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UML and Meta Modelling
• Topics:

• UML as an example visual notation
• The UML meta model and the concept of meta modelling
• Model Driven Architecture and model engineering

• The AndroMDA open source project
• Applying cognitive dimensions to assist in designing a UML tool

• How to mitigate some of the problems inherent in UML
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The Unified Modelling Language
• Notation(s) for describing object oriented models

• can be used for describing implementations, designs, and analyses
• incorporates and extends elements from several earlier modelling notations
• early development primarily by Rational Software Inc (now owned by IBM), 

but now developed by OMG (UML 2.0 in process of release)

• Has a variety of diagram types expressing both static and dynamic aspects
• class diagrams
• package diagrams
• use cases
• sequence and collaboration (now called communication) diagrams
• state & activity diagrams
• etc (12 diagram types in all)

• Plus Object Constraint Language (OCL) for expressing more complex constraints

• Sources:
• UML Distilled, Martin Fowler, Addison Wesley
• UML specifications from http://www.uml.org/
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Notation vs. Methodology
• UML is a set of notations

• Used to model OO systems
• Define a set of overlapping models using the various diagrams 

each expressing a different view or viewpoint on the system 
modelled

• Described by a meta-model ie a model to describe a model

• But also need to know how to go about constructing a model
• i.e. a methodology for using the notation
• Eg RUP – Rational Unified Process

• Will primarily look at UML notation, rather than modelling 
methodologies, but will touch on Model Driven Architecture approach
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Example Diagrams

Source;
http://www.sparxsystems.com.au/UML_Tutorial.htm
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Diagram Perspectives
• Diagrams are used for multiple purposes with different semantics

• When interpreting them you need to know the perspective being used

• Eg Class diagrams

• Conceptual
• diagram represents concepts in domain
• may or may not relate to implementation classes
• typically used in analysis

• Specification
• software interfaces, i.e. types rather than classes
• typically used in design and documentation

• Implementation
• laying bare implementation details
• only occasionally used for detailed understanding
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Constraints
• Much of UML is about specifying constraints: eg relationship 

between things, multiplicity of associations, exclusivity of 
subclasses 

• A variety of keyword based constraints are included in UML
• subtypes: {complete} {incomplete} {disjoint} {overlapping}
• association ends or attributes:

• {ordered} {unordered} {sorted}
• {changeable} {addOnly} {frozen}

• timing of messages (standard functions)
• startTime stopTime executionTime

• Additional textual constraints can be specified informally 
using notes

• But more formal constraints can be specified using the Object 
Constraint Language (OCL)
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OCL
• A formal language

• Pure expn language - uses a declarative style
• specifies constraint, not what to do if violated
• side effect free
• strongly typed

• Used to specify, eg, 
• pre and post conditions on operations and invariants, eg:

context Company inv enoughEmployees : self.numberOfEmployees > 50
context Company::setCreditLimit(limit: int)
pre: limit >= 0
post: creditLimit >= 0

• constraints on navigation of associations

• Also used to specify UML meta-model semantics (see later)
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UML meta-model
• Need a formal specification of UML’s syntax and semantics to 

allow:
• uniform understanding of what models mean
• tool makers to design UML tools that implement semantics 

consistent with those of other tools
• interchange of models between tools (by specifying 

interchange formats)

• Such a formal specification is a meta-model as it describes the 
form that its instances (individual UML models) can take

• But how do we specify the meta-model?
• Answer (simple): Use UML to define itself 
• Answer (complex): Define the UML meta-model using a meta-

modelling language.
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UML specification
• The formal UML specification is at http://www.uml.org/

• This does not specify the exact surface syntax for UML (ie exact 
icons etc), rather it specifies UML in an abstract syntax-like form

• The specification makes extensive use of UML diagrams (particularly 
class diagrams) supplemented by OCL for more detailed semantics.

• The definition is in terms of packages defining common and more 
specialised diagram components/concepts (the following is UML 1.5 –
these have changed in UML2.0) 

• eg Core Backbone package defines fundamental concepts
• eg Core Classifiers package defines entity-like things (eg

classes, interfaces)
• eg State Machines package defines extensions to cover state 

diagrams
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Core Backbone
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Core Classifiers
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Meta-meta-modelling
• Although it appears as if UML defines itself, this is not actually the 

case.

• The specification actually uses a meta-modelling language
• this is itself object oriented and has many concepts in common 

with UML
• called Meta Object Facility (MOF)
• common with OMG CORBA IDL specification work
• also used for the Common Warehouse Metamodel (CWM)

• But how is this meta-modelling language specified?
• Answer: using itself (defining a meta-meta-model)
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4 Layer Model
• This approach leads to a four layer 

approach to the modelling

• meta-meta-model (M3): defines the 
MOF notation

• meta-model (M2): defines UML 
notation using MOF

• user model (M1): a UML model of a 
particular problem domain

• data (M0): typical objects instantiating 
the UML model

• Note: could use M3 instead to define 
M2 for ER modelling; M1 a typical ER 
model; M0, typical ER data.
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4 layer model
• Typical examples of elements at each 

level:

• M3: MOF MetaClass

• M2: UML Class, instance of MOF 
Class; very similar to MOF concept of 
a Class

• M1: Person, a typical instance of 
UML Class

• M0: President:Person, a typical 
instance of Class Person

• From C. Atkinson, Supporting and 
applying the UML conceptual 
framework.

MetaClass

isSingleton :

isVisible() 

Boolean

Class

isActive : Boolean

Person

name : String
birth_date: Integer
address : String

age() : Integer

President:Person

name = "Bill Clinton"
birth_date = 1952
address = "White 
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Advantages of meta modelling
• Consistency of interpretation using more formal semantics

• Although MOF approach not nearly as unambiguous as other specification 
approaches

• Possibility of interchange standards based on meta model specification
• Can interchange models between tools
• XMI is the defined interchange standard based on MOF

• Essentially MOF in XML (makes for verbose interchange files)

• Can use meta models as schema for semantic data to be stored in a 
repository

• Can define extensions that reuse parts of the existing model
• Eg did this with our DPML work (see later)

• Can use meta models to specify tools
• If have appropriate tool building tools can generate the tool from the 

meta model (this is what we do with our JComposer and Pounamu tools) or 
a system from a model (MDA approach)

See www.metamodel.com
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Model Driven Architecture (MDA)
• Generate systems from models (see http://www.omg.org/mda/)

• Start with Platform Independent (UML) Model (PIM)
• Generate a Platform Specific (UML) Model from PIM
• Generate implementation from PSM

Platform-
Independent

Model

CORBA 
Model

Java/EJB
Model

CORBA

XML/SOAP
Model

Java/EJB XML/SOAP Other

Other
Model

Map a PIM to Many 
Middleware 

Technologies via OMG 
Standard Mappings

Map PSM to application 
interfaces, code, GUI 

descriptors, SQL 
queries, etc.
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Example MDA system
• AndroMDA http://www.andromda.org/

• open source code generation framework
• follows the Model Driven Architecture  (MDA) paradigm. 
• takes PIm model(s) from CASE-tool(s) and generates fully 

deployable applications and other components.
• Currently limited to J2EE PSMs
• Uses concept of a “cartridge”

which defines the PIM->PSM
translation for a given PSM
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MDA – Critique
• Example of “model engineering”: treats software development as a 

set of transformations between successive models

• MDA specializes model engineering by using MOF and associated UML 
models. Relies on UML Profiles which are specified using MOF

• PSMs are likely to be very difficult to construct – hard enough to 
program in J2EE or .NET by hand

• Problem of debugging generated code

• Domain oriented programming where you generate systems from 
domain specific languages is more likely to provide real advantage

• See Pounamu and other meta tools shortly

• From D.Thomas, MDA: Revenge of the Modelers or UML Utopia, 
IEEE Software May-June 2004
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Towards UML Evaluation
• How would we go about evaluating UML?

• As a notation or set of notations?
• As an adjunct to a methodology such as RUP?

• Could conduct experiments with user populations
• Eg survey based approach
• Need careful experimental design with hypotheses to test

• Eg people do not use notational element X because of Y

• Could use cognitive dimensions to evaluate notation
• But needs to be done in the context of a particular environment 

(ie a UML tool such as Rational Rose)
• Also difficulties as really a set of notations
• Could turn problem around and look at requirements for a UML 

tool based on Cognitive Dimension framework (6.1 of CD paper)
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Requirements for a UML tool
• Abstraction gradient

• Will always be high for UML as it is a very rich collection of 
notations

• Could minimise by offering subset of notation to novice users
• Hidden Dependencies & Visibility

• Multiple diagrams with multiple notations
• Strong need for consistency between diagrams, but this leads to 

many hidden dependencies
• Could offset by navigation tools to move rapidly between elements 

that are being kept consistent (partial remedy – see CD paper)
• Viscosity

• Key issue here is insertion and deletion of new elements and how
this affects consistency management

• Also automatic layout considerations, direct versus dialog box 
editing etc

• Many of these issues are UI related rather than notational
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Requirements for a UML tool
• Closeness to mapping

• Appears to be good for class and interaction diagrams and poss 
package diagrams

• Other types of diagram are typically less used by programmers. 
Poss this is due to difficulty in mapping to eventual 
implementation in programmer’s mind

• Depends critically on designer’s background
• Support for refinement from conceptual->implmn

• Progressive evaluation
• UML is not “executed” in the same way as other VLs
• Issues here with code generation (of stub classes)

• Regeneration after user additions to stub classes
• “Simulation” of sequence diagrams?
• Support for refinement from conceptual->implmn
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Requirements for a UML tool
• Premature Commitment

• Many issues here
• Eg need for a class before adding a method or association 

(dangling association)
• Support for refinement from conceptual->specn->implmn
• Layout – having to decide a generalisation is likely to occur 

and allow space for it to avoid re-laying diagram out

• Error proneness
• A likely problem here is the overloaded use of the notations 

for conceptual, specification, & implementation
• Could minimise by appropriate diagram annotation to 

indicate perspective (not done in any of the tools that I 
am aware of, but could be considered part of MDA 
initiative)
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Requirements for a UML tool
• Consistency

• Some difficulties due to multiple notations
• Strong attempt made to reuse elements in multiple 

diagrams (eg class, object notation in sequence and 
interaction diagrams)

• However areas where notations is strongly different (eg 
operations in class diagrams versus seq diagrams, state 
diagrams)

• Crossing to completely dissimilar notations (eg state or 
activity diagrams) creates a significant consistency hurdle

• Some difficulties also due to multiple perspectives
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Summary
• UML is a big and general purpose set of visual notations

• Causes difficulties that need mitigation in tool design

• It has wide adoption as the lingua franca for software design
• Hence reduces closeness of mapping issues – software designers 

brought up with UML

• Introduced the concept of meta modelling
• For defining semantics of UML
• As a more general purpose approach to high level modelling
• As the basis of tool generators
• As the basis for model driven design

• Next lecture introduce the Pounamu meta tool


