
COMPSCI 732 §2. Visual Languages & Notations 1

Visual Languages/Notations
• Aims of this section

• Introduce use of diagrammatic/visual approaches to programming
• Lok at several example visual languages

• Chimera (programming by demonstration)
• Forms/3 (spreadsheet-based)
• Prograph (OO visual dataflow)
• Kidsim (visual rule based)
• UML (covered in more detail later)

• Introduce approaches for evaluating visual notations and environments
• Cognitive Dimensions
• Attention Investment
• Champagne Prototyping

• Tomorrow
• Domain specific visual languages

• Later
• UML
• Pounamu meta tool for constructing VL editors

COMPSCI 732 §2. Visual Languages & Notations 2

Resources
• Much material in thise lecture from:

• "Visual Programming," Margaret Burnett, in
Encyclopedia of Electrical and Electronics Engineering
(John G. Webster, ed.), John Wiley & Sons Inc., New
York, 1999

• "Scaling Up Visual Programming Languages", Margaret
Burnett, Marla Baker, Carisa Bohus, Paul Carlson,
Sherry Yang, Pieter van Zee, Computer, March 1995,
45-54.

• Cognitive Dimensions website
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/

COMPSCI 732 §2. Visual Languages & Notations 3

What is a Visual Language?
• “some visual representations (in addition to or in place of words

and numbers) to accomplish what would otherwise have to be
written in a traditional one-dimensional programming language”

• Shu, N Visual Programming, Van Nostrand Reinhold, NY, 1988

• Visual programming is programming in which more than one
dimension is used to convey semantics. Eg:

• multi-dimensional objects
• use of spatial relationships
• use of the time dimension to specify “before-after” semantic

relationships.

• A Visual Programming Environment allows visual specification and
generation of code

• NB some use of 2-D in conventional PLs
• use of indentation/layout to convey semantic info

COMPSCI 732 §2. Visual Languages & Notations 4

History
• Early work didn’t scale

• Executable flowcharts
• Programming by demonstration

• Followed by work in
• Programming environments that replaced some textual

programming by visual (eg VisualWorks, Visual Basic)
• Won’t consider here

• CASE tools – programming in the large
• General purpose VLs – the original nirvana
• Domain Specific VLs – constraining the task

• look at next lecture

COMPSCI 732 §2. Visual Languages & Notations 5

Goals and Strategies of VP
• Goals

• make programming more accessible to some audience (often
end users)

• improve correctness of performing programming tasks
• improve speed of performing programming tasks.

• NB what’s a “programming task” – see attention
investment later

• Strategies
• Concreteness: express program using specific instances
• Directness: feeling of directly manipulating object
• Explicitness: making relationships explicit
• Immediate visual feedback or liveness: automatic display of

effects of manipulations, even to the extent of editing “code”
of running programs (cf spreadsheets)

• Small number of concepts

• Metaphor is important

COMPSCI 732 §2. Visual Languages & Notations 6

Example VPLs: Chimera
• Chimera (Kurlander, 1993) is an example of a programming

by demonstration environment using comic book metaphor

• Captures concrete GUI editing operations and allows
conversion to macros by selecting from comic strip history

COMPSCI 732 §2. Visual Languages & Notations 7

Example VLs: Forms/3
• Forms/3 (Burnett 1995,98) uses a spreadsheet metaphor

• Programmer constructs forms with free format cells (not
fixed to a grid) using direct manipulation

• Each cell has a formula which may refer to contents of
other cells, possibly in other forms

• Linked formulae create a one-way constraint network –
consistency is maintained

• Can construct types and instantiate them (prototype
approach to OO) – cells can reference instances

• Can sketch shapes

COMPSCI 732 §2. Visual Languages & Notations 8

Forms/3
• Aimed at non-programmers

• Much recent work on adding test tools (see EUSES project)

COMPSCI 732 §2. Visual Languages & Notations 9

Example VLs: Prograph
• Prograph (Cox et al 1989) uses a visual dataflow metaphor

• dataflow metaphor very popular in VL – nodes for
processing elements, arcs for dataflows

COMPSCI 732 §2. Visual Languages & Notations 10

Prograph
• Has a well developed OO framework

• Dataflow “methods” for classes
• GUI library framework allows rapid prototyping of

applcns

• Has extensive debugging support
• Reuses dataflow diagrams during execution with values

instantiated to visualise execution behaviour

• Probably the only “successful” commercial general purpose
visual programming language

COMPSCI 732 §2. Visual Languages & Notations 11

Example VLs: KidSim/Cocoa
• Cocoa (Smith et al 1994) uses a rule based metaphor

combined with a 2-D cellular grid
• Rules are specified using programming by demonstration
• Aim is to make programming accessible to kids

COMPSCI 732 §2. Visual Languages & Notations 12

KidSim/Cocoa
• Characters are defined

• Rule preconditions specify character proximities/
orientations

• Rule actions may remove or relocate characters, introduce
new characters, etc

• Order-based disambiguation of rules if multiple rules for a
character can fire

• Developed into commercial product: Stagecast Creator

• Several other similar languages, most notable of which is
AgentSheets (Repenning). Alice has similarities.

COMPSCI 732 §2. Visual Languages & Notations 13

Example VLs UML
• UML is a collection of visual notations used for

programming in the large

• Will explore in more detail in later lectures

PersonalCustomer

Customer

1*

Order

* 1
1

1..*

Order Line

1..*

1

Product

1

*

1

*

BusinessCustomer

Employee

0..1

*

0..1

*

sales rep

line items

 : Order Entry Window : Order order lines :
Order Line

 : Product : Reorder Item : Delivery Item

1: prepare
2: prepare 3: check

6: remove

{check == true}

4: needToReorder

5: new

needToReorder
== true

7: new

COMPSCI 732 §2. Visual Languages & Notations 14

Designing and Evaluating VLs
• How “good” are the languages we have just looked at?

• How can we design such languages so they meet users
needs?

• Difficult:
• Combination of psychology, user interface design,

abstraction skills, expressability, narrowness of task,
etc, etc

• Typical usability studies are VERY expensive
• Need some lightweight “tools” to help us understand

the impact of design decisions

• Look at:
• Cognitive Dimensions
• Attention Investment
• Champagne Prototyping

COMPSCI 732 §2. Visual Languages & Notations 15

Cognitive Dimensions Framework
• Green and Petre 1996 (since developed by Blackwell)

• Establishes a set of “dimensions” to think about the
tradeoffs made in implementing visual programming
environments

• Has had very strong influence on the VL community
• Means of explaining effects of design decisions

• Comes out of cognitive psychology community

• Lightweight – doesn’t need large usability studies to get
useful insight

• Can be used for evaluation and also as a design aid

COMPSCI 732 §2. Visual Languages & Notations 16

Cognitive Dimensions
• Abstraction gradient What are the minimum and maximum levels of

abstraction? Can fragments be encapsulated?

• Closeness of mapping What ‘programming games’ need to be learned?

• Consistency When some of the language has been learnt, how much of
the rest can be inferred?

• Diffuseness How many symbols or graphic entities are required to
express a meaning?

• Error-proneness Does the design of the notation induce ‘careless
mistakes’?

• Hard mental operations Are there places where the user needs to
resort to fingers or penciled annotation to keep track of what’s
happening?

• Hidden dependencies Is every dependency overtly indicated in both
directions? Is the indication perceptual or only symbolic?

COMPSCI 732 §2. Visual Languages & Notations 17

Cognitive Dimensions
• Premature commitment Do programmers have to make decisions

before they have the information they need?

• Progressive evaluation Can a partially-complete program be executed
to obtain feedback on “How am I doing”?

• Role-expressiveness Can the reader see how each component of a
program relates to the whole?

• Secondary notation Can programmers use layout, color, or other cues
to convey extra meaning, above and beyond the ‘official’ semantics of
the language?

• Viscosity How much effort is required to perform a single change?

• Visibility Is every part of the code simultaneously visible (assuming a
large enough display), or is it at least possible to compare any two
parts side-by-side at will? If the code is dispersed, is it at least
possible to know in what order to read it?

COMPSCI 732 §2. Visual Languages & Notations 18

Use of Cognitive Dimensions
• Note the tradeoffs that occur

• May add an abstraction that makes it easier to change things
(reduced viscosity) but increases the difficulty of
understanding (increased abstraction gradient and increased
hidden dependencies).

• See Green and Petre
paper for
several examples
illustrating
tradeoffs made

• Burnett provides a set of representation benchmarks that assist in
operationalising the use of the CD framework.

• See Burnett paper

COMPSCI 732 §2. Visual Languages & Notations 19

Cognitive Dimensions provides
vocabulary

Verbatim transcript from a newsgroup discussion (real words
from real users).

NB: this discussion referred to a version of Framemaker that
is now obsolete.

• A: ALL files in the book should be identical in everything
except body pages. Master pages, paragraph formats,
reference pages, should be the same.

• B: Framemaker does provide this ... File -> Use Formats
allows you to copy all or some formatting categories to all
or some files in the book.

• A: Grrrrrrrrr Oh People Of Little Imagination !!!!!!

• Sure I can do this ... manually, every time I change a
reference page, master page, or paragraph format

• What I was talking about was some mechanism that
automatically detected when I had made such a change. (
.....) Or better yet, putting all of these pages in a
central database for the entire book

• C: There is an argument against basing one paragraph
style on another, a method several systems use. A
change in a parent style may cause unexpected problems
among the children. I have had some unpleasant surprises
of this sort in Microsoft Word.

Improved Discussion

• A: Framemaker is too viscous.

• B: With respect to what task?

• A: With respect to updating components
of a book. It needs to have a higher
abstraction level, such as a style tree.

• C: Watch out for the hidden
dependencies of a style tree.

• (further possible comments)

• The abstraction level will be difficult to
master; getting the styles right may
impose lookahead.

From: An Introduction to the Cognitive
Dimensions Framework, T R G Green

http://homepage.ntlworld.com/greenery/work
Stuff/Papers/introCogDims/index.html

COMPSCI 732 §2. Visual Languages & Notations 20

Attention Investment
• Theory to explain why people spend time doing programming

• Programming defined very broadly

• Defines “attention units”: nominal amount of
“concentration” applied

• Applies a cost benefit analysis approach to programming
activities

• Programming => automation to save time in the future
• Has Cost: attention units to do the job
• Investment: attention units expended towards a

potential reward
• Pay-off: reduced future cost from investment
• Risk: probability that no pay-off or –ve pay-off results

• See Blackwell’s paper.

COMPSCI 732 §2. Visual Languages & Notations 21

Champagne Prototyping
• A “cheap” method for early design evaluation

• Combines:
• simple prototyping

• used overlays and “look don’t touch” approach
• cognitive walkthroughs with credible participants
• cognitive dimensions & attention investment for analysis

to assist in answering questions at early design phase of
visual environments

• Blackwell, Burnett and Peyton Jones, Champagne Prototyping: a
research technique for early evaluation of complex end user
programming systems, IEEE VL/HCC, 2004, 47-54

COMPSCI 732 §2. Visual Languages & Notations 22

Summary
• Have looked at a variety of VLs/VPEs

• Wide variety of metaphors and approaches used
• Some are executable, some are just design notations
• Some aimed at programmers, some at non programmers

• Have examined several approaches to evaluating visual
language/environment design

• Emphasis on “low cost” methods

• Will explore domain specific visual languages in more depth
in next lecture

• Lead on to later sections
• UML and the concept of meta modelling
• Pounamu meta modeller

