
COMPSCI 732 §8. Frameworks 1

Frameworks
• Aims of this section:

• Look at the notion of frameworks
• Explore two frameworks supporting tool development

• Eclipse
• Argo

• Later
• Look at Pattern Languages

• collections of patterns that used together lead to solutions for a
particular domain area

• Illustrate with a pattern language for developing frameworks
together with its use in the evolution of MViews/JViews for
software tool construction

COMPSCI 732 §8. Frameworks 2

Frameworks
• "A framework is a set of classes that embodies an abstract design for

solutions to a family of related problems”
• Ralph Johnson, "Designing Reusable Classes", The Journal of Object-Oriented

Programming, Vol.1,No.2, 1988, pp 22-35

• “A software framework is a reusable mini-architecture that provides the
generic structure and behavior for a family of software abstractions,
along with a context of memes/metaphors which specifies their
collaboration and use within a given domain.”

• Brad Appleton “Patterns and Software: Essential Concepts and Terminology”

• Provide a prefrabricated structure or template for applications in a
particular domain

• eg an application framework provides the support for “default” behaviour for
drawing windows, scollbars and menus

• “Leveraging Object-Oriented Frameworks” Taligent white paper
http://www.ibm.com/java/education/ooleveraging/index.html

COMPSCI 732 §8. Frameworks 3

Examples of frameworks
• Many of the Java APIs are frameworks for developing applications or

applets for a particular domain
• eg AWT, Swing for GUI applications

• Many IDEs provide application development frameworks
• eg Eclipse, Argo UML

• Some widely successful and influential frameworks include:
• ObjectTime
• Unidraw/HotDraw
• ET++
• MVC
• MacApp

COMPSCI 732 §8. Frameworks 4

Framework vs procedural and
OOP

• Procedural
• Developers code calls the “system” code via library calls
• Developer responsible for overall behaviour and flow of control
• system code provides underlying functionality

• Problems
• difficult to extend “system”
• difficult to factor common

code

COMPSCI 732 §8. Frameworks 5

OOP and class libraries
• An improvement in terms of factoring out common code and improving

maintainability

• But developer still responsible for the main program flow
• client instantiates classes from class library
• client calls functions
• little predefined flow of control or interaction
• little default behaviour

COMPSCI 732 §8. Frameworks 6

Framework oriented programming
• Frameworks provide infrastructure and design

• basic flow of control and internal structure “wired” in

• The framework calls the developers code (Hollywood principle)
• roles reversed compared with procedural programming
• Eg Applets in Java

Procedural Framework

Developer’s Code

Lib#1 Lib #2

call call

Framework code

Developer
class #1 Developer

class #2

calls calls

COMPSCI 732 §8. Frameworks 7

Eclipse
• Project Aims:

• Provide open platform for application development tools
• Run on a wide range of operating systems
• GUI and non-GUI

• Language-neutral
• Permit unrestricted content types
• HTML, Java, C, JSP, EJB, XML, GIF, …

• Facilitate seamless tool integration
• At UI and deeper
• Add new tools to existing installed products

• Attract community of tool developers
• Including independent software vendors (ISVs)
• Capitalize on popularity of Java for writing tools

• Material in this section from http://eclipse.org/eclipse/
• (abridged version of slideset from this site)

COMPSCI 732 §8. Frameworks 8

Example

COMPSCI 732 §8. Frameworks 9

Architectural overview

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their
Tool

Your
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug

COMPSCI 732 §8. Frameworks 10

Plug in approach
• Plug-in - smallest unit of Eclipse function

• Big example: HTML editor
• Small example: Action to create zip files

• Extension point - named entity for collecting “contributions”
• Example: extension point for workbench preference UI

• Extension - a contribution
• Example: specific HTML editor preferences

• Each plug-in
• Contributes to 1 or more extension points
• Optionally declares new extension points
• Depends on a set of other plug-ins
• Contains Java code libraries and other files
• May export Java-based APIs for downstream plug-ins
• Lives in its own plug-in subdirectory

• Details spelled out in the plug-in manifest (XML)

COMPSCI 732 §8. Frameworks 11

Example

Plug-in A
Declares extension point P
Declares interface I to go with P

Plug-in B
Implements interface I with its own class C
Contributes class C to extension point P

Plug-in A instantiates C and calls its I methods

plug-in A plug-in B

class Cinterface I

extension
point P

extension
contributes

creates, calls

implements

COMPSCI 732 §8. Frameworks 12

Eclipse Platform
• Eclipse Platform is the common base

• Consists of several key components

Platform Runtime

Eclipse Platform

Workspace

Workbench

SWT
JFace

Team Help Debug

Ant“Core”

“UI”

COMPSCI 732 §8. Frameworks 13

Workspace
• Manages projects which user is working on

• Projects consist of resources (eg source files, folders, projects) in a tree
construct

• Tools read, create, modify, and delete resources in workspace

• Plug-ins access via workspace and resource APIs
• Allows fast navigation of workspace resource tree
• Resource change listener for monitoring activity
• Resource deltas describe batches of changes
• Maintains limited history of changed/deleted files
• Several kinds of extensible resource metadata
• Workspace session lifecycle
• Incremental project builders

• Plugins to manage analysis & compilation (eg Java Builder in JDT)

COMPSCI 732 §8. Frameworks 14

Workbench
• SWT – generic low-level graphics and widget set

• Generic graphics and GUI widget set
• OS-independent API
• Uses native widgets where available, emulates otherwise

• JFace – UI frameworks for common UI tasks
• Classes for handling common UI tasks
• API and implementation are window-system independent

• Workbench – UI personality of Eclipse Platform, centred on:
• Editors
• Views
• Perspectives

COMPSCI 732 §8. Frameworks 15

Workbench
• Editors appear in workbench editor area

• Contribute actions to workbench menu and tool bars
• Open, edit, save, close lifecycle
• Extension point for contributing new types of editors

• Eg: JDT provides Java source file editor
• Eclipse Platform includes simple text file editor

• Views provide information on some object
• By augmenting:

• Editors, eg: Outline view summarizes content
• Other views, eg: Properties view describes selection

• Eclipse Platform includes many standard views: Resource Navigator, Outline,
Properties, Tasks, Bookmarks, Search, …

• Perspectives are arrangements of views and editors
• Different perspectives suited for different user tasks
• Users can quickly switch between perspectives
• Eclipse Platform includes standard perspectives: Resource, Debug, …

COMPSCI 732 §8. Frameworks 16

Workbench in use

Tool bar

Perspective
and
Fast View
bar

Resource
Navigator
view

Stacked
views

Properties
view

Tasks
view

Outline
view

Bookmarks
view

Menu bar

Message
area

Editor
Status
area

Text
editor

COMPSCI 732 §8. Frameworks 17

Other components
• Team

• Version and configuration management (VCM)
• Share resources with team via a repository (project level assocn)
• Eclipse Platform includes CVS repository provider

• Debug
• Common debug UI and underlying debug model

• Help
• Help books are HTML webs presented in standard web browser
• Help mechanisms available to all plug-ins
• Help search engine based on Apache Lucene

• Ant
• Eclipse incorporates Apache Ant
• Run Ant targets in build files inside or outside workspace
• PDE uses Ant for building deployed form of plug-in

COMPSCI 732 §8. Frameworks 18

Platform Summary
• Eclipse Platform provides the nucleus for IDE products

• Plug-ins, extension points, extensions
• Open, extensible architecture

• Workspace, projects, files, folders
• Common place to organize & store development artifacts

• Workbench, editors, views, perspectives
• Common user presentation and UI paradigm

• Key building blocks and facilities
• Help, team support, internationalization, …

COMPSCI 732 §8. Frameworks 19

JDT – Example Eclipse toolset
• Java development environment

• Built on top of Eclipse Platform
• Implemented as Eclipse plug-ins
• Using Eclipse Platform APIs and extension points

• Included in Eclipse Project releases

COMPSCI 732 §8. Frameworks 20

Provides Java Perspective
• Java-centric view of files in Java projects

Java
project

package

class

field

method

Java
editor

COMPSCI 732 §8. Frameworks 21

Other features
• Move up & down type hierarchies (super <-> sub class)

• Search for elements

• Javadoc tool tips

• Method signature completion suggestions

• Java specific spellcheck and correction suggestion

• Code templates and stub method creation

• Critiquing tools (eg identifier name suggestions)

• Code refactoring

• Java Compiler

COMPSCI 732 §8. Frameworks 22

Java debugger

Threads
and stack

frames

Editor with
breakpoint

marks

Console
I/O

Local variables

COMPSCI 732 §8. Frameworks 23

Plugin Development Environment PDE
• Specialized tools for developing Eclipse plug-ins

• PDE templates for creating simple plug-in projects

• Specialized PDE editor for plug-in manifest files

COMPSCI 732 §8. Frameworks 24

PDE
• PDE runs and debugs another Eclipse workbench

1. Workbench
running PDE

(host)

2. Run-time
workbench

(target)

COMPSCI 732 §8. Frameworks 25

Lessons from Eclipse
• Rules for Enablers from Kent Beck’s "Contributing to Eclipse"

• Invitation Rule - Whenever possible, let others contribute to your
contributions.

• Lazy Loading Rule - Contributions are only loaded when they are needed.

• Safe Platform Rule - As the provider of an extension point, you must protect
yourself against misbehavior on the part of extenders.

• Fair Play Rule - All clients play by the same rules, even me.

• Explicit Extension Rule - Declare explicitly where a platform can be extended.

• Diversity Rule - Extension points accept multiple extensions.

• Good Fences Rule - When passing control outside your code, protect yourself.

• Explicit API Rule - separate the API from internals.

• Stability Rule - Once you invite someone to contribute, don’t change the rules.

• Defensive API Rule - Reveal only the API in which you are confident, but be
prepared to reveal more API as clients ask for it.

COMPSCI 732 §8. Frameworks 26

Pounamu Eclipse plugin

COMPSCI 732 §8. Frameworks 27

Eclipse summary
• Eclipse has very rapidly developed significant momentum

• See plugin site for list of commercial and open source plugins
• http://eclipse.org/community/plugins.html

• Reasons for success
• Plenty of basic support for tool building from framework

• Enough stuff “for free” to overcome inertia of understanding the
model and working within it

• Plugin approach is highly successful
• Principled enough to allow many plugins to collaborate

• Open source, but allows commercial extension

• Problems
• A LOT of things to get your head around if you are starting out

developing a plugin
• Need for more high level support tools to assist in Eclipse tool

development (see EFPL lecture later)

