Pattern Languages & EFPL

+ Look at two topics:
+ Pattern Languages

+ collections of patterns that used together lead to solutions for a
particular domain area

+ Evolving Frameworks pattern language

+ a pattern language for developing frameworks together with its
use in the evolution of MViews/JViews

COMPSCT 732 §10. Pattern Languages & EFPL 1

Pattern Languages

“A pattern language defines a collection of patterns and the rules to
combine them into an architectural style. Pattern languages describe
software frameworks or families of related systems.”

+ Cope, Patterns Home Page

“A collection of patterns forms a vocabulary for understanding and
communicating ideas. Such a collection may be skillfully woven together
into a cohesive “whole" that reveals the inherent structures and
relationships of its constituent parts toward fulfilling a shared
objective. This is what Alexander calls a pattern language. If a pattern
is a recurring solution to a problem in a context given by some forces,
then a pattern language is a collective of such solutions which, at every
level of scale, work together to resolve a complex problem into an
orderly solution according to a pre-defined goal.”

+ Appleton, "Patterns and Software: Essential Concepts and
Terminology”

COMPSCT 732 §10. Pattern Languages & EFPL 2

Pattern Languages

Provide lexicon of patterns + “grammar” for threading them together
- useful patterns
* rules and orderings to apply them to achieve some goal

“Good pattern languages guide the designer toward useful
architectures and away from architectures whose literary analogies
are gibberish or unartful writing.”

+ Appleton, "Patterns and Software: Essential Concepts and Terminology”

Illustrate with a pattern language for evolving frameworks developed
by Don Roberts and Ralph Johnson
-+ D. Roberts, R.Johnson “Evolving Frameworks"
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

In turn will illustrate application of this pattern language by our
experience in developing our MViews/JViews framework for
constructing multiple view graphical environments

COMPSCT 732 §10. Pattern Languages & EFPL 3

MViews/JViews

Developed over close to 10 years
+ initially from John Grundy's PhD thesis

Aim: to support design and implementation of visual environments
supporting multiple views with different representations

+ Eg a CASE TOOL supporting various types of UML diagram

Support for specification and implementation of:
* underlying shared repository
+ information represented in views
+ consistency management/mappings between views
+ visual representation and manipulation of elements in the views

COMPSCT 732 §10. Pattern Languages & EFPL 4

CPRGs

Underlying abstraction of MViews/JViews: change propagation and
response graphs

+ discrete change description propagation along inter-object
relationships,

* response to and storage of these change descriptions

Each item of data is represented by a graph component

Enter your name:

Components linked via relationships g e ety
nrertacecrinit nare. | far youroge:

final_nane

W\ position

Components have attributes

representing state

Relationships are themselves
components

position on position
Lsnter your name:") value(“Enter your age:")

COMPSCI 732 §10. Pattern Languages & EFF|

MViews/JViews

+ Framework implementing CPRG model with support for constructing
multiple view - multiple representation design environments (~10 year
development)

+ 3-layer architecture e

=
+ Base ',;i B
+ View * o
* bisplay flEe ==
+ Used to implement J == i
@ drawing \yindo

many of our visual
tools & environments

View
Layers
ExTEma eS|
x

\d
(oW

>

Cx

+ Eg Orion Mapper prototype

Base

Layer
(RO

COMPSCT 732 §10. Pattern Languages & EFPL 6

Example use: SPE/Serendipity

-

ER
g0

SN N
xfaide @

O (R

[Contewt | [Undo | [Reds | (=2

[hdd] [ewie)
[Contewt | [(mdo | [Redo | [Caneet |

COMPSCT 732 §10. Pattern Languages & EFPL 7

Evolving frameworks

+ The patterns in this pattern language are not design patterns in the
usual sense, rather they are patterns describing useful processes and
tasks that software developers perform when developing frameworks

+ Names and temporal interaction of the patterns are shown in the

following figure

| White Box Framework || Elack Box Framework

| Component Library

| DPluggable Cbiects

| Hot Spots |

| Fine-grained Chjects

Wisual Builder
Language Tools
Time

COMPSCT 732 §10. Pattern Languages & EFPL 8

Y

Context: You've decided to develop a framework for a domain
Problem: How do you start designing a framework

Forces:
+ people work best by abstracting from examples

+ developing examples can pay for the costs of developing
framework

Solution: Develop three applications that you believe the framework
should help you build

COMPSCTI 732 §10. Pattern Languages & EFPL 9

+ Initially developed a tool for constructing multiple view class
diagrams (Ispel)

+ Then developed a programming environment for programming in
Snart, an OO Declarative Language (SPE)

+ Then developed a multiple view ER modeller (MViews-ER)

oo
(W !

o

e a1 rus Took tagoul Tmyle
Wallbrace:root Ejl{lﬂ windonr a0t 055

Fectangle E

+ _clong [¢ somss | [o olong |[¢ somss
RoofDirection | RoofDirect; | | H

COMPSCI 732 §10. Pattern Languages & EFPL

Context: You are building your second application

Problem: How to choose between using inheritance or composition as the
basis for using the framework

Forces:

+ Inheritance gives strong coupling between components, but allows
reused components to be modified/extended

+ Making a new class requires programming

+ Composition is simpler, but you need to know in advance what can be
changed via parameterisation etc

+ Compositions can be dynamic, inheritance is static
Solution: use inheritance to build a white box framework by generalizing
from classes in the initial application
Why: inheritance is most expedient way of allowing users to change code
in an OO environment - inherit and override. After using this approach for
a while it will become clearer as to what changes and what doesn't

COMPSCT 732 §10. Pattern Languages & EFPL 11

* MViews was developed
by abstracting from
experience with Ispel

+ Framework of classes
for multiple view
graphical and textual
environments

+ Reused via inheritance
and overriding of
framework classes - ie
a white box framework

COMPSCT 732 §10. Pattern Languages & EFPL

Component library

Context: You are developing the second and subsequent examples based
on the white box framework

Problem: Similar objects must be implemented for each problem the
framework solves. How do you avoid writing similar objects for each
instantiation of the framework

Forces:

+ Bare-bones frameworks require a lot of effort to reuse. Things that work out
of the box are much easier. A good library of concrete components makes a
framework easier to use

+ Its hard to tell initially what components will be reused. Some will be problem
specific - some will be reused most times

Solution: Start with a simple library of concrete components and add
extra ones as you need them.

+ Add all components initially and later remove ones that never get reused.
These are still useful as they give examples of how to use the framework

In MViews many concrete classes were implemented for use in SPE
These were adapted or generalised for use in MViewsER
COMPSCTI 732 §10. Pattern Languages & EFPL 13

Hot Spots

Context: You are adding components to the component library

Problem: As you develop applications similar code gets reused over and
over again. These code locations are called “hot spots”. How do you
eliminate this similar code?

Forces:

+ If changeable code is scattered it's difficult to trace and change

+ if changeable code is in a common place flow of control can be obscure
Solution

+ Separate code that changes from code that doesn't - encapsulating
the changing code in objects. Composition can then be used to select
the appropriate behaviour rather than having to subclass

* use appropriate design patterns to encapsulate changes eg:

+ algorithm changes => Strategy, Visitor
+ Actions => Command [N X fg
+ Implementations => Bridge
- etc
COMPSCT 732 §10. Pattern Languages & EFPL 14

Pluggable Objects

Context: You are adding components to your component library

Problem: Most of the subclasses differ in trivial ways
(eg only one method overridden). How do you avoid having
to create trivial subclasses?

Forces:
+ New classes increase system complexity

+ Complex sets of parameters make classes difficult to understand and
use

Solution

- Design adapatable subclasses that can be parameterised with
messages to send, code to evaluate, colours to display, buttons to
hide, etc

Check what it is that is changing between subclasses and make an instance
variable or whatever to hold the state associated with the change.
MViews was ported to Java. At the same time many classes were turned
into JavaBeans components with settable properties for customisation

COMPSCT 732 §10. Pattern Languages & EFPL 15

Fine grained objects @

Context: You are refactoring your component library to make it more usable
Problem: How far should you go in dividing objects into smaller ones
Forces
+ The more objects ion the system the harder it is to understand
- Small objects allow applications to be constructed by composing small
objects together so little programming is required
Solution:

+ Continue breaking objects up into smaller pieces until it doesn't make
sense to divide further - ie decide what the “atomic” level is for this
domain

* Frameworks will ultimately be used by domain experts so tools will be
developed to compose objects automatically, so it's more important to
avoid programming than to avoid lots of objects.

In JViews, graphics components were reduced in scope to permit design by
composition. This led to the development of BuildByWire, a GUT element
construction tool

COMPSCT 732 §10. Pattern Languages & EFPL 16

Black Box Framework

Context: Your are developing pluggable objects by encapsulating hot
spots and making fine-grained objects

Problem: How to choose between using inheritance or composition as the
basis for using the framework?

Forces: as per White Box framework
Solution:

+ Use inheritance to organise your component library and composition
to combine components into applications. Inheritance taxonomies
support part browsing; composition allows for maximum flexibility.

A black-box framework is one where you can reuse components by
plugging them together and not worrying about how they accomplish
their individual tasks. In contrast, white-box frameworks require an
understanding of how the classes work so that correct subclasses can be
developed.

JViews evolved into a black box framework, with some parts (notably
GUT development) more black box than other parts
COMPSCT 732 §10. Pattern Languages & EFPL 17

Visual Builder

Context: You have a black box framework. Applications are made by
composing objects. Behaviour now determined entirely by
interconnection of components. Application is how in two parts:

+ Script to connect parts and turn them on
+ Behaviour of parts (provided by framework)

Problem: the connection script is very similar between
applications. How do you simplify its construction?

Forces
+ Compositions are complex and difficult to understand

* Building tools is costly, but domain experts don't want to be
programmers

Solution:

+ Construct a visual language and environment to construct the script.
This generates the code for the application

COMPSCT 732 §10. Pattern Languages & EFPL 18

JComposer and BuildByWire

Developed two visual tools for use in constructing Jviews-based
environments:

+ JComposer: a tool to visually define most of the "back end” structure

+ further structure filled in by programming using class templates
generated by JComposer

* BuildByWire: a tool to visually define the GUI front end

- defines GUI elements (including interaction points and
behaviour) and GUT editing windows

* generates components that can be used by JComposer to
construct complete applications

COMPSCT 732 §10. Pattern Languages & EFPL 19

BBW and JComposer

Fandwivisibie

[T

e

AiColer e awt Tl

reikaoE Nt Doclen

S Vo .
| .
(0w canal

COMPSCT 732 §10. Pattern Languages & EFPL 20

Applications

Many applications built using JViews

Eg Serendipity, a process modelling environment

[St rtages dor 1. modiy rritem K1
Fim Pl View Chemges O Stage Colstoeslion
Wure seeni b itk 3 hgrundyen <o warikailo s noS027)

Shape

COMPSCT 732 §10. Pattern Languages & EFPL 21

Language Tools

Context: You have created a builder

Problem: Visual builders create complex composites. How do you inspect
and debug these

Forces:

+ Existing tools are inadequate as they don't provide information at
the right abstraction level

+ Building good tools takes time

Solution:
+ Create specialised debugging and inspection tools

COMPSCT 732 §10. Pattern Languages & EFPL 22

JVisualise

JVisualise allows execution state of JViews-based systems to be
queried, visualised, and dynamically modified

Visualisations use abstraction levels equivalent to those used by the
JCO"\pOSCI" tool 5 Visualisation 2 [-[ol=1

File Edit ‘iew Changes Compilation

I~ spy
vis 2ot 3412
01 = JComp.JCComplcon

|01 Llh nameText = "Actorlcon®

=220

[v=12
[
3405
JCamp.JCDiagram

=| I Debug Prapagation

COMPSCT 732 §10. Pattern Languages & EFPL 23

Extensions to EFPL

Our experience with developing MViews/JViews has led us to propose
several extensions to EFPL (see our paper):

* Platform migration

+ Deals with need to change underlying implmn platforms as
lifetime of a framework extends beyond typical impmn
technology cycle

+ Integrating applications

+ Deals with need/desire to integrate together multiple
applications developed using the framework and third party
applications

+ Reflective framework and Self Extending Framework

+ Dealing with the need to be able to extend the framework “on
the fly" using a meta model approach (cf Pounamu)

+ The new patterns were workshopped at KoalaPlop 2001

COMPSCT 732 §10. Pattern Languages & EFPL 24

Application to other frameworks

Eclipse
+ Has a mixture of whitebox and blackbox architectures

+ Has handled integrating applications as core business and has aspects of
reflective and self extending framework

+ Some development of visual builder tools (eg PDE) but this is rudimentary.

+ Expect to see significant energy going into visual builder and language support
tools to make plugin construction/debugging easier

Argo
+ Very similar to Eclipse, but arguably at a less mature stage
+ Momentum of development lost with the rise of Eclipse

Pounamu
+ A further application of the platform migration pattern to MViews/JViews
+ Rich set of visual builder tools, very much black box

COMPSCT 732 §10. Pattern Languages & EFPL 25

Summary

Framework programming uses a different style than does conventional
software development

+ becoming more the standard approach with the proliferation of
application frameworks

Pattern Languages are collections of patterns with rules for combining
them to solve problems in a particular domain

* the "Language” is not a language in the usual programming language
sense

Evolving frameworks is a useful Pattern Language for developing a new
framework

+ we didn't know about this pattern language when developing
MViews/JViews, but in retrospect we used it almost exactly

COMPSCT 732 §10. Pattern Languages & EFPL 26

