RSA AND DIGITAL CERTIFICATES Lecture 6

COMPSCI 726

Network Defence and Countermeasures

Muhammad Rizwan Asghar

July 29, 2021

GREATEST COMMON DIVISOR (GCD)

- Form: $\operatorname{gcd}(\mathbf{a}, \mathbf{b})$, where a and b are integers
- gcd is the largest positive integer that divides the integers without a remainder
- Examples
$-\operatorname{gcd}(4,8)=4$
- Divisors of $4=1,2,4$
- Divisors of $8=1,2,4,8$
$-\operatorname{gcd}(33,15)=3$
- Divisors of $33=1,3,11,33$
- Divisors of $15=1,3,5,15$

EULER'S PHI FUNCTION

- Form: $\boldsymbol{\phi}(\mathrm{n})$, where n is an integer
- An arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n
- If n is a positive integer then $\phi(\mathrm{n})$ is the number of integers in the range $1 \leq k \leq n$ for which $\operatorname{gcd}(\mathbf{k}, \mathbf{n})=\mathbf{1}$
- Examples

$$
\begin{aligned}
-\phi(2) & =1 & -\phi(3) & =2 \\
& \bullet & \operatorname{gcd}(1,2)=1(1) & \bullet \\
& \bullet & \operatorname{gcd}(2,2)=2 & \\
& & \bullet & \operatorname{gcd}(1,3)=1(1) \\
& & \bullet & \operatorname{gcd}(3,3)=3
\end{aligned}
$$

MORE EXAMPLES

- $\phi(4)=2$

$$
\begin{aligned}
& -\quad \operatorname{gcd}(1,4)=1(1) \\
& -\quad \operatorname{gcd}(2,4)=2 \\
& -\quad \operatorname{gcd}(3,4)=1(2) \\
& -\quad \operatorname{gcd}(4,4)=4
\end{aligned}
$$

- $\quad \phi(5)=4$

$$
\begin{aligned}
& -\operatorname{gcd}(1,5)=1(1) \\
& -\operatorname{gcd}(2,5)=1(2) \\
& -\operatorname{gcd}(3,5)=1(3) \\
& -\operatorname{gcd}(4,5)=1(4) \\
& -\operatorname{gcd}(5,5)=5
\end{aligned}
$$

- $\phi(11)=10$
$-\operatorname{gcd}(1,11)=1(1)$
$-\operatorname{gcd}(2,11)=1(2)$
$-\operatorname{gcd}(3,11)=1(3)$
$-\operatorname{gcd}(4,11)=1(4)$
$-\operatorname{gcd}(5,11)=1(5)$
$-\operatorname{gcd}(6,11)=1(6)$
$-\operatorname{gcd}(7,11)=1(7)$
$-\operatorname{gcd}(8,11)=1$ (8)
$-\operatorname{gcd}(9,11)=1(9)$
$-\operatorname{gcd}(10,11)=1(10)$
$-\operatorname{gcd}(11,11)=11$

EULER'S PHI FUNCTION: PROPERTIES $\boldsymbol{\phi}$

- $\boldsymbol{\phi}(\mathrm{p})=\mathrm{p}-1$, where p is a prime number
- Example
- $\phi(11)=10$
- Why?
- $\phi(p q)=\phi(p) . \phi(q)$, where p and q are coprime
- Example

> - Let $p=5$ and $q=11$
> - $\phi(5 \cdot 11)=\phi(5) \cdot \phi(11)=4 \cdot 10=40$

EULER'S THEOREM

- $a^{\phi(p)} \equiv 1(\bmod p)$
where $\operatorname{gcd}(a, p)=1$
- Example
- Let $\mathrm{a}=2$ and $\mathrm{p}=5$, where $\operatorname{gcd}(2,5)$ is 1
- $\phi(5)=4$
$-2^{4}(\bmod 5) \equiv 16(\bmod 5) \equiv 1$

RSA

- Invented by Rivest, Shamir, and Adleman in 1978
- A public key cryptosystem
- Most popular
- Patent expired in September 2000
- Large keys (1024+ bits)

RSA: CRYPTOSYSTEM

- Generate two large prime numbers p and q
- Public parameter: $\mathrm{n}=\mathrm{p} . \mathrm{q}$
- Calculate: $\phi(n)=\phi(p) \cdot \phi(q)=(p-1)(q-1)$
- Choose e and d such that: e.d $\equiv 1(\bmod \phi(n))$
- Public key: e
- Private key: d
- Message:m
- Enc(e, m): c $\equiv \mathrm{m}^{\mathrm{e}}(\bmod \mathrm{n})$
- $\quad \operatorname{Dec}(d, c): c^{d}(\bmod n)$
$\equiv\left(m^{\mathrm{e}}\right)^{\mathrm{d}}(\bmod \mathrm{n}) \equiv \operatorname{med}^{\text {ed }(\bmod \phi(n))}(\bmod n) \equiv \mathrm{m}^{1}$

RSA: EXAMPLE

- Let $\mathrm{p}=3$ and $\mathrm{q}=11$
- Public parameter: $\mathrm{n}=\mathrm{p} . \mathrm{q}=3.11=33$
- Calculate: $\phi(\mathrm{n})=\phi(3) \cdot \phi(11)=2.10=20$
- Choose e and d such that: $3.7 \equiv 1(\bmod 20)$
- Public key: $\mathrm{e}=3$
- Private key: $\mathrm{d}=7$
- Message: $m=2$
- Enc(e, m): c $\equiv 2^{3}(\bmod 33) \equiv 8(\bmod 33)$
- $\operatorname{Dec}(\mathrm{d}, \mathrm{c}): \mathrm{m} \equiv 8^{7}(\bmod 33) \equiv\left(2^{3}\right)^{7}(\bmod 33)$
$\equiv 2^{21}(\bmod 33) \equiv 2^{20} .2(\bmod 33) \equiv 1.2 \equiv 2$

RSA SECURITY

- Security of RSA is based on integer factorisation
- Integer factorisation is same as brute-forcing
- What does it mean by x bits RSA key?
- Public parameter n is of x bits: each of p and q is of $x / 2$ bits
- The RSA cryptosystem with a key length of 768 bits can be broken
- Kleinjung, Thorsten, Kazumaro Aoki, Jens Franke, Arjen Lenstra, Emmanuel Thomé, Joppe Bos, Pierrick Gaudry et al. "Factorization of a 768-bit RSA modulus." In CRYPTO 2010, vol. 6223, pp. 333-350. Springer Verlag, 2010. Link: http://eprint.iacr.org/2010/006.pdf
- A key of size more than 1024 bits is considered secure

DIGITAL SIGNATURES

- Public key algorithms can be used for digital signatures
- Signature is a hash of message encrypted with a signing key
- Only signing key holder can create it
- Anyone can check it using verification key

RSA: DIGITAL SIGNATURE

- Generate two large prime numbers p and q
- Public parameter: $\mathrm{n}=\mathrm{p} . \mathrm{q}$
- Calculate: $\phi(n)=\phi(p) \cdot \phi(q)=(p-1)(q-1)$
- Choose e and d such that: e.d $\equiv 1(\bmod \phi(n))$
- Verification key: e
- Signing key: d
- Sign(d, m): S = H(m) ${ }^{d}(\bmod n)$
- Verify(e, m, S): Check if $H(m) \stackrel{?}{=} S^{e}(\bmod n)$
$=>H(m) \stackrel{?}{=}\left(H(m)^{d}\right)^{e}(\bmod n)$

SIGN VS. ENCRYPT

- A cryptosystem (such as RSA) can be used for signing or encrypting messages
- Always use separate keypairs for signing and encryption
- Otherwise decrypting (hash of) a message is equivalent to signing that message

KEY BINDING

- If we do not check key binding, an adversary can substitute another key and read Alice's emails
- How do we know that a public key belongs to Alice?
- Solutions
- X. 509 certificates
- PGP certificates

X. 509 CERTIFICATES

- Use of digital certificates issued by a trusted Certificate Authority (CA)
- E.g., VeriSign
- A digital certificate contains information to assert an identity claim
- Version and serial number
- Issuer and interval of validity
- Subject's name and public key
- Signature algorithm and signature
- Some other fields
- Certificate Revocation List (CRL)

TO BE CONTINUED

- See the next lecture

Questions?

Thanks for your attention!

