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Pounamu
• Aim of section:

• Examine Pounamu, a meta tool for constructing 
extensible visual environments

• Very much alpha software

• Contents
• Historical development
• Pounamu usage example
• Pounamu structure
• Applications
• Assignment
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History
• Original interest: Visual class diagramming tool ISPEL

• Led to long term interest in frameworks and tools for 
constructing such systems

Ispel
1991

MViews
1993

JViews
1997

JComposer
1998

Pounamu
2003

Frameworks for
constructing multi-view
multi-notation environments

Meta tools for specifying and
constructing multi-view
multi-notation environments

Note: see later lecture on Evolving Frameworks Pattern Language
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Meta modelling
• What’s a meta model?

• A model that defines/describes a model
• Eg the UML meta model describes abstract 

concepts such as class type, association type, 
generalisation type, etc, that have instances in a 
particular model, (eg customer class, order class, 
customer-order association, customer-organisation 
generalisation)

• What’s a meta tool?
• A tool that allows you to define meta models 

which can be used to generate environments for 
modelling using instances of the meta models
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JViews/JComposer
• JViews provided a framework for constructing multi-view 

environments
• Change Propagation and Response Graphs
• 3 layer model: base, view and display layers
• Much programming required for instantiation: many 

classes, many components, complex but repetitive 
programming

• JComposer/BuildByWire: 2 tools to allow much of a JViews
environment to be generated

• BuildByWire: constraint based GUI component specifier
• JComposer: meta modeller, for specifying JViews base 

and view layer components and relationship to BBW GUI 
components
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JComposer/BuildByWire
• Used to specify and generate JViews-based environments

Base CPRG

View Mappings

User Interface

+ Backend code generator
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Problems
• Heavyweight GUI components

• Complex tools

• Heavyweight framework

• Based on bespoke event model

• Customisation difficult

• Dynamic behaviour difficult to add – much programming still 
needed

• Strong compile/utilise cycle
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Pounamu
• Pounamu overarching design requirements

• Simplicity of use. 
• It should be very easy to express the design of a 

visual notation, and generate an environment to 
support modelling using the notation.

• Simplicity of extension and modification. 
• It should be possible to rapidly evolve proof of 

concept tools by modification of the notation, 
addition of back end processing, integration with 
other tools, and behavioural extensions (eg complex 
constraints).

• Led to a much more lightweight structure, with 
extensibility, customisation strongly built in, plus web 
services interface
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Pounamu components
• Shape creator and connector creator tools

• Used to define icons, connectors and associated 
properties

• Event Handler Designer tool
• Specifies dynamic behaviour in response to events (eg

shape creation). Currently Java code using API

• Meta model designer tool
• Specifies tool meta models

• View type designer tool
• Specifies an editor for a set of shapes, connectors and 

handlers, and their relationship to a meta model

• Model projects
• Instances of a specified tool in use
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Pounamu approach
Pounamu Meta-tool Application 

Modelling Tools Specification Tools 
 Shape Designer 

Meta-model 
Designer 

Event handler 
Designer 

View Designer 

Modelling Views 

 
 
 

Model Entity instances

Tool Specifcations 
– XML documents 

Plug-ins 

Event 
Handlers 

Web Services 
APIs Tool specification 

projects (XML) 
Modelling 

projects (XML) 
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Simple example of usage
• Define a very simple UML modelling tool.

• Class diagrams have at least one type of shape and one 
type of connector

• Class icon – rectangle with three regions, name, 
attributes and operations 

• Generalisation –unidirectional arrow
• Connects class to class

• Start by defining shape for class
• Rectangular border panel containing

• textfield for name
• rectangle plus multi valued textfield for each of 

attributes and operations
• Allow the textfields to be seen by the underlying tool 

model
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Shape Creator

Repeat for other shapes (eg interface, note)
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Generalisation
• Create the generalisation connector using the connector tool

• Arrow on end of connector

Repeat for other connectors (eg association)
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Meta model
• Need to define the meta model for the underlying tool 

shared repository

• Pounamu meta modeller uses an entity relationship model

• Implement entities:
• Class entity, with name (key), attribute and method  

attributes
• Interface entity, note entity, etc

• Implement associations:
• Generalization (for generalisation), with middlelabel

attribute
• Aggregation, Composition, etc
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Meta Model Definer
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Handler
• Add a very 

simple handler 
that colours 
entities to 
indicate 
various state 
changes

• Uses API to 
access 
Pounamu data 
structures 
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Review
• To date have defined:

• A shape (class icon) and connector (generalisation) GUI 
components (shape & connector tools)

• An underlying repository consisting of types for entities 
representing classes, linked by implements relationship 
types (meta model tool)

• An event handler that responds to the addition or 
deletion of connectors (event handler tool)

• Missing
• A way of defining the editor for a class diagram

• ie allowable icons and connectors and what handlers 
are relevant

• A way of connecting things added to an editor window 
to the underlying repository

• The latter provided by the View Specification tool
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View specification
• Now specify a class diagram editor using the view 

specification tool
• Specify shapes, connectors, handlers that can be 

created in the view:
• Class, generalisation

• Specify meta model entities and associations associated 
with the view

• Class, implements
• Specify mappings from meta model components to view 

components
• Both at a component level and then at an attribute 

level
• Simple 1-1 mappings – more complex mappings 

require handlers
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View Type Definer
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Models
• Then register everything and save the tool

• Can then create models using the tool

• Create a model project, then views

• See Pounamu tutorial and example class diagram tool
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Model projects

View consistency

Multiple views
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Modification, integration, 
extension

• Pounamu is live, 
• Changes to a tool specification are immediately reflected in 

executing models using that tool

• Handlers provide behavioural extension capability
• Via API, can extend tool behaviour significantly
• Handlers compiled and installed on the fly

• RMI and Web services interfaces provide external integration
capability

• Can add plug ins
• Have used for developing generic thin client and mobile phone 

modeller interfaces, process modelling and enactment tool, 
collaboration and group awareness tools, integration with 
project management tool

• Can add backends manipulating the XML save format
• Eg for code generation and reverse engineering
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Examples
• Pounamu has been used to develop a wide variety of other tools

• UML tool (all major views) – Karen Liu project
• Process modelling tool – Therese Helland MSc
• Circuit Designer – Nianping Zhu
• Traits design tool – Blazej Kot project
• ORA-SS Tool – Nodira Khoussainova project
• SDL stats survey tool – Chul Hwee Kim project
• Project scheduling tool – Jun Ho Huh & Nader Hosseini-Sianaki

BE(SE) project

• Current projects
• SDL extensions – Chul Hwee Kim MSc thesis
• Aspect Oriented Comp Eng tool – Santokh Singh PhD
• Web services composition tool – Karen Liu PhD
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Examples
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Examples
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IMÅL Process Modeller
• Developed by Therese 

Helland (MSc)

• Pounamu specified process 
modelling tool

• Backend services oriented 
architecture integrating 
with process engine, 
decision support (Idiom), 
and other office 
automation tools 
(Infopath, To do list 
server)

• Process modelling views 
reused to visualise process 
model enactments

USER

USER PC

Process Modelling &
Enactment Tool

Process
model in

XML-format
Refresher Service

State Database Service

Process Database Service

Simple Flow Service

XML Parser

SOAP-WAN

SOAP-WAN

SOAP-WAN

Complex Flow Service

Automation Service

Document Flow Service

Other External Services

SOAP-WAN

SOAP-WAN

MAIN PROCESS ENGINE SERVICE

SOAP-WAN

SOAP-WAN

UDDI Registry

USER PC

Web Browser

Login & View To-Do List

SOAP-WAN

SOAP-WAN

To-Do List Service

ToolService
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IMÅL Process Modeller
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Pounamu Development
• Research funded by New Economy Research Fund

• Design and development of core system
• Nianping Zhu, John Grundy, John Hosking

• Shape definer extensions: Xiaomin Tian (Project)

• Thin Client interface: Feng Luo (Project) Penny Cao (MSc)

• Collaboration interface: Akhil Mehra (Project & MSc)

• Property sheet extensions: Blazej Kot (summer schol)

• Web services interface: Therese Helland (MSc), Penny, Nianping, 
Akhil

• Mobile phone interface: Joe Zhao (MSc)

• Visual event handler definition: Karen Liu (PhD), Kelvin Jin (MSc)

• Zoomable user interface: Karen Liu (summer schol)


