WIRELESS SECURITY Lecture 21

COMPSCI 726 Network Defence and Countermeasures

Nalin Asanka Gamagedara Arachchilage

Slides from Muhammad Rizwan Asghar

September 16, 2021

WHAT IS WiFi?

- WiFi stands for Wireless Fidelity
- WiFi is a wireless technology that uses radio frequency to transmit data through the air
- It is also known as Wireless LAN (WLAN)
- It is based on IEEE 802.11
- IEEE established the 802.11 group in 1990
- Specifications ratified in 1997
- IEEE modified the standard in 1999 to include
 - 802.11b
 - 802.11a
 - 802.11g
- There are variants of 802.11 based on data rate, range and bandwidth

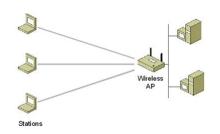
WLAN ADVANTAGES

- Freedom
 - You can work from any location that you can get a signal
- Setup cost
 - No cabling required
- Flexibility
 - Quick and easy to setup
- Scalable
 - Can be expanded with growth
- Mobile access
 - Can access the network on the move

WLAN DISADVANTAGES

Speed

Slower than cable

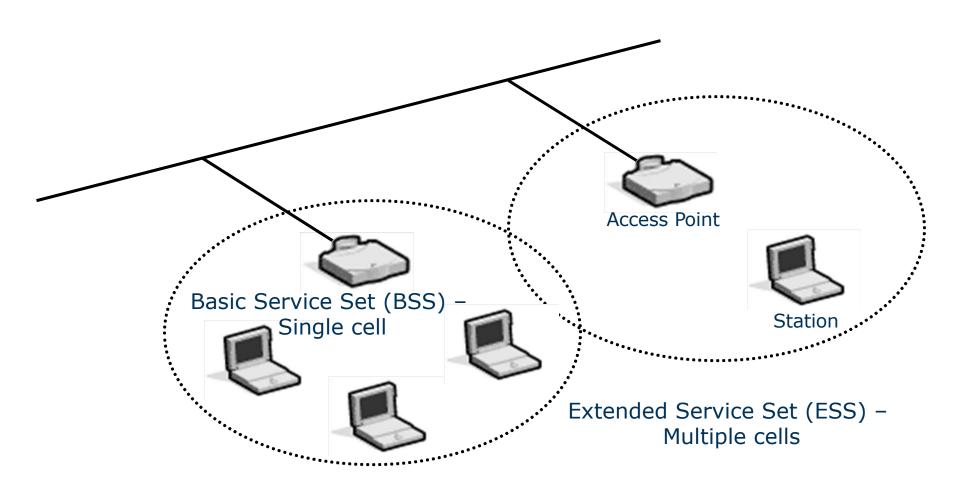

Range

- Affected by various medium
- Travels best through open space
- Reduced by walls, glass and water

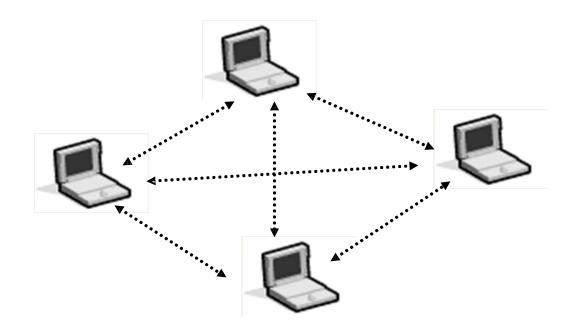
Security

- Greater exposure to risks
 - Eavesdropping
 - Unauthorised modification
 - Denial of Service (DoS)

WLAN COMPONENTS


- Wireless Station (STA)
 - A desktop, laptop PC, smartphone or other wireless device with a wireless 802.11 NIC (Network Interface Card)
- Access Point (AP)
 - A bridge between wireless and wired networks
 - Composed of
 - Radio
 - Wired network interface (usually 802.3)
 - Bridging software
 - Aggregates access for multiple wireless stations to wired network

TWO WLAN MODES



- Infrastructure mode
 - Basic Service Set (BSS)
 - One AP
 - Extended Service Set (ESS)
 - Two or more BSSes forming a single subnet
 - Most corporate LANs in this mode
- Ad-hoc mode
 - Independent BSS
 - Set of 802.11 wireless stations that communicate directly without AP
 - Useful for quick and easy wireless networks

INFRASTRUCTURE MODE

AD-HOC MODE

Independent Basic Service Set (IBSS)

CONNECTION AND SSID

- Before data can be transmitted, AP and STA must establish a connection
 - Scan for APs
 - Authentication and association

 A 32-octet Service Set Identifier (SSID) is a human readable identifier of the network

ACCESSING WLAN

- When STA enters range of one or more APs
 - STA probes for the channel
 - APs send beacons
 - AP beacon can include SSID
 - AP chosen on signal strength and observed error rates
- Periodically, all channels surveyed
 - To check for stronger or more reliable APs
 - If found, re-associates with new AP

WLAN SECURITY MECHANISMS

- SSID based
 - Open mode
 - No security
 - Closed mode
 - No crypto
- MAC Access Control List (ACL)
- Wired Equivalent Privacy (WEP)
- WiFi Protected Access (WPA) and 802.11i
 - Actual standard for security in 802.11

SSID

- STA must specify SSID to AP when requesting association
- Multiple APs with same SSID form ESS
- Two modes
 - Open mode
 - APs broadcast their SSID
 - Closed mode
 - SSID is not broadcasted in beacons
 - Association requests from clients contains SSID in clear

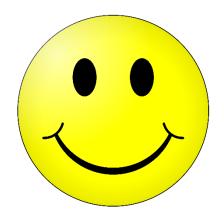
MAC ACL

- Every network device has a unique Media Access Control (MAC) address
- MAC filtering only allows certain addresses access
 - Using Access Control List (ACL)
- Mostly for home use
- Issues
 - Masquerading
 - Tedious to implement on a large scale

WEP

- WEP is a protocol to protect link-level data during wireless transmission between STA and AP
- Original security solution offered by the IEEE 802.11 standard
- Security services
 - Authentication
 - Confidentiality
 - Integrity

WEP DETAIL



- A simple authentication protocol
- A pre-shared key K between all STAs and all APs
- Manual configuration of the pre-shared key K
- Uses RC4 encryption as cryptographic primitive with pre-shared keys and 24-bit initialisation vectors
- Uses CRC-32 for integrity protection

TO BE CONTINUED

See the next lecture

Questions?

Thanks for your attention!