
Misuse Cases and Abuse Cases in Eliciting Security Requirements

Chun Wei (Johnny), Sia
Department of Computer Science,

University of Auckland
csia005@ec.auckland.ac.nz

25 October 2005

Abstract: Misuse cases, the inverted version of a use case can be used to elicit

security requirements. Abuse cases also are used in eliciting security requirements.

Their notation appears to be similar. This paper presents a brief comparison between

misuse cases and abuse cases. It is observed that misuse cases are able to model a

wider range of mis-users and they also interact with use cases in interesting and

helpful ways. Misuse cases do appear to be more developed compared to abuse cases,

however both approaches have not been assessed in practical software development

projects.

1 Introduction

Security requirements elicitation is important during the early stages of the software

development life cycle because it determines whether the system is vulnerable to

future attacks when it is exposed to the real world. Instead, security requirements are

usually prepared after a product is finished and sold. Misuse and abuse cases offer the

opportunity to elicit security requirements earlier; before the product is released into

the real world.

Other published papers which refer to misuse cases and abuse cases tend to say misuse

cases are the same as abuse cases. For example [4], “Also abuse cases and misuse

cases have demonstrated how one can make explicit, and counteract, threatening

scenarios”. While this does not necessarily show that the author believes that abuse

cases are the same as misuse cases, it does however reveal that the author believes

they have the same purpose. In another paper [5], the authors write “… use cases

[have] also been investigated in connection with security and safety requirements, in

the form of misuse cases, also known as abuse cases”. This quote certainly shows us

that the authors of that paper believe misuse cases are actually the same as abuse cases.

In [6] the author writes “A security ‘misuse’ case, a variation on a use case …

ultimately used to identify security requirements or security use cases. A similar

concept has been described as an ‘abuse’ case”. This is another paper which agrees

that misuse cases are similar to abuse cases. An interesting point here is that that paper

contrasted use cases with abuse cases, and also contrasted misuse cases with security

use cases; however the author did not contrast abuse cases with misuse cases.

This paper first presents a brief introduction of use cases, abuse cases and misuse

cases (Section 2). Then it continues with a comparison between misuse cases and

abuse cases (Section 3), followed by a discussion (Section 4). Finally Section 5 brings

this paper to a close.

2 The Concepts and Notations

Based on the year of publication, abuse cases were introduced first. The first paper on

abuse cases was authored by John McDermott [3] and Chris Fox and was published in

1999. A paper introducing misuse cases was later published in 2000 by Sindre [1] and

Opdahl. The paper on misuse cases was published later; however it made no mention

of abuse cases. Both papers make it clear that abuse cases and misuse cases are not a

replacement for use cases. They both extend the standardized Unified Modeling

Language (UML) notation for use cases.

2.1 Use cases

Use cases are the basis for abuse cases and misuse cases; therefore it is wise to spend

some time with a brief introduction of the symbols. A use case diagram is a

representation of actors and of a system’s use cases which describe possible scenarios

for a single task or goal. Actors are stick figures. Use cases are ovals. Association

lines connect actors with the use cases in which they participate [3]. These symbols

are shown in Figure 1.

Figure 1. Use Case Diagram symbols

Use cases tend to focus more on what a system does rather then how the system does

it. As such, they are not good at showing the opposite; that is, what a system should

not do.

2.2 Abuse Cases

The term ‘abuse case’ is defined in [3] as “a specification of a type of complete

interaction between a system and one or more actors, where the results of the

interaction are harmful to the system, one of the actors, or one of the stakeholders in

the system”. Abuse cases were adapted from a proven object-oriented modeling

technique, use cases, to capture and analyze security requirements in a simple way.

Abuse cases extend the UML notation to model abuse in systems.

John McDermott illustrates a use case diagram for an Internet-Based Information

Security Laboratory, and also the abuse case diagram for it. The use case diagram and

the abuse case diagram are given in Figure 2 and they both are meant to be drawn

separate from one another. There is no new terminology or special symbols introduced

for abuse case diagrams. They are drawn with the same symbols as a use case diagram.

To distinguish between the two, the use case diagram and abuse case diagrams are

kept separate. Hence abuse cases do not appear in the use case diagrams and vice

versa.

Figure 2. A use case diagram (shown on the left) and an abuse case

diagram (shown on the right) for an Internet-Based Information Security

Laboratory

2.3 Misuse Cases

Sindre [1] defined misuse cases as a “special kind of use case, describing behavior that

the system/entity owner does not want to occur”; which adds on to the definition of a

use case stated in the documentation of UML v.1.3 [2]. Sindre also defined some

additional terminology. It was defined that a mis-actor is a special kind of actor who

initiates misuse cases.

Sindre took the view that it may be interesting to look at the use and misuse together,

hence they illustrate use cases and misuse cases in the same diagram. To avoid

confusion between the two, misuse cases and any mis-actors are shown in an

“inverted” format. This can be seen in Figure 3 where misuse cases use the same

symbols as use cases except that the colors are inverted (i.e. white spaces are filled

black).

In a more recent paper [7], Sindre re-defines some terminology from his previous

paper and follows some suggestions made by Ian Alexander [8]. A misuser (which

replaces mis-actor) is “an actor that initiates misuse cases, either intentionally or

inadvertently”. The association between a misuse case and a use case can either be a

“threatens” or a “mitigates” relationship [8]. A use case can mitigate a misuse case.

This means that the use case reduces the chance of a misuse case succeeding. An

example is “screen input” which reduces the chance of an outside crook spreading

malicious code, as shown in Figure 3. A misuse case can threaten a use case. The use

case is exploited or hindered by a misuse case. For example, an outside crook

attempting to flood the system could prevent a customer from accessing customer

registration.

Figure 3. Example use and misuse cases for an electronic-store. Use cases

and normal actors are displayed on the left, while misuse cases and

misuses are displayed on the right hand side of the diagram.

The goal of the misuse case is to prevent a threat from occurring or to mitigate the

impact of a threat if it does occur.

3 Comparison between Abuse cases and Misuse cases

This section contains a comparison between abuse cases and misuse cases. As abuse

cases and misuse cases are always being developed on, it is complicated to compare

every new improvement that has been added onto abuse cases or misuse cases. Hence

the comparison is restricted down between the initial papers which introduced abuse

cases [3] and misuse cases [1]. Also with the lack of systems built using either abuse

cases or misuse cases, there are essentially no real world results available for

comparison. In this section the focus are on some aspects which I found interesting -

the definition, notation, process of creating an abuse/misuse diagram and the

simplicity of abuse cases and misuse cases.

3.1 The definition

Abuse cases as seen in the previous section are defined as “… where the results of the

interaction are harmful to the system …” whereas misuse cases are defined slightly

differently as “behavior that the system/entity owner does not want to occur”.

Consider the following scenario. An interaction results in a session key being revealed

to an actor who should not see the session key.

According to the definition of an abuse case, this interaction is not an abuse case

simply because no harm has been created. No actor has used the compromised key to

reveal contents of a message or make unauthorized changes to stored data. Only when

the actor posts the session key on a public website, then an abuse case takes place [3].

The definition of a misuse case however, refers to behavior. Even though no harm

resulted, the fact that a session key was revealed to an actor who was not supposed to

see it would result in a misuse case as it is an unwanted action.

3.2 Notation and level of detail

Both approaches refer to use cases; however abuse case diagrams are drawn separately

from use cases. Misuse cases appear alongside use cases and there are associations

between the misuse cases and the use cases. As abuse cases do not appear together

with use cases, the author did not use different notation from use cases. Accordingly

readers may get confused as to what they are looking at. If a reader did not read the

words in Figure 2, it would be difficult to determine which diagram was which.

Misuse cases employ a different color scheme to represent misuse cases and misusers

while keeping the same symbols that a use case contains.

Abuse cases include a detailed description of their actors’ resources, skills and

objectives. The resources available to an actor include other persons, organizations,

tools and systems that assist the actor and also the amount of time an actor has to

devote to the abuse case. Skills are described in terms of the technical skills the actor

has. Objectives are long-term goals that the actor potentially seeks over more than one

abuse case. While Sindre did not mention much of misuse case descriptions in his

original article [1], his more recent publication [7] discusses a lightweight misuse case

description and an extensive misuse case description.

3.3 Illustrating misuse case diagrams and abuse case diagrams

Both [1] and [3] provide a list of steps which aid in constructing a misuse case

diagram and an abuse case diagram respectively.

Both approaches start off by constructing a use case diagram for the scenario. In a

misuse case diagram they introduce misuse cases and mis-actors while in an abuse

case diagram the abuse cases and the actors for them are identified. It is shown that the

first couple of steps in creating a misuse case diagram or an abuse case diagram are

similar. However next in abuse cases, we have a step called “check granularity”. This

step can be described as checking whether the number of abuse cases in our diagram is

appropriate. I.e. are there too few abuse cases or is there too many. This step is

interesting as it serves to control the amount of complexity displayed in the diagram.

However without having experience and not knowing which abuse cases to discard

and which to include, this may be a hard step to complete. Misuse cases on the other

hand do not discuss the number of misuse cases that should appear in a misuse case

diagram. It is imaginable that countless numbers of misuse cases could appear as

creative people can think up many ways in which a system should not behave.

Table 1. Summary of steps used in illustrating a misuse case and an abuse

case diagram

Misuse Cases Abuse Cases

Construct a use case diagram Construct a use case diagram

Introduce major mis-actors and misuse cases Identify the actors for the abuse case
Identify the abuse cases
Define the abuse cases

Check granularity

Investigate potential relations between misuse
cases and use cases

Introduce new use cases with the purpose to
detect or prevent misuse cases

Continue with a more detailed requirements Check completeness and minimality
documentation

The steps “investigate potential relations” and “introduce new use cases” are not

applicable for use in abuse case diagrams as abuse case diagrams do not interplay the

use cases and abuse cases together. Finally, the last step in a misuse case diagram

specifies that we should continue with a more detailed requirements documentation.

There are many considerations which cannot be described in a misuse case diagram

like the motivation of a mis-actor, likelihood of various threats, cost of potential

damage done. Meanwhile abuse cases check for completeness and minimality which

reviews each abuse case’s description and checks whether each abuse case leads to

harm and also checks whether a critical abuse case has been omitted.

3.4 Simplicity

The purpose of having abuse cases and misuses cases is to make eliciting security

requirements easier to accomplish and understand. Traditional mathematical security

models are described as being hard to understand [3]. Hence we shall look at the

simplicity of abuse cases and misuse cases.

While abuse case diagrams (Figure 2) are easy to understand and create, misuse cases

do make things a bit more complex by adding associations between misuse cases and

use cases. There is a tradeoff between simplicity and the level of detail captured

within the diagrams. While misuse cases are more complex than abuse cases, it adds

interesting interactions between use cases and misuse cases which could lead it to be

more useful in eliciting security requirements shown by new use cases that can

mitigate threats.

Also as previously stated, while drawing up abuse case diagrams, we check the

granularity of the diagram. It is possible here to reduce the number of abuse cases and

remove similar abuse cases. This would lower the complexity of our finished abuse

case diagram making it more simple.

4 Discussion

There are some similarities with abuse cases and misuse cases in that they share the

same UML notation. However there are also differences between abuse cases and

misuse cases. It was interesting to see that abuse cases do not model and omit cases

where no harm has been done. Recall the scenario, where a session key was revealed

to an actor who does nothing with it. That scenario is not modeled as an abuse case

because there is no harm. But if that actor posts the session key on a website, then it

becomes an abuse case [3]. But what if nobody visits the website, or suppose people

do visit the website but they do nothing with the session key resulting in no harm. It is

not clear whether this would still be an abuse case. Similarly in cases where an actor

tries to cause harm but fails in doing so; this is also omitted from the abuse case

diagram as no harm has resulted [3]. Perhaps this is done to reduce the number of

abuse cases in the diagram, but it would be imprudent to not model a case just because

it causes no harm as there is still someone trying to harm the system.

John McDermott [3] did not mention any differences between the normal use case

actors and his abuse case actors. In misuse case diagrams, misusers are not limited to

hostile actors, but even ‘bad luck’ and the ‘devil’ can be modeled [1]. This allows the

diagram to model cases where security threats arise from unexpected equipment

failure and sudden operator illness.

Misuse cases are illustrated together with the use cases and the associations between

them are shown as “mitigates” or “threatens”. Putting the misuse cases and use cases

in the same diagram can produce interesting outcomes. Ian Alexander [8, 9] proposes

a way of turning security requirements elicitation into a game like chess where “a

team’s best strategy consists of thinking ahead to the other team’s best move and

acting to block it”. Abuse cases, because they are illustrated separately from use cases,

have no association between them and hence are unable to explore what relationships

occur between the two.

Both misuse cases and abuse cases allow the possibility of unlimited misuse cases and

abuse cases; but they both do not discuss in great detail when and how one ought to

stop adding misuse/abuse cases.

5 Conclusion

Abuse cases and misuse cases were mainly introduced because traditional

mathematical security models were hard to understand. While abuse cases and misuse

cases do not claim to be a substitute for mathematical security models, they do allow

those who are unfamiliar with mathematical security models to more easily understand

and elicit security requirements.

In a number of published papers, abuse cases and misuse cases were thought to be the

same as they both employed the existing UML notation for use cases and had the same

purpose to elicit security requirements. This paper exposes some differences between

the two. Compared to actors in an abuse case, misusers in a misuse case are able to

model a wider range of objects which are not limited only to human actors. Abuse

case diagrams are drawn separate from use case diagrams whereas misuse cases

include misuse cases and use cases in the same diagram. Both do not set out a method

for deciding when to stop adding new abuse/misuse cases or determining which

abuse/misuse case we would want to keep. Consequently increasing the number of

abuse/misuse cases severely increases the complexity of the diagram. However as

neither abuse cases nor misuse cases have been evaluated in practical software

development projects, it is unwise to say which approach is better without comparing

the outcomes of real projects.

However in recent years, it does appear that more papers on misuse cases have been

published compared to those relating to abuse cases. This may lead to more widening

of the gap between abuse cases and misuse cases.

References

[1] Sindre G, Opdahl AL (2000) Eliciting security requirements by misuse cases.

In: Proceedings of TOOLS Pacific 2000, Sydney, Australia

[2] Object Management Group (1999) OMG Unified Modeling Language

Specification, version 1.3.

[3] McDermott J, Fox C (1999) Using abuse case models for security

requirements analysis. In: Proceedings of the 15th annual computer security
applications conference (ACSAC’99), Phoenix, Arizona

[4] Crook R et al (2002) Security requirements engineering: when anti-

requirements hit the fan. In: Proceedings of the 10th anniversary IEEE
international requirements engineering conference (RE‘02), Essen, Germany

[5] Sindre G, Firesmith D, Opdahl AL (2003) A reuse-based approach to

determining security requirements. In: Proceedings of the 9th international
workshop on requirements engineering: foundation for software quality
(REFSQ’03), Klagenfurt, Austria

[6] Mead, Nancy R (2003) Requirements Engineering for Survivable Systems

(CMU/SEI-2003-TN-013). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

[7] Sindre G, Opdahl AL (2005) Eliciting security requirements with misuse cases,

Requirements Engineering, Volume 10, Issue 1, Jan 2005, Pages 34 - 44

[8] Alexander IF (2002) Initial industrial experience of misuse cases in trade-off

analysis. In: Proceedings of the 10th anniversary IEEE international
requirements engineering conference (RE’02), Essen, Germany

[9] Alexander IF (2003) Misuse cases, use cases with hostile intent. IEEE

Software 20(1):58–66

