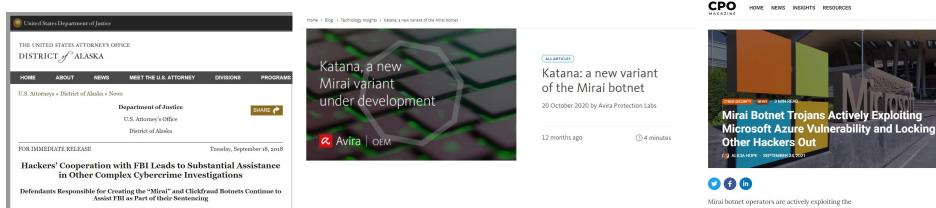

```
COMPSCI 726 Seminar
                             presented: Nicholas Berg
add_auth_entry("\x50\x4D\x4D\x56", "\x14\x14\x14\x14\x14\x14\x14", original work: Griffioen, and Doerr (2020)
```

Motivation: Mirai - A model Organism for IoT Botnets



Background: A brief history of Mirai

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., ... & Zhou, Y. (2017). Understanding the miral botnet. In 26th {USENIX} security symposium ({USENIX} Security 17) (pp. 1093-1110).

Problem: Understanding Mirai

"How do adversaries adapt their strategies to take over and keep a large enough market share of devices?" - Griffioen 2020

- Empirical Paper:
 - What does the Mirai-like IoT Malware system look like?
- Breaking Mirai's PRNG:
 - Can we use the Mirai source code to learn more about Mirai's deployment?
- Understanding the Mirai Backend:
 - How do the 39 variants interact, evolve, and specialise. Is Mirai self sustaining?

Idea: Go out and look

Dataset	Size (Jan-Mar 18)	Purpose
Telescope	1.2 TB	Infected devices, RNG analysis
Honeypots	213 GB	Variant+behavior identification, credentials staging servers
Netflows	569 GB	Verification and coverage analysis, blacklisting analysis

Table 1: Datasets used in this study.

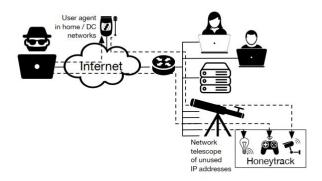
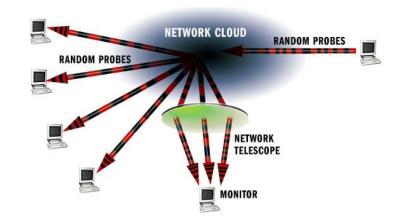



Figure 4: The Honeytrack system routes compromization requests into a separate, virtualized environment.

Details: Breaking Mirai's PRNG

```
time(NULL)
Reduced 32 to 16 (or less)
```

clock()
Reduced 32 to 1 bit

getpid() ⊕ getppid() entropy(15 ⊕ 15) = 15

Total Entropy Reduction 94 to 32 bits

Seed produced in 100 ms (from source port and window size)

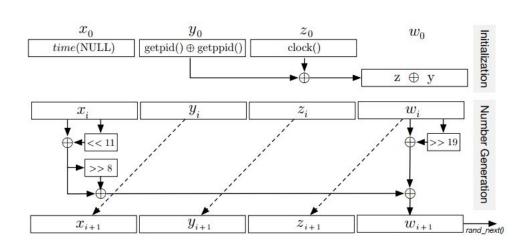
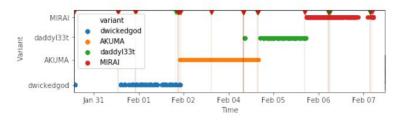
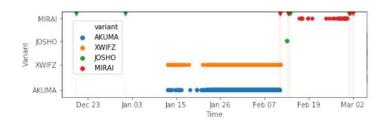




Figure 3: RNG initialization and generation.

Results: The world according to Mirai

(a) Devices get cleaned up and get reinfected by the same malware variant, until another variant takes over on the restart of a device.

(b) Concurrent infections on 1 IP. The first started 10 days before the second, in mid Jan our setup launched and registered both variants.

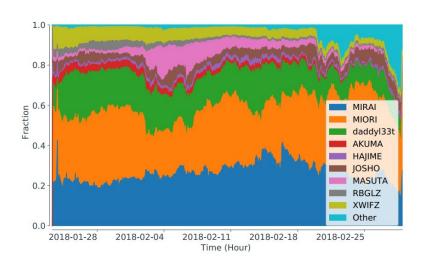
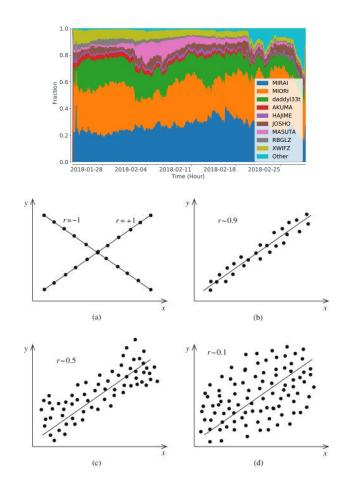


Figure 5: Marketshare of advertised variants.


Criticism: Statistical Analysis

Name	R	p
MASUTA	-0.064	< 0.1
Cult	-0.086	< 0.05
OWARI	-0.120	< 0.001
daddyl33t	-0.124	< 0.001
XWIFZ	-0.140	< 0.001
dwickedgod	-0.170	< 0.001
MIORI	-0.172	< 0.001
MIRAI	-0.179	< 0.001
HAJIME	-0.188	< 0.001
JOSHO	-0.206	< 0.001
OBJPRN	-0.663	< 0.001

Table 3: Correlation between botnet size and its growth.

AS	R	p
Frontier Communications of America Inc.	-0.519	< 0.001
asn for Heilongjiang Provincial Net of CT	-0.511	< 0.001
Ratt Internet Kapacitet i Sverige AB	-0.501	< 0.001
Bredband2 AB	-0.484	< 0.001
Bredbandsson AB	-0.475	< 0.001
Viettel Group	-0.129	< 0.001
OPTAGE Inc.	-0.127	< 0.001
Jupiter Telecommunications Co. Ltd.	-0.123	< 0.001
Jupiter Telecommunication Co. Ltd	-0.119	< 0.001
NTT Communications Corporation	-0.104	< 0.01

Table 4: Correlation between the size of an AS and its growth, ordered by coefficient for the top and bottom 5 ASes.

Criticism: Causation and Explanation of Observations

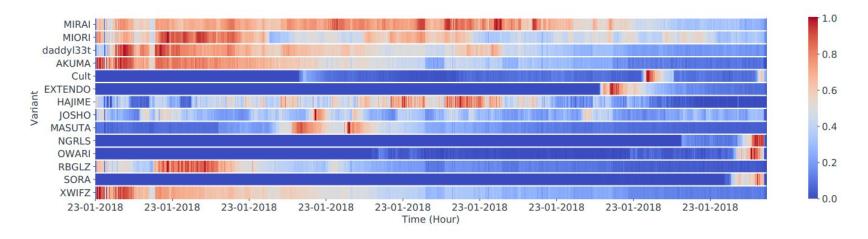
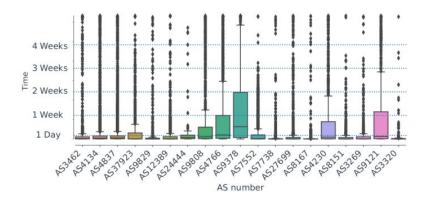
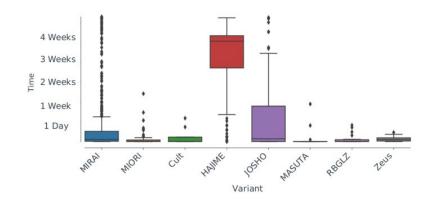




Figure 6: Lifetime distribution of variants over time, normalized per variant. Red shows peak per hour, blue shows little hosts being infected by the variant.

Criticism: Causation and Explanation of Observations

(a) Infection times per AS with more than 1,000 infections, showing large differences between the infection times of different ASes.

(b) Infection times of different variants on AS9121, showing large differences of variants within ASes.

Figure 10: Infection times of different ASes and variants.

Criticism 3: A great resource... for hackers?

Advice for Mirai Black Hats:

- Use better PRNG
- Select IP ranges more carefully
 - Especially Developing countries
- Harvest Passwords from other variants
 - Even better find your own vulnerabilities
- Spread loading servers across the bot net

Advice for Cyber Security:

• Generally Absent from paper

Alternative Suggestions

- Improve Security of IoT Devices
- Block Telnet (e.g. Firewall)
- Sift and Block junk Packets
- Attack Loading Servers (or their hosts)

Thank you for listening. Questions?

Key Sources:

Conference Presentation https://dl.acm.org/doi/pdf/10.1145/3372297.3417277
Original Paper https://dl.acm.org/doi/pdf/10.1145/3372297.3417277

Other resources:

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., ... & Zhou, Y. (2017).

Understanding the miral botnet. In 26th {USENIX} security symposium ({USENIX} Security 17) (pp. 1093-1110).

Elie Bursztein Inside Miral the infamous IoT Botnet: A Retrospective Analysis

Miral Source Code (github)

Attack on KrebsOnSecurity Cost IoT Device Owners \$323K

OMIGOD Mirai Exploit September 2021