional approach for back end support is via a 
web services-based API. This exposes Pounamu 

modelling commands, menu extensions, etc, allowing 
tight and dynamic integration of third party tools, and 
other Pounamu environments. We have, for example, 
used this API to implement peer to peer based 
synchronous and asynchronous collaboration support 
between multiple Pounamu environments, to implement 
generic GIF and SVG web-based thin client interfaces (an 
example of this is shown in Figure 8), and to integrate a 
Pounamu based process modelling tool with a process 
enactment engine. 

 

 
Figure 8. Thin client, web-based editing interface 

generated for Pounamu UML tool. 

The extendibility of Pounamu also extends to the meta 
environment itself. For example, we have recently 
incorporated support for zoomable user interfaces as an 
alternative to the conventional editing interfaces described 
earlier. This extension uses the Jazz ZUI API framework 
to implement a context and focus metaphor. Integration of 



the ZUI framework was simplified by using event 
handlers to manage and control changes in the ZUI views. 

7. Design and Implementation 

The architecture of Pounamu is based on the set of 
tool facilities outlined in Figure 1. We chose to represent 
both specification tool information and modelling tool 
information in an XML format, both internally using a 
Domain Object Model API and externally in XML files or 
database. We chose an XML representation to enable 
ready extension to the tool and model formats, ease of 
exchange with other tools, and for the ability to use 
existing translation support tools. These XML formats 
also enabled us to adopt a web services -based API 
extension and integration approach for Pounamu. We 
have used XSLT translation scripts to support translation 
of Pounamu model and view data into other formats for 
information import and export [31]. 

The Pounamu design and modelling tools use Java 
Swing to implement the design tool interfaces, Java JAX 
XML API for representing tool data, and Java’s file 
management APIs for information storage and retrieval. A 
specialised class loader is used to support on-the-fly event 
handler class compilation and reloading, enabling 
dynamic code addition and replacement in the tool. We 
use the Java web services APIs to support XML 
messaging between Pounamu and other tools. The web 
services API has been used to build a generic 
collaborative editing component for any Pounamu 
modelling tool and a set of Java servlets providing the 
generic thin-client editing of any Pounamu view in a web 
browser using GIF or SVG-format diagrams. 

8. Evaluation and Example Applications 

We have evaluated Pounamu’s suitability for multiple -
view visual language environment development by using 
it to implement a wide variety of tools and evaluating the 
development process against our primary requirements. 
These include tools for design in UML supporting all 
Some of these include a full UML tool supporting all 
major view types; electrical circuit modelling (Figure 9), 
semantic modelling using Traits [29] (Figure 10), web 
services system design using Tool Abstraction [11] 
(Figure 11), and software process modelling (Figure 12), 
the latter integrated with a process enactment engine.  

In each case Pounamu permitted rapid development of 
an environment for a simple version of the supported 
notation, satisfying our first requirement. These tools 
were then iteratively expanded in a manner matching the 
second of our requirements. This involved, for example: 
• elaboration of notations, such as expansion of the 

range of UML diagrams supported in the UML tool 
• addition of event handlers for constraint 

management, particularly for visual constraints and 
for consistency management between elements in the 
information model. The Traits tool used this for 
generating a combined conflict free  method list 

• integration of backend code generation for the web 
services and process modelling tools, and  

• use of the web services API to integrate the process 
modelling tool with a distributed process enactment 
engine. 

 

 

Figure 9. Example of Pounamu circuit designer. 

 
Figure 10. Example Traits modelling tool. 

The extended entity relationship based representation 
chosen for the tool information model was adequate in all 
cases. In particular it was able to directly support 
implementation of the substantial UML meta model for 
the UML tool. The simple mapping representation 
supported by the view specification tool was adequate for 
most view-model mappings with only a few, such as more 
complex UML diagrams, requiring more complex 
mappings implemented using event handlers.  

Feedback from tool developers using Pounamu has 
been very favourable. These include several PhD and 
MSc students, two industry practitioners, and over 50 
post-graduate coursework students, who have all used the 



tool to deve lop non-trivial multi-view visual tools. The 
specification facilities support a wide range of visual 
multi-view environments and most developers have been 
happy with the meta-toolset. Developers like the simple 
conceptual foundations and interfaces of each of the meta-
tools. Suggested improvements from this user base have 
been incorporated into Pounamu’s development. 

 

 
Figure 11. Example web services composition tool. 

 

Figure 12. Example process modelling tool. 

For many of the example systems, we have carried out 
user evaluations of the application visual language 
environments, Cognitive Dimensions-based [10] 
evaluation of the visual environment interaction and 
information presentation features, and developer 
evaluation of Pounamu itself. Our user survey of the 
UML prototype software design tool included 
experienced, industry modellers as well as novice users 
[5]. Most of our Pounamu -built UML design tools were 
found to be both usable and appropriate to their task. 
Some problems were encountered with non-standard 
notational symbols and limited editing capability in some 
diagram types, especially UML sequence diagrams. These 
limitations arose from limitations in Pounamu of shape 

specification and editing event handler control. We have 
since enhanced both facilities and substantially improved 
the usability of the UML tools. 

Both a user evaluation and a cognitive dimensions 
evaluation were carried out on the process modelling 
prototype tool. We evaluated both its modelling 
capabilities and its presentation of enacted process stage 
information in Pounamu modelling views [15]. Users 
reported they found the visual modelling facilities to be 
good, the multiple view support helpful, and consistency 
management between different views and error reporting 
to be good. However they found some modelling 
functions, such as resizing, to be ungainly, a lack of drag-
and-drop creation of model elements, and some bugs in 
the modelling environment, problems we are addressing. 
Our cognitive dimensions analysis of the process 
modelling tool found a good closeness of mapping of the 
visual notation to the problem domain, high consistency 
of views and few hard mental operations were needed to 
build models. However, at times there is insufficient 
visibility and juxtaposibility. For example two views 
could not be seen at the same time. These findings have 
led to a number of further enhancements to Pounamu, 
particularly in its view management facilities. 

9. Summary 

We have described Pounamu, a meta tool supporting 
iterative design and development of multi-view, multi-
notation visual environments. Pounamu comprises five 
tools for specifying the meta description of a tool. Tool 
generation is automatic, and consistency between the 
meta description and the generated tool is automatically 
maintained. Tool extension is well supported by addition 
of bespoke event handlers, integration using a web 
services based API or back end code generation from the 
native XML model representation. The tool has 
successfully been used to implement a wide range of 
visual environments. The combination of live 
modification of tools and the very open architecture 
provided by back end XML transformation and web 
services API provides a highly customisable and 
extensible tool development environment.  

Future work we have planned includes the 
incorporation of generic sketch and voice interfaces based 
on the approaches used in the more specific UML tools of  
[6] and [20] and the development of a tool to visually 
specify event handlers, similar to the approach taken in 
our Serendipity action specifications [13]. 
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