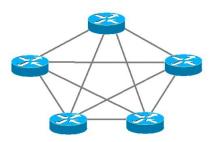
ROUTING AND BGP Lecture 23

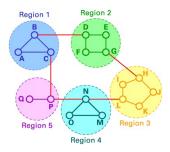
COMPSCI 726 Network Defence and Countermeasures

Nalin Asanka Gamagedara Arachchilage

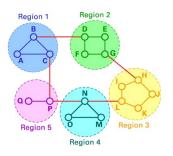

Slides from Muhammad Rizwan Asghar

September 22, 2021

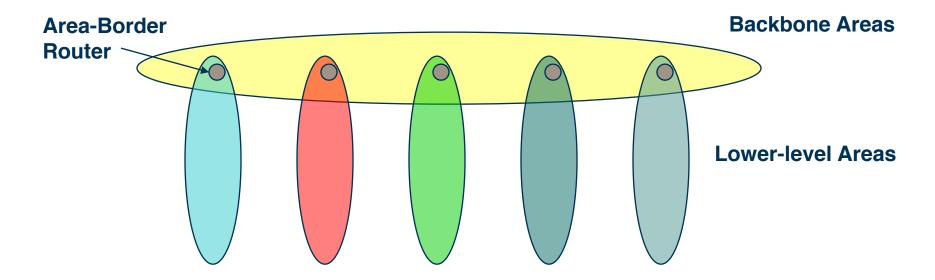
Source of some slides: CMU and University of Virginia


HOW CAN WE ROUTE PACKETS? 🕰

Source routing

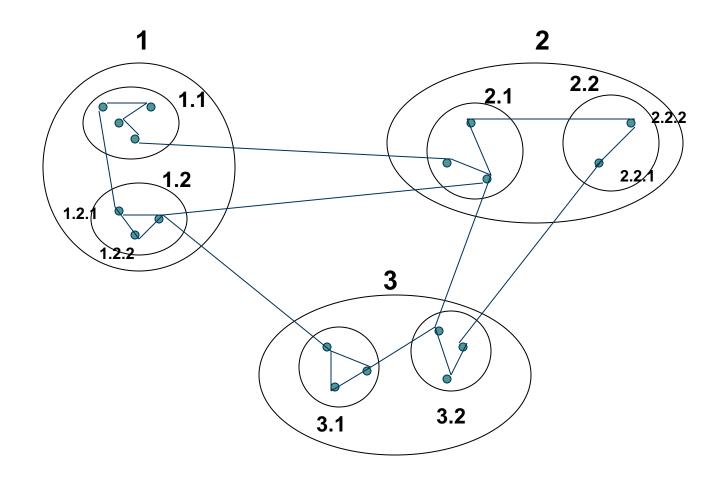

- Storage: Each node stores routes to every destination
- Update: Convergence time increases
- Communication: Total message count increases
- Issue: It does not scale well!
- Key observation
 - Need less information with increasing distance to destination
- Solution: Dynamic routing

DYNAMIC ROUTING

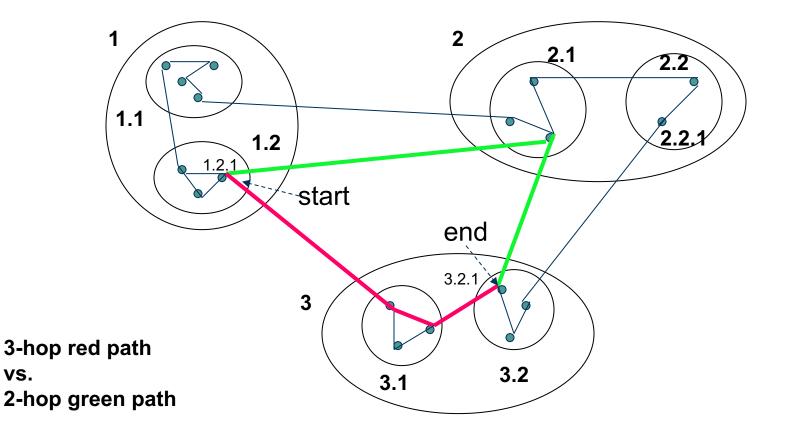

- Choose the best path from a source to the destination
- Best could be based on
 - Smallest number of hops
 - Shortest time delay
 - Least congested
 - Cheapest
 - Administratively allowed
 - Easiest to discover
 - Any combination of the above
- The solution must be quicker and guaranteed to avoid loops and deadlocks

FOR DYNAMIC ROUTING

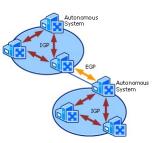
- Divide network into areas
 - Areas can have nested sub-areas
- Hierarchically address nodes in a network
 - Sequentially number top-level areas
 - Sub-areas of area are labelled relative to that area
 - Nodes are numbered relative to the smallest containing area


ROUTING HIERARCHY

Partition network into areas

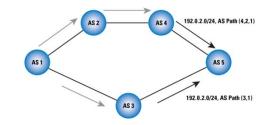

- Within area
 - Each node has route to every other node
- Outside area
 - Each node has routes for other top-level areas only
 - Inter-area packets are routed to nearest appropriate border router

AREA HIERARCHY ADDRESSING

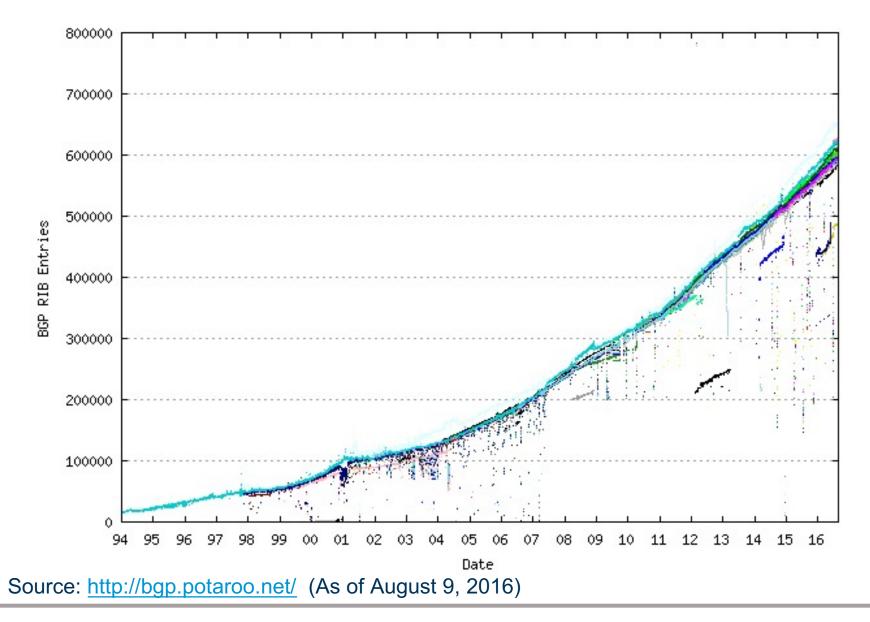


PATH SUB-OPTIMALITY

Can result in sub-optimal paths



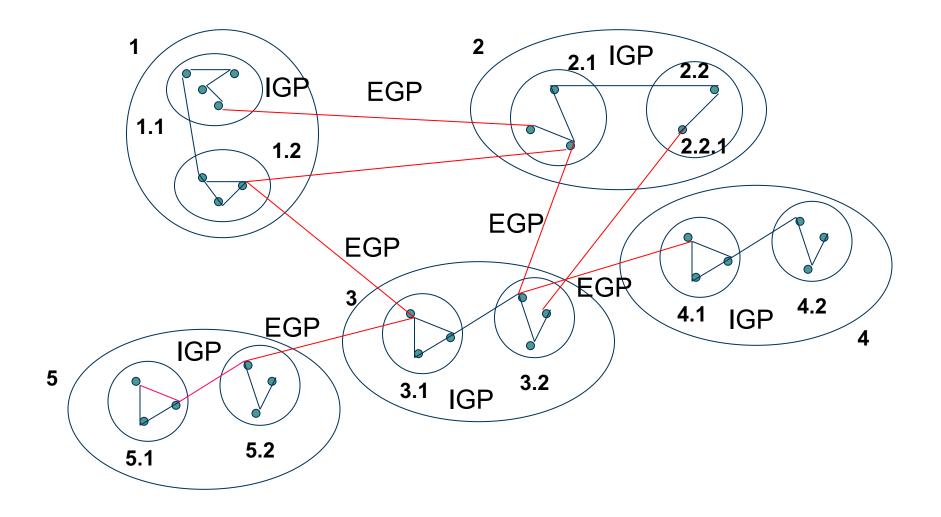
INTERNET'S AREA HIERARCHY


- Based on IP prefix
 - E.g., 192.168.1.5/24
 - E.g., 128.15.10.6/16
- What is an Autonomous System (AS)?
 - A set of routers under a single technical administration
- Interior Gateway Protocol (IGP) and common metrics are used to route packets within the AS
- Exterior Gateway Protocol (EGP) is used to route packets to other ASes
- Each AS is assigned a unique ID

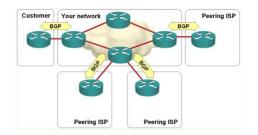
AS NUMBER (ASN)

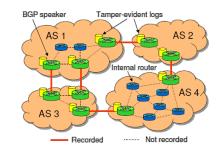
- ASNs represent units of routing
- ASNs are 16-bit values
- Max: 64K possibilities
- 64512 through 65535 are "private"
- Examples
 - Genuity: 1
 - MIT: 3
 - JANET: 786
 - UC San Diego: 7377
 - AT&T: 7018, 6341, 5074, ...
 - UUNET: 701, 702, 284, 12199, ...
 - Sprint: 1239, 1240, 6211, 6242, ...

CURRENT COUNT OF ASNs


IGP VS. EGP

- For routers to communicate within an AS
- Relies on IP address to construct paths
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)


- For routers to communicate among different ASes
- Relies on AS numbers to construct AS paths
- Border Gateway Protocol (BGP)



BGP OVERVIEW

- BGP current version is 4
- Inter-AS routing protocol for exchanging network reachability information among BGP routers
- BGP uses TCP port 179 to send routing messages
- Routing messages in BGP contain complete routes
- Network administrators can specify routing policies

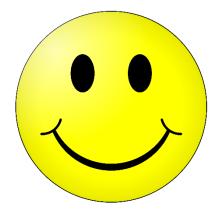
BGP OPERATIONS

- Two BGP routers exchanging information on a connection are called peers
 - Initially, BGP peers exchange the entire BGP routing table
 - A BGP router retains the current version of the entire BGP routing tables of all of its peers for the duration of the connection
 - Subsequently, only incremental **updates** are sent as the routing tables change
 - Keepalive messages are sent periodically to ensure that the connection between the BGP peers is alive
 - Notification messages are sent in response to errors or special conditions
 - Routes are stored in the Routing Information Base (RIB)

THE BGP DECISION ALGORITHM

- After receiving updates, BGP will have to decide which paths to choose in order to reach a specific destination
- BGP will choose only a single path to reach a specific destination
- The decision process is based on different attributes, such as next hop, local preference, the route origin, and so on
- BGP will always propagate the best path to its neighbours

BGP THREATS / COUNTERMEASURE



- Route manipulation
 - When a malicious device alters the routing table
- Route hijacking
 - When a rogue BGP peer maliciously announces a victim's prefixes in an effort to reroute traffic
- Denial of Service (DoS)
 - When a malicious host sends unexpected or undesirable BGP traffic to a victim
- Solution
 - Use Message Authentication Code (MAC)
 - The secret shared key can be configured manually

RESOURCES

- Protecting Border Gateway Protocol for the Enterprise, <u>http://www.cisco.com/c/en/us/about/security-</u> center/protecting-border-gateway-protocol.html
- [Cohen-SIGCOMM16] Cohen, Avichai, Yossi Gilad, Amir Herzberg, and Michael Schapira, Jumpstarting BGP Security with Path-End Validation, ACM Special Interest Group on Data Communications (SIGCOMM) 2016

Questions?

Thanks for your attention!