IPSEC Lecture 19

COMPSCI 726 Network Defence and Countermeasures

Nalin Asanka Gamagedara Arachchilage

Slides from Muhammad Rizwan Asghar

September 13, 2021 Source of some slides: University of Tennessee / Cryptography and Network Security by Behrouz Forouzan

INTERNET SECURITY PROBLEM

- Today's Internet is primarily comprised of
 - Public
 - Un-trusted
 - Unreliable IP networks
- Because of this inherent lack of security, the Internet is subject to various types of threats

INTERNET THREATS

- Unauthorised modification
 - The contents of a packet can be accidentally or deliberately modified
- Identity spoofing
 - The origin of an IP packet can be forged
- Replay attacks
 - Unauthorised data can be retransmitted
- Loss of privacy
 - The contents of a packet can be examined in transit

IPSEC: NETWORK SECURITY LAYER

- IPSec is a framework of open standards developed by the Internet Engineering Task Force (IETF)
- IPsec aims at securing communications over IP
- Creates secure, authenticated, reliable communications over IP networks
- It is designed to address fundamental shortcomings, such as being subject to spoofing and eavesdropping

WHY TLS IS NOT ENOUGH?

- Implemented in end-hosts
- Advantages
 - Existing applications get security seamlessly
- Disadvantages
 - Protocol specific

IPSEC ADVANTAGES

- All traffic can be secured regardless of applications
- Provides seamless security to application and transport layers
 - Transparent to applications, no change required in any upper layer
- Transparent to end users, no need to train users on security mechanisms

IPSEC APPLICATIONS

- Site-to-site
 - An organisation with multiple sub-offices
- Host-to-site
 - Travelling employees
 - Contractors

IPSEC SECURITY SERVICES

- Data origin authentication
 - Assurance that traffic is sent by legitimate parties
- Confidentiality (encryption)
 - Assurance that user's traffic is not examined by unauthorised parties
 - Limited traffic flow confidentiality
- Connectionless integrity
 - Assurance that every received IP packet has not been modified
 - Partial sequence integrity prevents packet replay

IPSEC SPECS

- RFC 2401
 - Security architecture
- RFC 2402
 - Authentication
- RFC 2406
 - Encryption
- RFC 2408
 - Key management

IPSEC MAJOR COMPONENTS

- IPSec modes
- IPSec base protocols
- IPSec Internet Key Exchange (IKE)
- IPSec Security Associations (SA)

IPSEC MODES

Transport mode

- Used to deliver services from host to host or from host to gateway
- Usually within the same network, but can also be end-toend across networks
- Tunnel mode
 - Used to deliver services from gateway to gateway or from host to gateway
 - Usually gateways owned by the same organisation
 - With an insecure network in the middle

TRANSPORT MODE

- Protects what is delivered from the transport layer to the network layer
- This mode does not protect the IP header
 - It only protects the information coming from the transport layer

TRANSPORT MODE IN ACTION

TUNNEL MODE

- Protects the entire IP packet
 - It takes an IP packet applies security methods to the entire packet, and then adds a new IP header
- This mode protects the original IP header

TUNNEL MODE IN ACTION

TO BE CONTINUED

See the next lecture

Questions?

Thanks for your attention!