
COMPSCI 732 §9. Argo 1

Argo
• Aims of this section:

• Look at Argo, another software tool framework
• Experience using Argo to develop a software tool from research

prototype to near industrial strength tool

• Resources
• ArgoUML website http://argouml.tigris.org/

• Particularly Jason Robbin’s PhD thesis and Tiziana Allegrini’s
dissertation

• Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences Integrating and
Scaling a Performance Test Bed Generator with an Open Source
CASE Tool, Proc 2004 IEEE Int Conf on Automated Software Eng,
Linz, pp. 36-45.

• Slides from the conference presn of this paper

COMPSCI 732 §9. Argo 2

Argo and ArgoUML
• Argo UML project goal: build an object oriented design tool that is:

• a joy to use
• actually helpful to designers when they are making design

decisions, by offering cognitive support through critics
• completely open source Java (FreeBSD license)
• supporting everything in UML
• modular and extensible
• integrated with the web and other Tigris tools.

• Argo is the framework underneath the ArgoUML tool

COMPSCI 732 §9. Argo 3

ArgoUML in use

COMPSCI 732 §9. Argo 4

Basic functionality

COMPSCI 732 §9. Argo 5

Basic functionality
• Design Perspectives

• multiple views with consistency

• Critics
• Multiple analysis tools which provide continual feedback on the

design

• To do list
• Feedback from critics presented here, provides active links to

“criticised” design elements

• Process Model
• Integrated process modelling (cf Serendipity) using IDEF0

notation
• Linked to critics, so can have task specific critics

COMPSCI 732 §9. Argo 6

Argo Architecture
• Major Packages:

• GEF
• Graph Editing Framework

provides reusable graph
editing capabilities

• UML Meta Model
• Based on NSUML open

source UML meta model

• ArgoUML UI
• Windowing and navigation

• Design Critics
• Support for design critic

implementation and
predefined critics

COMPSCI 732 §9. Argo 7

Experience Applying Argo
• SoftArch/MTE and its problems

• Re-engineered solution

• Experience
• Integrating MTE with Argo/UML
• XMI-derived model representation
• Improvement of XSLT-based test bed generator
• Using ANT
• Result database

• Conclusions
• Specific
• Generalised

COMPSCI 732 §9. Argo 8

SoftArch/MTE
• SoftArch/MTE (ASE2001)

• integrated environment to
model and evaluate software
architecture

• automatically generates,
compiles and deploys test
bed code, runs performance
tests, reports results

1. High-level
architecture designs

<architecture>
 <client>
 <name>Customer</name>
 ….
 </client>
 <server>
 …

2. Generate XML-encoded
architecture design

3. Run XSLT
transformation

scripts

Public class client1 {

 Public void static main() {
 Server.Request1();
….
 }

}

4. Generate code, IDLs,
deployment info, etc

5. Compile & upload to
multiple host machines

6. Run tests &
send results to
SoftArch/MTE
for visualisation

Client1.Request1: 157 22
Client1.Request2: 99 187
…

COMPSCI 732 §9. Argo 9

SoftArch/MTE (Cont’d)

COMPSCI 732 §9. Argo 10

SoftArch/MTE problems
Problems when we applied SoftArch/MTE to several industrial case
studies:

• custom framework (JViews)
• custom architecture notation
• custom XML representation
• non scalability of code generation approach
• custom deployment tool
• custom visualisation

COMPSCI 732 §9. Argo 11

Re-engineered Solution

• Use Argo/UML as base tool
• wider user base and more robust framework
• integration with a standard UML modelling tool

• Extend UML meta model with arch descpn/perf elements
• base on a more standard formalism

• Develop arch perf meta model and instance modelling tools in Argo

• Use standard XMI backend model representation

• Make XSLT based code generator more generic

• Use standard deployment tool (Ant)
• Manages test code deployment and test run

• Use standard DB (Access) for result mmt and visuln

COMPSCI 732 §9. Argo 12

Re-engineered Solution

XSLT Code
Generation Scripts

MS Access
Results DB

Reusable
Meta-models

XML Architecture
Models

.java, .cpp, .jsp,

.war, …

Argo/UML CASE Tool

UML
Diagrams…

Architecture
Meta-model
Diagrams

Architecture
Model

Diagrams
Existing XMI-based
Model Repository

Extended XMI-based
Model Repository

Result
Visualisation

Plug-in

Xalan XSLT
Engine

Ant Script
Invocation

Plug-in

Ant Scripts

Ant Config Mmt

Remote Hosts

Remote SFTP
Tool

.java, .cpp, .jsp,

.war, …

Remote J2EE, IIS,
RDBMS etc

Servers

Test Results

Ant Script
Generation

Plug-in

COMPSCI 732 §9. Argo 13

Integrating MTE with Argo/UML
• Choice of Argo

• Public domain with a reasonable user base (pre Eclipse)
• Well designed around UML meta model

• Better maintainability
• Designed with extendibility in mind

• Integrating MTE with Argo/UML
• Specialise Argo’s UML meta model with a set of performance-

oriented architectural modelling elements
• Develop an Argo meta-modelling tool to model and record

domain-specific performance modelling knowledge
• Develop an Argo architecture modelling tool

• supports modelling of concrete architecture designs, which
are instances of domain-specific meta-models

COMPSCI 732 §9. Argo 14

UML Meta model Extension

COMPSCI 732 §9. Argo 15

Elements & Attributes

Name of server
Objects this server hosts
Type of the application server, e.g.

CORBA, RMI, J2EE…

Name (AP, TP)
RemoteObjects(AP, TP)
Type (AP, TP)

AppServer :
ArchHost

Name of remote server to call
The name of remote object
The name of remote service

Record time for this?
Repetitions
Pause duration between calls

RemoteServer (AP, TP)
RemoteObject(AP, TP)
RemoteMethod(AP, TP)
RecordTime(TP)
TimesToCall(TP)
PauseBetweenCalls(TP)

RemoteRequest :
ArchOperation

Type of a client e.g. browser, CORBA
client.

Number of con-current clients run for
tests

ClientType (AP, TP)
Threads(TP)

Client :
ArchOperHost

COMPSCI 732 §9. Argo 16

Argo/MTE Modelling

COMPSCI 732 §9. Argo 17

XMI-derived Model Representation

• Why an XMI-derived model representation?
• To represent architecture models in a more standardised format
• To eventually make Argo/MTE model data exchangeable with

other XMI-supporting CASE tools.

• How implemented?
• Add tags based on performance-oriented architectural modeling

elements.
• Add a set of performance-oriented architectural modeling

stereotypes and add XMI-style tags.
• Short term have had to modify Argo XMI reader as no agreed

architectural extensions to XMI
• Later, adapt our notation and representation to evolving

standards

COMPSCI 732 §9. Argo 18

Improved code generator

– SoftArch/MTE
• uses two-layer model to model software architecture:

– domain-specific meta-model architecture model.
• XSLT sheets mainly scripts for domain-specific meta-modeling

abstraction
• XSLT sheets need to be modified whenever meta-model changed

– Argo/MTE
• uses three-layer model to model software architecture:

– predefined stereotype domain-specific meta-model
architecture model.

• Argo/MTE XSLT sheets mainly scripts for extended UML
performance-oriented architectural modeling elements and
predefined stereotypes.

• In most cases, users can generate a test bed for whatever
they’ve modeled without touching the test bed generator.

COMPSCI 732 §9. Argo 19

Ant automates evaluation Process

• Managing the performance evaluation is complex
• generation, compilation, deployment, execution, result collection

of test bed
• generated test bed is a large distributed computing system
• process is error-prone even when done manually.

• Use of Ant to manage this process.
• Ant is designed to manage problems of priority.
• Ant is easy to install, use, and maintain.
• Ant build files are much easier to maintain and generate than

DOS batch files (easier script generation).
• Ant also provides a good paradigm to organize materials and files

generated and needed in the evaluation process.

• Similar gains by use of SFTP for remote deployment and ACT for
thin client tests

COMPSCI 732 §9. Argo 20

Result Database
• Choice of Access

• Standard SQL database component
• Visualisation scripting available

• Enables users to
• compare different architecture models
• compare the same architecture model working in different

operational situations
• archive the results of various refinement of an architecture

model
• export or import models from other modeling tools
• annotate architecture component diagrams with performance

results

COMPSCI 732 §9. Argo 21

Results visualisation

COMPSCI 732 §9. Argo 22

It works
• Modelled an already developed e-payment system

• Results significantly different from actual system performance
• testbed suggested better performance than actual

• Identified error in e-payment system causing poor performance

• Corrected this and performance matched testbed

COMPSCI 732 §9. Argo 23

Conclusions
• Integrated Modelling Support

Argo/MTE integrated with a standard UML-based CASE tool

Allows test bed modelling and generation as a natural adjunct to UML
modelling

Reuses users’ design notation knowledge reducing learning curve

More appealing and effective environment than stand-alone
SoftArch/MTE

• Enhanced data exchange capability

Extended XMI model representation and extensible architecture
meta-models increase chance of future model data exchange

COMPSCI 732 §9. Argo 24

Conclusions (cont’d)
• Better abstraction led to simpler code generation

Addition of stereotype abstraction layer led to better reuse of code
generation code & scripts

Avoided the need for manual modification of code generation scripts

• Use of third-party tools

Third-party tools used to coordinate:
• test bed generation and execution process (Ant),
• deployment (SFTP),
• web-based client tests (ACT)
• results management (Access)

Much more scalable and flexible than our previous ad-hoc
applications to perform these tasks.

Particularly so for heterogeneous architectures incorporating several
technologies

COMPSCI 732 §9. Argo 25

Generalised Conclusions

• Leverage third party tools in specialised domains
• Complex dependency management
• Scripting
• Databases
• Modelling tool implementation
Avoid bespoke code (concentrate on your own strengths)

• Design for extendibility/reuse
• Use abstractions to enhance reuse
• Use plugin/API technologies to make integration easy

• Use standard representations where possible
• Enhances user adoption
• Enhances reuse and tool integration

