WIRELESS SECURITY CONT Lecture 22

COMPSCI 726 Network Defence and Countermeasures

Nalin Asanka Gamagedara Arachchilage

Slides from Muhammad Rizwan Asghar

September 20, 2021

Source of some slides: University of Twente and University of Trento

WEP AUTHENTICATION PROTOCOL

- STA proves knowledge of the preshared secret key K by encrypting the challenge
 - AP sends challenge to STA
 - STA encrypts challenge with RC4
 - Encrypted challenge is sent to AP
 - AP decrypts received message
 - AP compares decrypted challenge to the transmitted one

WEP SENDER

- Compute Integrity Check Vector (ICV)
 - Provides integrity
 - 32-bit Cyclic Redundancy Check (CRC)
 - CRC appended to message
- Data encrypted via RC4
 - Provides confidentiality
 - Data XORed with long key stream of pseudo random bits
 - Key stream is function of
 - 40 or 104-bit secret key
 - 24-bit IV (Initialisation vector)
- Ciphertext is transmitted

WEP ENCRYPTION

WEP RECEIVER

- Ciphertext is received
- Ciphertext decrypted via RC4
 - Ciphertext XORed with long key stream of pseudo random bits
 - Key stream is function of
 - 40 or 104-bit secret key
 - 24-bit IV
- Check ICV
 - Separate ICV from message
 - Compute ICV for message
 - Compare with received ICV

INITIALISATION VECTOR (IV)

- IV must be different for every message transmitted
- 802.11 standard does not specify how IV is calculated
 - It recommends to change IV for each packet
- Wireless cards use several methods
 - Some use a simple ascending counter for each message
 - Some switch between alternate ascending and descending counters
 - Some use a pseudo random IV generator

IV WEAKNESS

- WEP exposes part of PRNG input
 - IV is transmitted with message
 - IV is too small, only 24-bit
- Initial keystream can be derived
 - TCP/IP has fixed structure at start of packets
 - When two IVs collide, they generate the same keystream
- Passive attack

SAME KEYSTREAM

Two plaintext p₁ and p₂ encrypted under the same "key stream" b:

 $c_1 = p_1 \oplus b$ $c_2 = p_2 \oplus b$

 $c_1 \oplus c_2 = (p_1 \oplus b) \oplus (p_2 \oplus b) = p_1 \oplus p_2$

- If p_1 is known, it is possible to know p_2
- If multiple messages have been codified with the same keystream, it is easier to obtain the original messages!

WEP ISSUES

- Flawed design, easily broken
 - IV reuse causes problems
 - Tools to break WEP available on the Internet
 - Increasing key length does not help much
 - Linear complexity
- Offers very little security
- WEP vulnerabilities discovered, WEP broken!
 - Walker (Oct 2000), Borisov et al. (Jan 2001), Fluhrer-Mantin-Shamir (Aug 2001)

WIFI PROTECTED ACCESS (WPA)

- WPA fixes issues in WEP
- WPA uses Temporal Key Integrity Protocol (TKIP)
- TKIP was designed by the IEEE 802.11i task group
- TKIP is based on RC4 stream cipher algorithm
- An interim solution to replace WEP without requiring the replacement of legacy hardware

TKIP

- 128-bit base key
- Extended 48-bit Initialisation Vector (IV), which is never fed directly to RC4
- New per-packet key mixing function
- 48-bit Transmitter Address (TA) keys derived for both directions will be different
- A Message Integrity Check (MIC) "Michael", ensures data integrity

TKIP PHASES

- Phase 1
 - Key mix 1 (128-bit base key, 48-bit TA and 48-bit IV)
 - 128-bit result
- Phase 2
 - Key mix 2 (phase 1 result and IV)
 - The result is 128-bit per-packet key
 - Incrementing IV ensures unique key for each packet!
 - Keystream = RC4(128-bit perpacket key)

- Per-packet key, a sequence counter and broadcast key rotation discourage many attacks
- The key mixing function also eliminates the WEP key recovery attacks
- TKIP is vulnerable to similar attacks as WEP
 - It uses the same underlying mechanism

WPA2

- WPA2 replaces WPA
- It supports CCMP (CCM Protocol)
 - CCM is a mode of operation for cryptographic block ciphers
 - CCM stands for Counter with CBC-MAC
 - Designed to provide both authentication and confidentiality
- CCMP is an AES-based encryption mode with stronger security
- Issue: WPA2 may not work with some older network cards

EXTENSIBLE AUTHENTICATION PROTOCOL (EAP)

- Wireless network properties
- EAP is an authentication framework used in wireless networks
- Defined in RFC 3748, updated by RFC 5247
- Used for generating keying material
- EAP supports many authentication mechanisms, e.g.,
 - EAP-PSK
 - EAP-MD5
 - EAP-TLS
 - EAP-IKE
 - ...

AAA PROTOCOLS

- Authentication, authorisation and accounting processes are needed when user tries to access and use Internet
 - Authentication: Act of verifying identity of entity
 - Authorisation: Act of determining whether requesting entity is allowed access to a resource
 - Accounting: Act of collecting info on resource usage for the purpose of capacity planning, auditing, billing or cost allocation
- Example usage: AAA can be used in combination with IEEE 802.1x for WLAN authentication and authorisation
- AP can communicate with AAA servers including RADIUS (typically uses UDP) and DIAMETER (uses TCP or SCTP)
- Both RADIUS and DIAMETER can encapsulate EAP messages

WLAN SECURITY SUMMARY

Types	WEP	WPA	WPA2
Cipher Algorithm	RC4	RC4 (TKIP)	AES-CCMP
Encryption Key	40-bit	128-bit	128-bit
Initialisation Vector	24-bit	48-bit	48-bit
Authentication Key	None	64-bit	128-bit
Integrity Check	CRC-32	Michael	ССМ
Key Distribution	Manual	802.1X (EAP)	802.1X (EAP)
Key Unique To	Network	Packet, Session	Packet, Session
Key Hierarchy	Νο	Derived from	Derived from
		802.1X	802.1X
Ad-hoc Security	Νο	No	Yes (IBSS)

GENERAL COUNTERMEASURES

- Use WPA2
- Block your SSID from being broadcasted
- Change the default access point password
- Place the access point in the middle of the building/house

RESOURCES

 Read Chapter 6 of Network Security Essentials – Applications and Standards
Fourth Edition
William Stallings
Prentice Hall
ISBN 0-13-706792-5

 An Overview of 802.11 Wireless Network Security Standards & Mechanisms, <u>https://www.sans.org/reading-</u> <u>room/whitepapers/wireless/overview-80211-wireless-</u> <u>network-security-standards-mechanisms-1530</u>

Questions?

Thanks for your attention!