
COMPSCI 732 §4. UML and Meta Modelling 1

UML and Meta Modelling
• Topics:

• UML as an example visual notation
• The UML meta model and the concept of meta modelling
• Model Driven Architecture and model engineering

• The AndroMDA open source project
• Applying cognitive dimensions to assist in designing a UML tool

• How to mitigate some of the problems inherent in UML

COMPSCI 732 §4. UML and Meta Modelling 2

The Unified Modelling Language
• Notation(s) for describing object oriented models

• can be used for describing implementations, designs, and analyses
• incorporates and extends elements from several earlier modelling notations
• early development primarily by Rational Software Inc (now owned by IBM),

but now developed by OMG (UML 2.0 in process of release)

• Has a variety of diagram types expressing both static and dynamic aspects
• class diagrams
• package diagrams
• use cases
• sequence and collaboration (now called communication) diagrams
• state & activity diagrams
• etc (12 diagram types in all)

• Plus Object Constraint Language (OCL) for expressing more complex constraints

• Sources:
• UML Distilled, Martin Fowler, Addison Wesley
• UML specifications from http://www.uml.org/

COMPSCI 732 §4. UML and Meta Modelling 3

Notation vs. Methodology
• UML is a set of notations

• Used to model OO systems
• Define a set of overlapping models using the various diagrams

each expressing a different view or viewpoint on the system
modelled

• Described by a meta-model ie a model to describe a model

• But also need to know how to go about constructing a model
• i.e. a methodology for using the notation
• Eg RUP – Rational Unified Process

• Will primarily look at UML notation, rather than modelling
methodologies, but will touch on Model Driven Architecture approach

COMPSCI 732 §4. UML and Meta Modelling 4

Example Diagrams

Source;
http://www.sparxsystems.com.au/UML_Tutorial.htm

COMPSCI 732 §4. UML and Meta Modelling 5

Diagram Perspectives
• Diagrams are used for multiple purposes with different semantics

• When interpreting them you need to know the perspective being used

• Eg Class diagrams

• Conceptual
• diagram represents concepts in domain
• may or may not relate to implementation classes
• typically used in analysis

• Specification
• software interfaces, i.e. types rather than classes
• typically used in design and documentation

• Implementation
• laying bare implementation details
• only occasionally used for detailed understanding

COMPSCI 732 §4. UML and Meta Modelling 6

Constraints
• Much of UML is about specifying constraints: eg relationship

between things, multiplicity of associations, exclusivity of
subclasses

• A variety of keyword based constraints are included in UML
• subtypes: {complete} {incomplete} {disjoint} {overlapping}
• association ends or attributes:

• {ordered} {unordered} {sorted}
• {changeable} {addOnly} {frozen}

• timing of messages (standard functions)
• startTime stopTime executionTime

• Additional textual constraints can be specified informally
using notes

• But more formal constraints can be specified using the Object
Constraint Language (OCL)

COMPSCI 732 §4. UML and Meta Modelling 7

OCL
• A formal language

• Pure expn language - uses a declarative style
• specifies constraint, not what to do if violated
• side effect free
• strongly typed

• Used to specify, eg,
• pre and post conditions on operations and invariants, eg:

context Company inv enoughEmployees : self.numberOfEmployees > 50
context Company::setCreditLimit(limit: int)
pre: limit >= 0
post: creditLimit >= 0

• constraints on navigation of associations

• Also used to specify UML meta-model semantics (see later)

COMPSCI 732 §4. UML and Meta Modelling 8

UML meta-model
• Need a formal specification of UML’s syntax and semantics to

allow:
• uniform understanding of what models mean
• tool makers to design UML tools that implement semantics

consistent with those of other tools
• interchange of models between tools (by specifying

interchange formats)

• Such a formal specification is a meta-model as it describes the
form that its instances (individual UML models) can take

• But how do we specify the meta-model?
• Answer (simple): Use UML to define itself
• Answer (complex): Define the UML meta-model using a meta-

modelling language.

COMPSCI 732 §4. UML and Meta Modelling 9

UML specification
• The formal UML specification is at http://www.uml.org/

• This does not specify the exact surface syntax for UML (ie exact
icons etc), rather it specifies UML in an abstract syntax-like form

• The specification makes extensive use of UML diagrams (particularly
class diagrams) supplemented by OCL for more detailed semantics.

• The definition is in terms of packages defining common and more
specialised diagram components/concepts (the following is UML 1.5 –
these have changed in UML2.0)

• eg Core Backbone package defines fundamental concepts
• eg Core Classifiers package defines entity-like things (eg

classes, interfaces)
• eg State Machines package defines extensions to cover state

diagrams

COMPSCI 732 §4. UML and Meta Modelling 10

Core Backbone

COMPSCI 732 §4. UML and Meta Modelling 11

Core Classifiers

COMPSCI 732 §4. UML and Meta Modelling 12

Meta-meta-modelling
• Although it appears as if UML defines itself, this is not actually the

case.

• The specification actually uses a meta-modelling language
• this is itself object oriented and has many concepts in common

with UML
• called Meta Object Facility (MOF)
• common with OMG CORBA IDL specification work
• also used for the Common Warehouse Metamodel (CWM)

• But how is this meta-modelling language specified?
• Answer: using itself (defining a meta-meta-model)

COMPSCI 732 §4. UML and Meta Modelling 13

4 Layer Model
• This approach leads to a four layer

approach to the modelling

• meta-meta-model (M3): defines the
MOF notation

• meta-model (M2): defines UML
notation using MOF

• user model (M1): a UML model of a
particular problem domain

• data (M0): typical objects instantiating
the UML model

• Note: could use M3 instead to define
M2 for ER modelling; M1 a typical ER
model; M0, typical ER data.

COMPSCI 732 §4. UML and Meta Modelling 14

4 layer model
• Typical examples of elements at each

level:

• M3: MOF MetaClass

• M2: UML Class, instance of MOF
Class; very similar to MOF concept of
a Class

• M1: Person, a typical instance of
UML Class

• M0: President:Person, a typical
instance of Class Person

• From C. Atkinson, Supporting and
applying the UML conceptual
framework.

MetaClass

isSingleton :

isVisible()

Boolean

Class

isActive : Boolean

Person

name : String
birth_date: Integer
address : String

age() : Integer

President:Person

name = "Bill Clinton"
birth_date = 1952
address = "White

COMPSCI 732 §4. UML and Meta Modelling 15

Advantages of meta modelling
• Consistency of interpretation using more formal semantics

• Although MOF approach not nearly as unambiguous as other specification
approaches

• Possibility of interchange standards based on meta model specification
• Can interchange models between tools
• XMI is the defined interchange standard based on MOF

• Essentially MOF in XML (makes for verbose interchange files)

• Can use meta models as schema for semantic data to be stored in a
repository

• Can define extensions that reuse parts of the existing model
• Eg did this with our DPML work (see later)

• Can use meta models to specify tools
• If have appropriate tool building tools can generate the tool from the

meta model (this is what we do with our JComposer and Pounamu tools) or
a system from a model (MDA approach)

See www.metamodel.com
COMPSCI 732 §4. UML and Meta Modelling 16

Model Driven Architecture (MDA)
• Generate systems from models (see http://www.omg.org/mda/)

• Start with Platform Independent (UML) Model (PIM)
• Generate a Platform Specific (UML) Model from PIM
• Generate implementation from PSM

Platform-
Independent

Model

CORBA
Model

Java/EJB
Model

CORBA

XML/SOAP
Model

Java/EJB XML/SOAP Other

Other
Model

Map a PIM to Many
Middleware

Technologies via OMG
Standard Mappings

Map PSM to application
interfaces, code, GUI

descriptors, SQL
queries, etc.

COMPSCI 732 §4. UML and Meta Modelling 17

Example MDA system
• AndroMDA http://www.andromda.org/

• open source code generation framework
• follows the Model Driven Architecture (MDA) paradigm.
• takes PIm model(s) from CASE-tool(s) and generates fully

deployable applications and other components.
• Currently limited to J2EE PSMs
• Uses concept of a “cartridge”

which defines the PIM->PSM
translation for a given PSM

COMPSCI 732 §4. UML and Meta Modelling 18

MDA – Critique
• Example of “model engineering”: treats software development as a

set of transformations between successive models

• MDA specializes model engineering by using MOF and associated UML
models. Relies on UML Profiles which are specified using MOF

• PSMs are likely to be very difficult to construct – hard enough to
program in J2EE or .NET by hand

• Problem of debugging generated code

• Domain oriented programming where you generate systems from
domain specific languages is more likely to provide real advantage

• See Pounamu and other meta tools shortly

• From D.Thomas, MDA: Revenge of the Modelers or UML Utopia,
IEEE Software May-June 2004

COMPSCI 732 §4. UML and Meta Modelling 19

Towards UML Evaluation
• How would we go about evaluating UML?

• As a notation or set of notations?
• As an adjunct to a methodology such as RUP?

• Could conduct experiments with user populations
• Eg survey based approach
• Need careful experimental design with hypotheses to test

• Eg people do not use notational element X because of Y

• Could use cognitive dimensions to evaluate notation
• But needs to be done in the context of a particular environment

(ie a UML tool such as Rational Rose)
• Also difficulties as really a set of notations
• Could turn problem around and look at requirements for a UML

tool based on Cognitive Dimension framework (6.1 of CD paper)

COMPSCI 732 §4. UML and Meta Modelling 20

Requirements for a UML tool
• Abstraction gradient

• Will always be high for UML as it is a very rich collection of
notations

• Could minimise by offering subset of notation to novice users
• Hidden Dependencies & Visibility

• Multiple diagrams with multiple notations
• Strong need for consistency between diagrams, but this leads to

many hidden dependencies
• Could offset by navigation tools to move rapidly between elements

that are being kept consistent (partial remedy – see CD paper)
• Viscosity

• Key issue here is insertion and deletion of new elements and how
this affects consistency management

• Also automatic layout considerations, direct versus dialog box
editing etc

• Many of these issues are UI related rather than notational

COMPSCI 732 §4. UML and Meta Modelling 21

Requirements for a UML tool
• Closeness to mapping

• Appears to be good for class and interaction diagrams and poss
package diagrams

• Other types of diagram are typically less used by programmers.
Poss this is due to difficulty in mapping to eventual
implementation in programmer’s mind

• Depends critically on designer’s background
• Support for refinement from conceptual->implmn

• Progressive evaluation
• UML is not “executed” in the same way as other VLs
• Issues here with code generation (of stub classes)

• Regeneration after user additions to stub classes
• “Simulation” of sequence diagrams?
• Support for refinement from conceptual->implmn

COMPSCI 732 §4. UML and Meta Modelling 22

Requirements for a UML tool
• Premature Commitment

• Many issues here
• Eg need for a class before adding a method or association

(dangling association)
• Support for refinement from conceptual->specn->implmn
• Layout – having to decide a generalisation is likely to occur

and allow space for it to avoid re-laying diagram out

• Error proneness
• A likely problem here is the overloaded use of the notations

for conceptual, specification, & implementation
• Could minimise by appropriate diagram annotation to

indicate perspective (not done in any of the tools that I
am aware of, but could be considered part of MDA
initiative)

COMPSCI 732 §4. UML and Meta Modelling 23

Requirements for a UML tool
• Consistency

• Some difficulties due to multiple notations
• Strong attempt made to reuse elements in multiple

diagrams (eg class, object notation in sequence and
interaction diagrams)

• However areas where notations is strongly different (eg
operations in class diagrams versus seq diagrams, state
diagrams)

• Crossing to completely dissimilar notations (eg state or
activity diagrams) creates a significant consistency hurdle

• Some difficulties also due to multiple perspectives

COMPSCI 732 §4. UML and Meta Modelling 24

Summary
• UML is a big and general purpose set of visual notations

• Causes difficulties that need mitigation in tool design

• It has wide adoption as the lingua franca for software design
• Hence reduces closeness of mapping issues – software designers

brought up with UML

• Introduced the concept of meta modelling
• For defining semantics of UML
• As a more general purpose approach to high level modelling
• As the basis of tool generators
• As the basis for model driven design

• Next lecture introduce the Pounamu meta tool

