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Frameworks
• Aims of this section:

• Look at the notion of frameworks
• Explore two frameworks supporting tool development

• Eclipse
• Argo

• Later
• Look at Pattern Languages

• collections of patterns that used together lead to solutions for a 
particular domain area

• Illustrate with a pattern language for developing frameworks 
together with its use in the evolution of MViews/JViews for 
software tool construction
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Frameworks
• "A framework is a set of classes that embodies an abstract design for 

solutions to a family of related problems”
• Ralph Johnson, "Designing Reusable Classes", The Journal of Object-Oriented 

Programming, Vol.1,No.2, 1988, pp 22-35

• “A software framework is a reusable mini-architecture that provides the 
generic structure and behavior for a family of software abstractions, 
along with a context of memes/metaphors which specifies their 
collaboration and use within a given domain.”

• Brad Appleton “Patterns and Software: Essential Concepts and Terminology”

• Provide a prefrabricated structure or template for applications in a 
particular domain

• eg an application framework provides the support for “default” behaviour for 
drawing windows, scollbars and menus

• “Leveraging Object-Oriented Frameworks” Taligent white paper
http://www.ibm.com/java/education/ooleveraging/index.html
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Examples of frameworks
• Many of the Java APIs are frameworks for developing applications or 

applets  for a particular domain
• eg AWT, Swing for GUI applications

• Many IDEs provide application development frameworks
• eg Eclipse, Argo UML

• Some widely successful and influential frameworks include:
• ObjectTime
• Unidraw/HotDraw
• ET++
• MVC
• MacApp
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Framework vs procedural and 
OOP 

• Procedural
• Developers code calls the “system” code via library calls
• Developer responsible for overall behaviour and flow of control
• system code provides underlying functionality

• Problems
• difficult to extend “system”
• difficult to factor common 

code
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OOP and class libraries
• An improvement in terms of factoring out common code and improving 

maintainability

• But developer still responsible for the main program flow
• client instantiates classes from class library
• client calls functions
• little predefined flow of control or interaction
• little default behaviour
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Framework oriented programming
• Frameworks provide infrastructure and design

• basic flow of control and internal structure “wired” in

• The framework calls the developers code (Hollywood principle)
• roles reversed compared with procedural programming
• Eg Applets in Java

Procedural Framework

Developer’s Code

Lib#1 Lib #2

call call

Framework  code

Developer
class #1 Developer

class #2

calls calls
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Eclipse
• Project Aims:

• Provide open platform for application development tools
• Run on a wide range of operating systems
• GUI and non-GUI

• Language-neutral
• Permit unrestricted content types
• HTML, Java, C, JSP, EJB, XML, GIF, …

• Facilitate seamless tool integration
• At UI and deeper
• Add new tools to existing installed products

• Attract community of tool developers
• Including independent software vendors (ISVs)
• Capitalize on popularity of Java for writing tools

• Material in this section from http://eclipse.org/eclipse/
• (abridged version of slideset from this site)

COMPSCI 732 §8. Frameworks 8

Example
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Architectural overview
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Plug in approach
• Plug-in - smallest unit of Eclipse function

• Big example: HTML editor
• Small example: Action to create zip files

• Extension point - named entity for collecting “contributions”
• Example: extension point for workbench preference UI

• Extension - a contribution
• Example: specific HTML editor preferences

• Each plug-in
• Contributes to 1 or more extension points
• Optionally declares new extension points
• Depends on a set of other plug-ins
• Contains Java code libraries and other files
• May export Java-based APIs for downstream plug-ins
• Lives in its own plug-in subdirectory

• Details spelled out in the plug-in manifest (XML)
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Example

Plug-in A
Declares extension point P
Declares interface I to go with P

Plug-in B
Implements interface I with its own class C
Contributes class C to extension point P

Plug-in A instantiates C and calls its I methods

plug-in A plug-in B

class Cinterface I

extension
point P

extension
contributes

creates, calls

implements
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Eclipse Platform
• Eclipse Platform is the common base

• Consists of several key components

Platform Runtime

Eclipse Platform

Workspace

Workbench

SWT
JFace

Team Help Debug

Ant“Core”

“UI”
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Workspace
• Manages projects which user is working on

• Projects consist of resources (eg source files, folders, projects) in a tree 
construct

• Tools read, create, modify, and delete resources in workspace

• Plug-ins access via workspace and resource APIs
• Allows fast navigation of workspace resource tree
• Resource change listener for monitoring activity
• Resource deltas describe batches of changes
• Maintains limited history of changed/deleted files
• Several kinds of extensible resource metadata
• Workspace session lifecycle
• Incremental project builders

• Plugins to manage analysis & compilation (eg Java Builder in JDT)
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Workbench
• SWT – generic low-level graphics and widget set

• Generic graphics and GUI widget set
• OS-independent API
• Uses native widgets where available, emulates otherwise

• JFace – UI frameworks for common UI tasks
• Classes for handling common UI tasks
• API and implementation are window-system independent

• Workbench – UI personality of Eclipse Platform, centred on:
• Editors
• Views
• Perspectives
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Workbench
• Editors appear in workbench editor area

• Contribute actions to workbench menu and tool bars
• Open, edit, save, close lifecycle
• Extension point for contributing new types of editors

• Eg: JDT provides Java source file editor
• Eclipse Platform includes simple text file editor

• Views provide information on some object
• By augmenting:

• Editors, eg: Outline view summarizes content
• Other views, eg: Properties view describes selection

• Eclipse Platform includes many standard views: Resource Navigator, Outline, 
Properties, Tasks, Bookmarks, Search, …

• Perspectives are arrangements of views and editors
• Different perspectives suited for different user tasks
• Users can quickly switch between perspectives
• Eclipse Platform includes standard perspectives: Resource, Debug, …
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Workbench in use
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Other components
• Team

• Version and configuration management (VCM)
• Share resources with team via a repository (project level assocn)
• Eclipse Platform includes CVS repository provider

• Debug
• Common debug UI and underlying debug model

• Help
• Help books are HTML webs presented in standard web browser
• Help mechanisms available to all plug-ins
• Help search engine based on Apache Lucene

• Ant
• Eclipse incorporates Apache Ant
• Run Ant targets in build files inside or outside workspace
• PDE uses Ant for building deployed form of plug-in
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Platform Summary
• Eclipse Platform provides the nucleus for IDE products

• Plug-ins, extension points, extensions
• Open, extensible architecture

• Workspace, projects, files, folders
• Common place to organize & store development artifacts

• Workbench, editors, views, perspectives
• Common user presentation and UI paradigm

• Key building blocks and facilities
• Help, team support, internationalization, …
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JDT – Example Eclipse toolset
• Java development environment

• Built on top of Eclipse Platform
• Implemented as Eclipse plug-ins
• Using Eclipse Platform APIs and extension points

• Included in Eclipse Project releases
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Provides Java Perspective
• Java-centric view of files in Java projects

Java
project

package

class

field

method

Java
editor
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Other features
• Move up & down type hierarchies ( super <-> sub class)

• Search for elements

• Javadoc tool tips

• Method signature completion suggestions

• Java specific spellcheck and correction suggestion

• Code templates and stub method creation

• Critiquing tools (eg identifier name suggestions)

• Code refactoring

• Java Compiler
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Java debugger

Threads 
and stack 

frames

Editor with 
breakpoint 

marks

Console 
I/O

Local variables
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Plugin Development Environment PDE
• Specialized tools for developing Eclipse plug-ins

• PDE templates for creating simple plug-in projects

• Specialized PDE editor for plug-in manifest files
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PDE
• PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

(target)
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Lessons from Eclipse
• Rules for Enablers from Kent Beck’s "Contributing to Eclipse" 

• Invitation Rule - Whenever possible, let others contribute to your 
contributions. 

• Lazy Loading Rule - Contributions are only loaded when they are needed. 

• Safe Platform Rule - As the provider of an extension point, you must protect 
yourself against misbehavior on the part of extenders. 

• Fair Play Rule - All clients play by the same rules, even me. 

• Explicit Extension Rule - Declare explicitly where a platform can be extended. 

• Diversity Rule - Extension points accept multiple extensions. 

• Good Fences Rule - When passing control outside your code, protect yourself. 

• Explicit API Rule - separate the API from internals. 

• Stability Rule - Once you invite someone to contribute, don’t change the rules. 

• Defensive API Rule - Reveal only the API in which you are confident, but be 
prepared to reveal more API as clients ask for it. 

COMPSCI 732 §8. Frameworks 26

Pounamu Eclipse plugin
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Eclipse summary
• Eclipse has very rapidly developed significant momentum

• See plugin site for list of commercial and open source plugins
• http://eclipse.org/community/plugins.html

• Reasons for success
• Plenty of basic support for tool building from framework

• Enough stuff “for free” to overcome inertia of understanding the 
model and working within it

• Plugin approach is highly successful
• Principled enough to allow many plugins to collaborate

• Open source, but allows commercial extension

• Problems
• A LOT of things to get your head around if you are starting out 

developing a plugin
• Need for more high level support tools to assist in Eclipse tool

development (see EFPL lecture later)


