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Abstract

Intrusion detection systems tend to be assessed primarily on their ability to pro-
duce a low false positive classification rate, whilst keeping the detection rate at a
reasonable level. However, these two criteria alone cannot sufficiently evaluate the
performance of such a system in a real world operational context, where a tech-
nique is only feasible if it can produce an expected effectiveness, that outweighs
its cost in a specific deployment setting. This paper aims to build upon existing
guidelines that allow for such an assessment. In addition we introduce a metric that
quantitatively defines the operational risk of a machine learning based classifier in
a specific deployed settings. The application of these guidelines are then demon-
strated by reviewing an existing publication that introduces two frameworks based
on two distinct types of artificial neural networks. Based on the lack of scope and
specific environmental context contained within the reviewed paper, we conclude
that the results cannot be reliably interpreted to develop a expected effectiveness in
any specific operational environment.

1 Introduction

Intrusion detection systems define a passive strategy for monitoring networks or systems
to identify malicious activity based on a constructed profile of malicious or benign traffic.
The increasing popularity of terms such as big data, illustrate that the amount of traffic
data generated will continue to grow at a level that is unmanageable by security analysts
via a manual approach. This enshrines machine learning based classification techniques
as a pragmatic solution.

Our review has found that machine learning classification techniques are frequently
published, often boasting a high detection rate and a low false positive rate. It is mis-
leading to think that this detection rate is the primary indicator of an IDS’s performance.
In fact, due to the incredibly low percentage of true intrusion attempts amongst a swarm
of traffic data, the limiting factor is more often the rate of false positives, due to the
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base rate fallacy [1, 2]. Therefore, it is no surprise that a significant amount of existing
literature, is focussed on reducing false positive classification rates.

This paper is primarily focussed on developing a set of guidelines and metrics that will
allow the reader to evaluate any machine learning based intrusion detection technique’s
applicability in a specific real world operational setting. It is our hope that these guidelines
will also outline the foundation of a successful machine learning based classifier in terms
of providing real world value, filling a necessary void in a community that is primarily
concerned with publishing techniques that minimise false positives. It is our belief that
this real world value is determined not only just by a classification technique but also the
operational environment in which it may find itself deployed to.

Keeping this in mind, we endeavour to provide two main contributions. The first
contribution is to elaborate and further develop the machine learning application guide-
lines introduced by Sommer & Paxson [3] as a set of evaluation criteria to meet our
goal. Furthermore, this will include a novel application of quantitative risk management
to introduce a metric to theoretically define and practically compare the individual or
cumulative risk of both false positive and false negative classifications in different opera-
tional environments. The second contribution involves the application of our criteria to
review Zhang et al. [4]. These authors introduce two neural network frameworks based
on the two distinct classes ANN classes.

The rest of this paper will be structured as follows; section 2 provides an introduction
to the base rate fallacy in the context of machine learning. In section 3 we will outline
the aforementioned assessment guidelines. Section 4, will first introduce the concepts
surrounding artificial neural networks, before giving a brief overview of the techniques
introduced by Zhang et al. Section 5 provides a discussion surrounding the application of
each of the guidelines applied to the review of Zhang et al. Finally, concluding comments
of the two contributions will be made in section 6.

2 Base Rate Fallacy

The base rate fallacy, stemming from the Bayes theorem illustrates that a given probability
can differ greatly when taking the probability of related outcomes into account. The simple
equation (1) can be used to calculate a conditional probability using the probability of
two random variables.

P (A|B) =
P (B|A) · P (A)

P (B)
(1)

From equation (1), we can see that in order to calculate the probability of A given that
event B has occurred, we must know the probability of A & B occurring independently,
as well as the probability of B occurring given A. This formula can be derived from the
calculation of the probability of both A and B occurring, illustrated in equation (2). The
Bayes equation for either P (A|B) or P (B|A) can be constructed from this relationship as
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shown in equation (3).

P (B ∩ A) = P (A ∩B)

P (A ∩B) = P (A|B) · P (B)

P (B ∩ A) = P (B|A) · P (A)

(2)

P (A|B) · P (B) = P (B|A) · P (A) (3)

Axelsson [1] illustrates that regardless of how high the true positive classification rate
in an intrusion detection system P (A|I) is, the primary bottleneck of such a system is
the large amount of false positives classification P (A|¬I) of benign network traffic. Due
to the incredibly low probability of intrusion attempts P (I) amongst a swarm of benign
traffic data, the probability of any alarmed traffic log being truly malicious P (I|A) is low.

P (I|A) = P (A|I) · P (I)

P (A|I) · P (I) + P (A|¬I) · P (¬I)
P (¬I) = 1− P (I)

(4)

Equation (4) shows that the probability of a particular piece of network traffic being
intrusive given that it has set off an alarm, is mostly influenced by the very high probability
of a piece of traffic setting off an alarm and being non-intrusive P (A ∩ ¬I). From the
perspective of the designer of an IDS, P (¬I) cannot be influenced by the machine learning
technique but P (A|¬I) can. Thus a focus on reducing P (A|¬I) has a greater impact on
maximising P (I|A) due to P (¬I) being very large, when P (I) is very small.

However, achieving a reasonable P(I|A) by minimising P (A|¬I) will often require this
value to be unrealistically low, depending on exactly how large P (¬I) is. Axelsson argues
that in the intrusion detection domain P (¬I) can be as high as 0.99998, requiring an
unachievable false positive rate. Such a high value is indicative of the amount of benign
network traffic relative to real intrusion attempts.

3 IDS Performance Metrics

Sommer & Paxson define criteria to evaluate the effectiveness of machine learning algo-
rithms in the domain of anomaly intrusion detection. The paper elaborates these criteria
as a set of guidelines for the application machine learning to the intrusion detection do-
main.

3.1 Threat Model

In order to measure the performance of any IDS, it is important to establish the application
environment and goals. The threat model, contains information in the form of a prioritised
set of threats, discovered from a potential attacker’s point of view. The threat modelling
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process can be seen as the step preceding the development of security requirements [5],
from which a prospective intrusion detection technique could be based.

Points to cover during threat modelling can range from the environment of the intended
application to estimating the attacker’s behaviour. The latter can be very important
as many supervised machine learning algorithms classify data based on some form of
statistical model constructed from the training data. Therefore a potential IDS may be
compromised if the attacker is aware of the nature of the IDS and varies their attack
from previous attacks. Furthermore, if the IDS is continually refining its model based
on additional network traffic encountered, the attacker may inadvertently or advertently
bias the classification model through further interaction with the system. Considering the
environment i.e the operational context in which the system will be deployed, will give
an indicator as to which general approach may detect future attacks best. For example
an enterprise in the banking sector will likely have a different network environment with
different security requirements than a social media website.

Although organisations in different environments may have the same category of gen-
eral attack, the prioritisation of these threats, is the primary differentiator between envi-
ronments. Prioritisation allows economic factors to weigh into the later security require-
ments, to ensure that an organisation is implementing a portfolio of security mechanisms
that maximises security benefit at the lowest possible cost. Lampson [6] defines this as real
world security, where a firm may increase its security to the point that the costs incurred
by a potential attacker outweigh any benefit obtained from the attack. Lampson indicates
that maximising security, is rarely done in practice, simply because it is too expensive.
Therefore, in a more quantitative sense, a firm should optimise its security strategy to
a point where the difference between the cost and benefit is maximised. Such analysis
requires knowledge specific to a particular environment such as, the behavioural profile
of potential attacker and the cost of both false alarms (false positive) and undetected
intrusions (false negative).

Threat modelling operates at a higher strategic level and is applicable to a the broader
category of information security. Threat modelling should occur before evaluating any
kind of specific approach such as intrusion detection. There is just as much benefit
determining that a particular approach is not applicable to a specific environment, in
terms of both return on investment and efficacy (elaborated in section 3.4). In other
words, an intrusion detection technique may not be effective and/or may provide a benefit
that is lower than its cost in a particular environment.

Establishing the threat model, helps place a prospective technique into context of a
specific operational environment. A large proportion of existing literature measure the
effectiveness of machine learning based intrusion detection techniques by analysing their
ability to classify with a degree of accuracy on a general public network traffic training
dataset [3]. Such an approach fails to take into account factors such as the operational
environment, profile of an attacker and determining whether the prospective technique
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provides any real world security i.e maximising benefit while minimising cost. Adding
this additional performance criteria should provide this necessary context from which
to evaluating the operational value of machine learning based intrusion detection in the
context of a particular environment.

3.2 Cost of Errors

As outlined in section 2 discussing the base rate fallacy, the high rate of benign network
traffic relative to the amount of malicious network traffic multiplied by the rate of false
positives, shows that any IDS system based on machine learning will likely produce a
large number of false positives, which presents itself as a limiting characteristic in machine
learning [3, 1]. Therefore the decision to apply machine learning to any domain, rests on
how expensive a false positive is to the stakeholder intending to apply such a technique.
This concept introduced by the Sommer & Paxson can be further expanded upon by
defining it as a quantitative measure of risk.

Ri = P (F ) · Fcost (5)

Equation (5) shows the classical risk formula i.e a weighted probability applied to
such a scenario, where the risk of a false positive can be expressed as the product of the
probability P (F ) of a false positive (or false negative) occurring and the cost Fcost of this
false positive. This definition, clarifies Sommer & Paxson’s statement by inferring that
the decision to apply a machine learning based technique to intrusion detection rests on
the risk Ri of false positives.

The response portion of Wu & Zhang [2] provide an excellent example for such a risk
analysis. In this paper the authors clearly outline that the high rate of false positives of a
model based on supervised machine learning, that aims to infer criminality based on still
faced images of humans makes it a poor choice to use in a practical real world setting.
The authors and critics imply that the cost Fcost of false positives produced by a system
that legally diagnoses criminality based on facial characteristics would be astronomically
high. Therefore, no matter how far the false positive P (F ) rate is numerically reduced,
the risk Ri remains high.

Although the calculated Ri value on its own does not provide much information of
how relevant a specific technique is in its setting, in the same way that financial metrics
such as the price to equity ratio when calculated on a single listed company equity do
not necessarily indicate whether it is a well priced investment, Ri provides a good tool to
compare different approaches in specific environments to one another, eventually allowing
a rule of thumb value to be determined.

The false positive and false negative rates appear to have an inverse relationship [3] in
sense that optimising any specific technique to reduce false positives will likely increase
false negatives and vice versa. This highlights a potential strategy, namely calculating
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the Ri of both false positives and false negatives, giving an insight as to how tightly the
classification model should be fit to the training data, to minimise the sum RT of both
calculated Ri’s, as shown in equation (6). A loose fit causes a decreased detection rate
would reduce the rate of false positives, but increase the rate of false negatives. On the
other hand a tighter fit would have the opposite effect. Fitting a model too tightly to the
training data is also known as "overfitting".

RT = P (FP ) · FPcost + P (FN) · FNcost (6)

In the case that the above optimisation does not reduce the total risk to an acceptable
level, an additional post-processing step [3] can be added upstream of the the ML classifier
to filter the false positives that are forwarded to the end user based on some additional
criteria.

3.3 Scope

We have already discussed to some extent the issue regarding anomaly based intrusion
detection’s low tolerance towards false positives. Section 3.2, illustrates that undesired
classification rates such as false positives and false negatives can be weighted with a cost
to conform to the definition of risk. This risk assessment can be applied to determine how
costly false positives are in their specific operational environment.

It is also worthwhile to consider whether the false positive rates themselves can be
reduced, when optimising risk. Sommer & Paxson introduce the idea of adjusting the
scope of intrusion detection to minimise these rates. Unsupervised machine learning tech-
niques rely on building a statistical model based on historical data, where the data points
are highly similar/dissimilar to that being detected. By developing a specific and narrow
scope for any intrusion detection model, one has a better chance of finding a specific
training data set and machine learning technique that gives the best classification rate,
with the lowest rate of false positives. In contrast, a very wide scope, will require a highly
variable and dissimilar dataset. Such a dataset will likely result in a higher misclassifi-
cation rate because it is difficult to establish a notion of normality or abnormality, from
which to classify incoming data [3].

A an optimal model based on a less variable dataset can be achieved by narrowing down
the detection to a specific type of intrusion attempt. For example, port scanning traffic
which aims to determine to scan various IP addresses in a specific subnet and fingerprint
network services which are open for each IP address. When the targeted machines are
placed behind a firewall the port scanning tool attempts to send obscure message, which
are outside of the usual flow of the TCP protocol in order to elicit a response. It is not
hard to see why an anomaly detection strategy is appropriate in such a scenario.

A common pitfall when scoping discussed by Sommer & Paxson, is to take an inverse
problem solving approach where a technique is deployed by deciding on a machine learning
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approach first and then searching for a problem to which it could apply. Such an approach,
can lead to a selection bias when attempting to assemble a training dataset. It may also
lead an organisation away from finding an approach that maximises value based on a cost
benefit analysis and towards a problem search in order to justify the use of the chosen
technique.

3.4 Performance Evaluation

Once a technique has been decided upon, it becomes crucial that a relevant dataset is
selected and that the technique’s performance is correctly evaluated to gauge its perfor-
mance in an operational real world setting. Therefore, a crucial part of introducing a new
ML based IDS is the development of a clear set of evaluation criteria.

Similarly, a technique’s behaviour in its intended environment is also dependent on
the set of training and testing data used to calibrate its classification model. Sommer &
Paxson stress the importance of finding a relevant dataset for this purpose. The results of
many existing applications depend entirely on publicly available dataset, of which the most
common supersets are DARPA [7] and KDD [8]. These datasets however, are outdated
and often do not provide an accurate picture of what a real world traffic dataset may look
like [3]. Existing alternatives as described by the authors, circulate around generating
synthetic data, which is a common approach used by researchers when no ground truth
data is readily available.

Generally, evaluating the performance of any software product should be done from
the end users perspective. This is a well known fact in software development, where
user interaction (UI) and user experience (UX) are often evaluated independently from
a software functionality. In the case of applying ML to intrusion detection this would
mean that an evaluation can still be negative, despite the technique possessing a high
classification rate and low false positive rate simply because it does not provide any
significant value to the end user of the system. In this context an end user can be any
professional who is attempting to identify and investigate intrusion attempts, potentially
in real time. Such an analyst would rely on the intrusion detection system to deliver a
reliable subset of all existing traffic, containing intrusion attempts. Classification rates
do play a significant role in providing value to this analyst. A high rate of false positives
would present the main issue that the analyst is trying to solve with the application of ML
based classifier, which is to find a relevant subset of data out of an unmanageably large
collection of traffic. Similarly, a classifier that contains a large amount of false negatives
may make the analysts situation worse as valid intrusion attempts are not being delivered
to the analyst by the ML classifier in which the analyst places their trust. With this
in mind Sommer & Paxson, advise researchers to take their experimental studies further
than training a model and producing the various classification and false positive rates and
to manually investigate both false positives and false negatives to determine why they are
classified such. This has two benefits, the first being that it forces the authors to develop
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a deep understanding of the constructed model, allowing one to evaluate whether the
classification criteria make any intuitive sense to a human. The second benefit is that it
forces the researcher to use the system from the end users perspective, whose objective is
to achieve more than just classifying traffic data, but to investigate, confirm and respond
to intrusion attempts.

4 Neural Network Based IDS

The following sections aim to review a detection intrusion detection classifier based on a
neural network architecture introduced by Zhang et al. [4]. The paper will be reviewed
based on the evaluation criteria described in section 3.

4.1 Artificial Neural Networks Overview

In the context of this paper, an Artificial Neural Network (ANN) is a highly malleable
supervised machine learning algorithm that consists of a set of nodes that are connected
by weighted edges to form a graph with a predetermined number of input nodes and
output nodes.

An individual node can be simply defined by equation (7). Each node has n weighted
inputs and the weighted sum of these inputs form the nodes output value.

o =
n∑

i=0

xiwi (7)

Rules set around the output function determine whether the node activates, given set
of inputs and weights. The set of these nodes can be connected and arranged to each
other in a specific manner, which determines the ANN’s type. Any type of ANN consists
of a set of input nodes, output nodes and at least one layer of hidden nodes. The input
and output nodes determine how many inputs are passed to the ANN and how many
outputs the forward propagation produces. The hidden layer consists of connected nodes,
whose inputs are determined from the output of a connected node. The weights are often
initially randomised and then adjusted during a training phase which attempts to map
the input values to the given output values contain within the training dataset with a
minimised error. This is achieved by adjusting each edge weight in some of the nodes.
The technique used to perform this training phase depends on the type of ANN used.

4.2 The Reviewed Technique

Zhang et al. test two types of ANN: Back Propagation Learning (BPL) and Radial Basis
Function (RBF). These techniques differ based on their criteria to determine whether a
node is activated (activation function), and the method used to perform the training step.
In a BPL based ANN, the training is achieved via back propagation after the outputs are
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calculated given a set of random starting weights, where the nodes of each hidden layer are
progressively optimised using a non-linear optimisation technique such as gradient descent
[4]. BPL’s activation is calculated by passing the output value from equation 7 through
a non-linear function such as a sigmoid curve. The RBF approach differs from BPL in
both activation and training. In this case activation is performed with a weighted radial
basis function in each node. The RBF training stage has two phases where unsupervised
learning is used to optimise parameters of the radial basis function and supervised learning
is used to adjust the weights of the output nodes only [4].

The authors introduce a system that combines anomaly detection with misuse detec-
tion, arranged to form two separate frameworks. In the context of intrusion detection,
misuse detection, can be viewed as the inverse of anomaly detection. While anomaly
detection establishes a model based on normal traffic and from this classifies outliers of
this profile as malicious, misuse detection constructs a profile of malicious or abnormal
behaviour and then classifies outliers from this abnormal profile as normal. This paper’s
primary focus is on the application of these two types of neural networks. Specifically, the
review will be based on experiment construction and conclusions drawn from the results
by the authors, with regards to the concepts introduced in section 3.

4.2.1 Dataset & Results

The two ANN techniques were applied to the KDD Cup 1999 Data public dataset. The
authors asserted that all data points could be grouped into four categories. The separate
training and test datasets had 22k malicious packets and 10k benign. At this point it
is important to note that the frequency malicious data within the training set is around
69%.

On the testing data the BPL & RBF achieved an anomaly detection rate of 93.7% &
99.2%, the false positive rates were 7.2% & 1.2% respectively. Both techniques achieved
misuse detection rates of 99.2% & 98% and false positive rates of 1.2% & 1.6% respectively.
On account of the experimental data the authors concluded that RBF can achieve better
misuse classification rates than BPL, while anomaly detection gave similar results.

5 Discussion

In this section the approach outlined in Zhang et al. is holistically evaluated based on
each of the guidelines outlined in section 3. On a higher level, the goal of this section is
to determine whether the information presented in Zhang et al. can demonstrate a clear
applicability of the enclosed ANN techniques and frameworks to any specific real world
operational setting.
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5.1 Threat Model

This performance metric is the most difficult to evaluate the reviewed approach upon as
it is very personal to the real world application of the technique. Almost all reviewed
publications, tend to promote their technique based on its ability to classify with a low
false positive rate on a public dataset, often citing Axelsson as a motivation for this
approach. Zhang et al. also took this approach towards this paper. Sommer & Paxson
identify that many published intrusion detection approaches are not deployed in a real
world setting. We believe this is primarily caused by the lack of a clear threat model that
describes the specific environment in which the technique could be applied and profiles a
specific attacker and how this attacker will likely interact with the defined environment.
This is crucial as an attacker may behave differently, when performing the same attacks
against different targets, this in itself can lead to a classification model for each different
target hoping to detect such attacks using a specific ML based technique. In other words,
the results presented in Zhang et al. are only useful if the application environment has
similar traffic patterns to this public dataset. Given that one of the intrinsic challenges of
intrusion detection is the high diversity of network traffic at both high and low network
protocol levels [3], we believe that the real world value of any published technique without
a clearly defined threat model is highly limited.

5.2 Scope

Sommer & Paxson argue that the ideal approach to successfully applying a machine
learning technique to IDS, is to focus on a specific niche of intrusion attempts, then
determine which general approach would best detect these e.g anomaly or misuse based
detection. Finally, this would lead to a small subset of potential techniques within the
general approach.

The authors of the reviewed paper however, mention that the intrusion attempts within
their chosen public dataset fit into four categories, which aim to cover a large range of
different intrusion attempts. This attempt to produce a technique for general intrusion
detection attempts appears to violate Sommer & Paxson’s guideline. This is illustrated
well when contrasted with Kruegel et al. [9], a paper praised by Sommer & Paxson for
picking a highly narrow and specific scope: exploiting web servers via specific HTTP
queries. On the other hand, the scope of Zhang et al. appears to be only limited by
the amount of different attacks contained within their chosen public dataset. This can
be viewed as a red flag, possibly indicating that the authors did not attempt to find a
problem first, before working on a technique to address the problem, but rather chose to
search for problem to solve, given the technique first.
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5.3 Cost of Errors

Although defining a narrow scope can go a long way in reducing false positive rates,
putting the cost of each false positive into perspective can also aid in determining the
tolerability in this area. In general it is clear that the cost of a false positive is higher in
the information security when contrasted with other applied machine learning domains
[3]. However, no two information security environments are exactly the same, therefore
determining the real cost in each environment may help determine the applicability of
the chosen technique. The reviewed paper cannot realistically determine how well the
proposed technique will apply in terms of risk, to all possible environments. However,
looking back at equation (5) we can see that the reviewed paper does provide the proba-
bility of a false positive P (F ), which is the false positive classification rate. Any interested
party can substitute a cost Fcost into the equation to calculate a weighted risk that can
be applied to compare the risk with other environments.

Another approach to eliminating costs associated with false positives, involves re-
evaluating classifications in a post processing stage to further filter them, reducing the
amount of false positives that get relayed to the end user. In the reviewed paper the
authors take an interesting approach to dealing with the false positives. Initially two
types of ANN’s are applied to the public dataset individually and their results are assessed.
The BPL ANN applied an anomaly detection strategy while the RBF applied a misuse
detection strategy. The authors then assert that these two ANN’s could be assembled into
a filter chain type architecture where packets are run through the anomaly classifier first
then through the misuse classifier. Finally the classification model is refined as increasing
attacks are added to the system. This multilayer approach appears to be a similar strategy
on top of the existing 1.2% false positive rates of the anomaly detection.

5.4 Performance Evaluation

Zhang et al., like many publications in this area base their experiment on a public network
traffic dataset (KDD Cup 1999 Data). We have already mentioned in the performance
metrics section the shortcomings of such datasets as described by Sommer & Paxson. An
IT professional hoping to apply this technique to their specific operational setting, is less
likely to rely on the results presented in the paper. Sommer & Paxson assert that public
datasets such as the one used in the reviewed study, should only be used for basic testing
of a technique, but not as a dataset to perform extensive performance tests upon. While
we are not suggesting that a publication should produce a series of datasets that can
give an insight into the techniques performance in any organisational environment, more
effort could be made to gather a more applicable dataset from an organisation. Sommer
& Paxson proposed that researchers build closer relationships with existing organisations
to order to negotiate some data. This could involve offering consulting in exchange for
the data.
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As mentioned Sommer & Paxson suggested that researchers should manually investi-
gate both false positives and false negatives to develop a greater understanding to deter-
mine whether the ANN actually models the intuition of a sensible manual classification
method. This is especially necessary if there is limited amount of unique testing data to
run the trained model against. Which is the case of the reviewed paper where a single
set of test data with the exact size of the training data was prepared to produce the
results with. The paper did not manually analyse any false positive or false negatives
and based their discussion of the methods efficacy mainly around the classification results
produced from the testing data. From our point of view this puts the efficacy of the au-
thors proposed technique into question. At this point we can only see how the technique
performs on a single test data set, although the authors have correctly split their training
and testing data, this does provide only a small testing sample size, the classification
rates could change significantly on further test datasets. Sommer & Paxson’s technique
of manually analysing false positives and negatives in order to determine the intuition of
the constructed model, provides a highly recommended alternative, when researchers are
unable to acquire more unique testing data.

6 Conclusion

This paper has provided two major contributions. The first contribution is to elaborate
and further develop the machine learning application guidelines introduced by Sommer &
Paxson as a set of evaluation criteria to determine whether any specific machine learning
based intrusion detection classifier can demonstrate the ability to provide real world value
in an operational context. This includes the novel application of quantitative risk to intro-
duce a metric to theoretically define and practically compare the individual or cumulative
risk of both false positive and false negative classifications in different operational envi-
ronments. The second contribution involves the review of a publication introducing two
neural network based frameworks based on the two distinct classes ANN classes. The goal
of the review is to determine whether the publication illustrates a machine learning based
intrusion detection classifier that demonstrates applicability to a specific operational set-
ting based on the guidelines described in this paper. This has lead to the conclusion that
the reviewed paper authored by Zhang et al. did not adhere to the described guidelines.
The author did not define a clear threat model, environment or narrow set of attacks
which their introduced technique could address. In fact, the authors scope was limited
only to what type of attacks were contained within their chosen public dataset. The re-
sults produced by the authors, were taken from just a single testing data set. Furthermore
the authors did not attempt to rationalise the constructed model by manually analysing
the produced false positives and/or false negatives. Therefore, it is difficult to evaluate the
robustness, of the classification rates obtained. We believe that this presents overfitting
to be a significant risk, due to the characteristically diverse nature of traffic data, causing
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such a type of ML classifier to produce poor classification rates, on a more diverse range of
datasets containing only variations of the 4 attacks mentioned. The authors did however,
produce a detection and false positive rate (albeit only from one test dataset), allowing
a reader to apply our introduced quantitative risk metric to analyse in perspective, the
costs of both false positive and false negative classifications.
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