DNS Lecture 12

COMPSCI 726 Network Defence and Countermeasures

Nalin Asanka Gamagedara Arachchilage

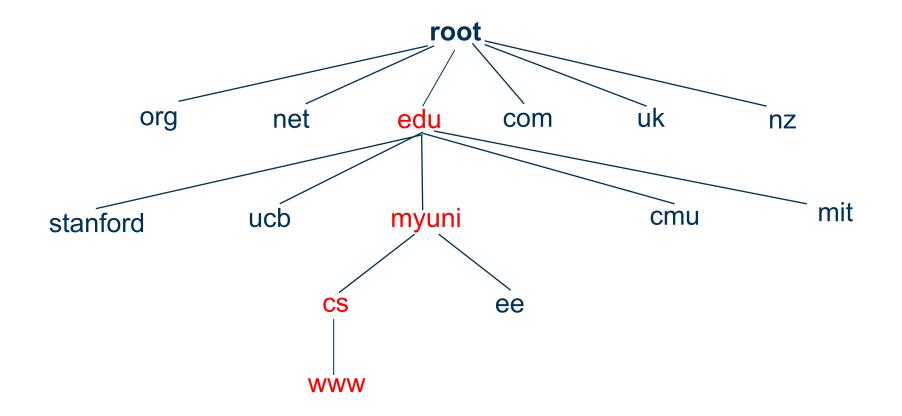
Slides from Muhammad Rizwan Asghar

August 12, 2021

Source of some slides: Princeton University, Cornell University, and Stanford University

HOSTNAME VS IP ADDRESSE

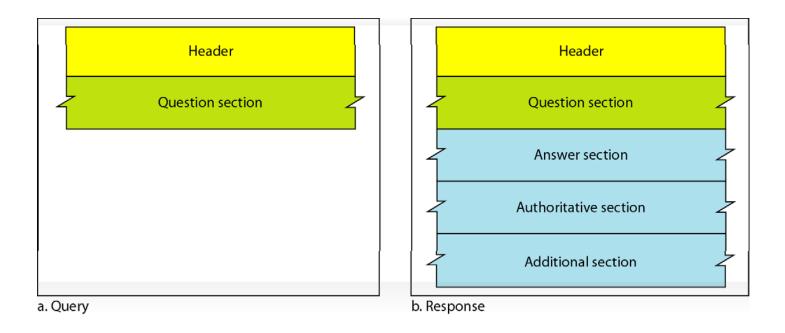
Host names


- Mnemonic name appreciated by humans
- Variable length, alphanumeric characters
- Examples: <u>www.cnn.com</u> and <u>nzherald.co.nz</u>
- IP addresses
 - Numerical address processed by routers
 - Fixed length, binary number
 - Hierarchical, related to host location
 - Examples: 64.236.16.20 and 193.30.227.161

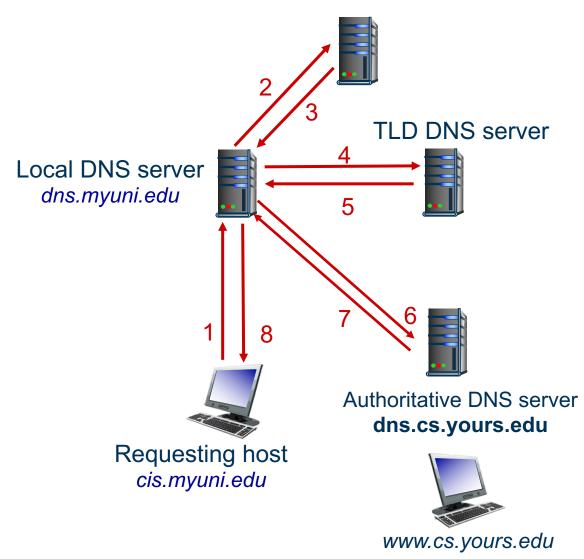
DOMAIN NAME SYSTEM (DNS)

- Properties of DNS
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root DNS servers
 - Top-Level Domain (TLD) DNS servers
 - Authoritative DNS servers
- For performing translations
 - Local DNS servers
 - Resolver software (client end)

HIERARCHICAL NAME SPACE


AUTHORITATIVE VS NON-AUTHORITATIVE ANSWER

- An authoritative answer from a name server is "guaranteed" to be accurate
- A non-authoritative answer may not be accurate
 - Such as an answer from the cache


DNS PROTOCOL

- DNS has two types of messages: Query and response
- 16-bit random value links response to a query ID

DNS RESOLUTION

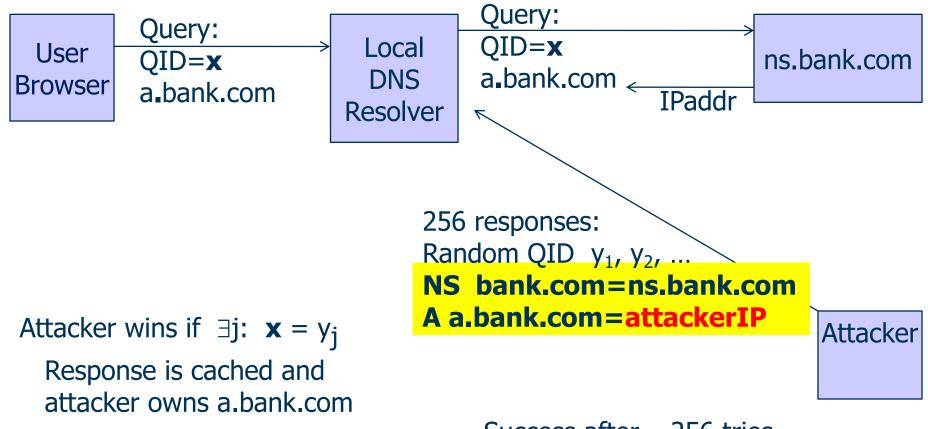
Root DNS server

DNS RESOURCE RECORD (RR)

RR format

- (Name, value, type, TTL)
- Name and value for hostname and IP address
- Type
 - A means hostname
 - NS means name server
 - **M** means canonical name
 - MX means mail server
- TTL (Time To Live)
- There may be multiple records returned for one query

DNS CACHING


- Caching can substantially reduce overhead
 - The top-level servers very rarely change
 - Popular sites are visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Response includes a TTL field
 - The server deletes the cached entry after TTL expires
- DNS negative queries are cached
 - Save time for non-existent sites, e.g., misspelling

DNS CACHE POISIONING ATTACK

- Basic idea: Give DNS servers a false record and get it cached
- Cache may be poisoned when a name server:
 - Disregards identifiers
 - Has predictable ID in query
 - Accepts unsolicited DNS records
- Some DNS server implementations do not validate the authority of a responder!

DNS CACHE POISIONING ATTACK

Success after \approx 256 tries

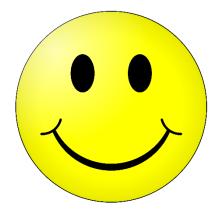
DNS CACHE POISIONING PREVENTION

Always check identifiers

- Make it hard to guess identifiers for queries (QID)
 - Use random QID
 - Increase size of QID
- Port randomisation for DNS requests
- Ask DNS query twice
- Deploy DNSSEC

SOME TOOLS

- host
- nslookup
- whois


- DNS provides a hierarchical name space
- DNS is vulnerable to cache poisoning

DNS.

Available at: https://www.ietf.org/rfc/rfc1034.txt Available at: https://www.ietf.org/rfc/rfc1034.txt

Questions?

Thanks for your attention!