
COMPSCI 732 §5. Pounamu 1

Pounamu
• Aim of section:

• Examine Pounamu, a meta tool for constructing
extensible visual environments

• Very much alpha software

• Contents
• Historical development
• Pounamu usage example
• Pounamu structure
• Applications
• Assignment

COMPSCI 732 §5. Pounamu 2

History
• Original interest: Visual class diagramming tool ISPEL

• Led to long term interest in frameworks and tools for
constructing such systems

Ispel
1991

MViews
1993

JViews
1997

JComposer
1998

Pounamu
2003

Frameworks for
constructing multi-view
multi-notation environments

Meta tools for specifying and
constructing multi-view
multi-notation environments

Note: see later lecture on Evolving Frameworks Pattern Language

COMPSCI 732 §5. Pounamu 3

Meta modelling
• What’s a meta model?

• A model that defines/describes a model
• Eg the UML meta model describes abstract

concepts such as class type, association type,
generalisation type, etc, that have instances in a
particular model, (eg customer class, order class,
customer-order association, customer-organisation
generalisation)

• What’s a meta tool?
• A tool that allows you to define meta models

which can be used to generate environments for
modelling using instances of the meta models

COMPSCI 732 §5. Pounamu 4

JViews/JComposer
• JViews provided a framework for constructing multi-view

environments
• Change Propagation and Response Graphs
• 3 layer model: base, view and display layers
• Much programming required for instantiation: many

classes, many components, complex but repetitive
programming

• JComposer/BuildByWire: 2 tools to allow much of a JViews
environment to be generated

• BuildByWire: constraint based GUI component specifier
• JComposer: meta modeller, for specifying JViews base

and view layer components and relationship to BBW GUI
components

COMPSCI 732 §5. Pounamu 5

JComposer/BuildByWire
• Used to specify and generate JViews-based environments

Base CPRG

View Mappings

User Interface

+ Backend code generator
COMPSCI 732 §5. Pounamu 6

Problems
• Heavyweight GUI components

• Complex tools

• Heavyweight framework

• Based on bespoke event model

• Customisation difficult

• Dynamic behaviour difficult to add – much programming still
needed

• Strong compile/utilise cycle

COMPSCI 732 §5. Pounamu 7

Pounamu
• Pounamu overarching design requirements

• Simplicity of use.
• It should be very easy to express the design of a

visual notation, and generate an environment to
support modelling using the notation.

• Simplicity of extension and modification.
• It should be possible to rapidly evolve proof of

concept tools by modification of the notation,
addition of back end processing, integration with
other tools, and behavioural extensions (eg complex
constraints).

• Led to a much more lightweight structure, with
extensibility, customisation strongly built in, plus web
services interface

COMPSCI 732 §5. Pounamu 8

Pounamu components
• Shape creator and connector creator tools

• Used to define icons, connectors and associated
properties

• Event Handler Designer tool
• Specifies dynamic behaviour in response to events (eg

shape creation). Currently Java code using API

• Meta model designer tool
• Specifies tool meta models

• View type designer tool
• Specifies an editor for a set of shapes, connectors and

handlers, and their relationship to a meta model

• Model projects
• Instances of a specified tool in use

COMPSCI 732 §5. Pounamu 9

Pounamu approach
Pounamu Meta-tool Application

Modelling Tools Specification Tools
 Shape Designer

Meta-model
Designer

Event handler
Designer

View Designer

Modelling Views

Model Entity instances

Tool Specifcations
– XML documents

Plug-ins

Event
Handlers

Web Services
APIs Tool specification

projects (XML)
Modelling

projects (XML)

COMPSCI 732 §5. Pounamu 10

Simple example of usage
• Define a very simple UML modelling tool.

• Class diagrams have at least one type of shape and one
type of connector

• Class icon – rectangle with three regions, name,
attributes and operations

• Generalisation –unidirectional arrow
• Connects class to class

• Start by defining shape for class
• Rectangular border panel containing

• textfield for name
• rectangle plus multi valued textfield for each of

attributes and operations
• Allow the textfields to be seen by the underlying tool

model

COMPSCI 732 §5. Pounamu 11

Shape Creator

Repeat for other shapes (eg interface, note)
COMPSCI 732 §5. Pounamu 12

Generalisation
• Create the generalisation connector using the connector tool

• Arrow on end of connector

Repeat for other connectors (eg association)

COMPSCI 732 §5. Pounamu 13

Meta model
• Need to define the meta model for the underlying tool

shared repository

• Pounamu meta modeller uses an entity relationship model

• Implement entities:
• Class entity, with name (key), attribute and method

attributes
• Interface entity, note entity, etc

• Implement associations:
• Generalization (for generalisation), with middlelabel

attribute
• Aggregation, Composition, etc

COMPSCI 732 §5. Pounamu 14

Meta Model Definer

COMPSCI 732 §5. Pounamu 15

Handler
• Add a very

simple handler
that colours
entities to
indicate
various state
changes

• Uses API to
access
Pounamu data
structures

COMPSCI 732 §5. Pounamu 16

Review
• To date have defined:

• A shape (class icon) and connector (generalisation) GUI
components (shape & connector tools)

• An underlying repository consisting of types for entities
representing classes, linked by implements relationship
types (meta model tool)

• An event handler that responds to the addition or
deletion of connectors (event handler tool)

• Missing
• A way of defining the editor for a class diagram

• ie allowable icons and connectors and what handlers
are relevant

• A way of connecting things added to an editor window
to the underlying repository

• The latter provided by the View Specification tool

COMPSCI 732 §5. Pounamu 17

View specification
• Now specify a class diagram editor using the view

specification tool
• Specify shapes, connectors, handlers that can be

created in the view:
• Class, generalisation

• Specify meta model entities and associations associated
with the view

• Class, implements
• Specify mappings from meta model components to view

components
• Both at a component level and then at an attribute

level
• Simple 1-1 mappings – more complex mappings

require handlers

COMPSCI 732 §5. Pounamu 18

View Type Definer

COMPSCI 732 §5. Pounamu 19

Models
• Then register everything and save the tool

• Can then create models using the tool

• Create a model project, then views

• See Pounamu tutorial and example class diagram tool

COMPSCI 732 §5. Pounamu 20

Model projects

View consistency

Multiple views

COMPSCI 732 §5. Pounamu 21

Modification, integration,
extension

• Pounamu is live,
• Changes to a tool specification are immediately reflected in

executing models using that tool

• Handlers provide behavioural extension capability
• Via API, can extend tool behaviour significantly
• Handlers compiled and installed on the fly

• RMI and Web services interfaces provide external integration
capability

• Can add plug ins
• Have used for developing generic thin client and mobile phone

modeller interfaces, process modelling and enactment tool,
collaboration and group awareness tools, integration with
project management tool

• Can add backends manipulating the XML save format
• Eg for code generation and reverse engineering

COMPSCI 732 §5. Pounamu 22

Examples
• Pounamu has been used to develop a wide variety of other tools

• UML tool (all major views) – Karen Liu project
• Process modelling tool – Therese Helland MSc
• Circuit Designer – Nianping Zhu
• Traits design tool – Blazej Kot project
• ORA-SS Tool – Nodira Khoussainova project
• SDL stats survey tool – Chul Hwee Kim project
• Project scheduling tool – Jun Ho Huh & Nader Hosseini-Sianaki

BE(SE) project

• Current projects
• SDL extensions – Chul Hwee Kim MSc thesis
• Aspect Oriented Comp Eng tool – Santokh Singh PhD
• Web services composition tool – Karen Liu PhD

COMPSCI 732 §5. Pounamu 23

Examples

COMPSCI 732 §5. Pounamu 24

Examples

COMPSCI 732 §5. Pounamu 25

IMÅL Process Modeller
• Developed by Therese

Helland (MSc)

• Pounamu specified process
modelling tool

• Backend services oriented
architecture integrating
with process engine,
decision support (Idiom),
and other office
automation tools
(Infopath, To do list
server)

• Process modelling views
reused to visualise process
model enactments

USER

USER PC

Process Modelling &
Enactment Tool

Process
model in

XML-format
Refresher Service

State Database Service

Process Database Service

Simple Flow Service

XML Parser

SOAP-WAN

SOAP-WAN

SOAP-WAN

Complex Flow Service

Automation Service

Document Flow Service

Other External Services

SOAP-WAN

SOAP-WAN

MAIN PROCESS ENGINE SERVICE

SOAP-WAN

SOAP-WAN

UDDI Registry

USER PC

Web Browser

Login & View To-Do List

SOAP-WAN

SOAP-WAN

To-Do List Service

ToolService

COMPSCI 732 §5. Pounamu 26

IMÅL Process Modeller

COMPSCI 732 §5. Pounamu 27

Pounamu Development
• Research funded by New Economy Research Fund

• Design and development of core system
• Nianping Zhu, John Grundy, John Hosking

• Shape definer extensions: Xiaomin Tian (Project)

• Thin Client interface: Feng Luo (Project) Penny Cao (MSc)

• Collaboration interface: Akhil Mehra (Project & MSc)

• Property sheet extensions: Blazej Kot (summer schol)

• Web services interface: Therese Helland (MSc), Penny, Nianping,
Akhil

• Mobile phone interface: Joe Zhao (MSc)

• Visual event handler definition: Karen Liu (PhD), Kelvin Jin (MSc)

• Zoomable user interface: Karen Liu (summer schol)

