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GREATEST COMMON DIVISOR (GCD)

▪ Form: gcd(a, b), where a and b are integers

▪ gcd is the largest positive integer that divides the 

integers without a remainder

▪ Examples

– gcd(4, 8) = 4

▪ Divisors of 4 = 1, 2, 4

▪ Divisors of 8 = 1, 2, 4, 8

– gcd(33, 15) = 3

▪ Divisors of 33 = 1, 3, 11, 33

▪ Divisors of 15 = 1, 3, 5, 15
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EULER’S PHI FUNCTION

▪ Form: ϕ(n), where n is an integer

▪ An arithmetic function that counts the positive integers 

less than or equal to n that are relatively prime to n

▪ If n is a positive integer then ϕ(n) is the number of 

integers in the range 1 ≤ k ≤ n for which gcd(k, n)=1

▪ Examples

– ϕ(2) = 1

▪ gcd(1, 2) = 1 (1)

▪ gcd(2, 2) = 2 

– ϕ(3) = 2

▪ gcd(1, 3) = 1 (1)

▪ gcd(2, 3) = 1 (2)

▪ gcd(3, 3) = 3
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MORE EXAMPLES

▪ ϕ(4) = 2

– gcd(1, 4) = 1 (1)

– gcd(2, 4) = 2

– gcd(3, 4) = 1 (2)

– gcd(4, 4) = 4

▪ ϕ(5) = 4

– gcd(1, 5) = 1 (1)

– gcd(2, 5) = 1 (2)

– gcd(3, 5) = 1 (3)

– gcd(4, 5) = 1 (4)

– gcd(5, 5) = 5 

▪ ϕ(11) = 10

– gcd(1, 11) = 1 (1)

– gcd(2, 11) = 1 (2)

– gcd(3, 11) = 1 (3)

– gcd(4, 11) = 1 (4)

– gcd(5, 11) = 1 (5)

– gcd(6, 11) = 1 (6)

– gcd(7, 11) = 1 (7)

– gcd(8, 11) = 1 (8)

– gcd(9, 11) = 1 (9)

– gcd(10, 11) = 1 (10)

– gcd(11, 11) = 11
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EULER’S PHI FUNCTION: PROPERTIES

▪ ϕ(p) = p - 1, where p is a prime number

– Example

▪ ϕ(11) = 10

– Why?

▪ ϕ(pq) = ϕ(p) . ϕ(q), where p and q are coprime

– Example

▪ Let p = 5 and q = 11

▪ ϕ(5 . 11) = ϕ(5) . ϕ(11) = 4 . 10 = 40
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EULER’S THEOREM

▪ aϕ(p) ≡ 1 (mod p)

where gcd(a, p) = 1

▪ Example

– Let a = 2 and p = 5, where gcd(2, 5) is 1

– ϕ(5) = 4

– 24 (mod 5) ≡ 16 (mod 5) ≡ 1

https://www.biography.com/people/leonhard-euler-21342391
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RSA

▪ Invented by Rivest, Shamir, and Adleman in 

1978

▪ A public key cryptosystem

▪ Most popular

▪ Patent expired in September 2000

▪ Large keys (1024+ bits)
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RSA: CRYPTOSYSTEM

▪ Generate two large prime numbers p and q

▪ Public parameter: n = p . q

▪ Calculate: ϕ(n) = ϕ(p) . ϕ(q) = (p - 1) (q - 1)

▪ Choose e and d such that: e . d ≡ 1 (mod ϕ(n))

▪ Public key: e

▪ Private key: d

▪ Message: m

▪ Enc(e, m): c ≡ me (mod n)

▪ Dec (d, c): cd (mod n)

≡ (me)d (mod n) ≡ med (mod ϕ(n)) (mod n) ≡ m1
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RSA: EXAMPLE

▪ Let p = 3 and q = 11 

▪ Public parameter: n = p . q = 3 . 11 = 33

▪ Calculate: ϕ(n) = ϕ(3) . ϕ(11) = 2 . 10 = 20

▪ Choose e and d such that: 3 . 7 ≡ 1 (mod 20)

▪ Public key: e = 3

▪ Private key: d = 7

▪ Message: m = 2

▪ Enc(e, m): c ≡ 23 (mod 33) ≡ 8 (mod 33)

▪ Dec(d, c) : m ≡ 87 (mod 33) ≡ (23)7 (mod 33) 

≡ 221 (mod 33) ≡ 220 . 2 (mod 33) ≡ 1 . 2 ≡ 2
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RSA SECURITY

▪ Security of RSA is based on integer factorisation

▪ Integer factorisation is same as brute-forcing

▪ What does it mean by x bits RSA key?

– Public parameter n is of x bits: each of p and q is of x/2 bits

▪ The RSA cryptosystem with a key length of 768 bits 

can be broken

– Kleinjung, Thorsten, Kazumaro Aoki, Jens Franke, Arjen Lenstra,

Emmanuel Thomé, Joppe Bos, Pierrick Gaudry et al. "Factorization of a

768-bit RSA modulus." In CRYPTO 2010, vol. 6223, pp. 333-350. Springer

Verlag, 2010. Link: http://eprint.iacr.org/2010/006.pdf

▪ A key of size more than 1024 bits is considered secure

http://eprint.iacr.org/2010/006.pdf
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DIGITAL SIGNATURES

▪ Public key algorithms can be used for digital 

signatures

▪ Signature is a hash of message encrypted with 

a signing key

– Only signing key holder can create it

– Anyone can check it using verification key
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RSA: DIGITAL SIGNATURE

▪ Generate two large prime numbers p and q

▪ Public parameter: n = p . q

▪ Calculate: ϕ(n) = ϕ(p) . ϕ(q) = (p - 1) (q - 1)

▪ Choose e and d such that: e . d ≡ 1 (mod ϕ(n))

▪ Verification key: e

▪ Signing key: d

▪ Sign(d, m): S ≡ H(m)d (mod n)

▪ Verify(e, m, S): Check if H(m) ≡ Se (mod n)

=> H(m) ≡ (H(m)d)e (mod n)

?

?
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SIGN VS. ENCRYPT

▪ A cryptosystem (such as RSA) can be used for 

signing or encrypting messages

▪ Always use separate keypairs for signing and 

encryption

– Otherwise decrypting (hash of) a message is 

equivalent to signing that message
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KEY BINDING

▪ If we do not check key binding, an adversary 

can substitute another key and read Alice’s 

emails

▪ How do we know that a public key belongs to 

Alice?

▪ Solutions

– X.509 certificates

– PGP certificates
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X.509 CERTIFICATES

▪ Use of digital certificates issued by a trusted Certificate 

Authority (CA)

– E.g., VeriSign

▪ A digital certificate contains information to assert an 

identity claim

– Version and serial number

– Issuer and interval of validity

– Subject’s name and public key

– Signature algorithm and signature

– Some other fields

▪ Certificate Revocation List (CRL)
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TO BE CONTINUED

▪ See the next lecture
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Questions?

Thanks for your attention!


