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Abstract—Security is one of the biggest issues facing the IT
industry today, 2017, and has been for many years. It is also
likely to be at the forefront of our concerns for many years
to come. In this paper we examine if the perspective of B.W.
Lampson in “Computer Security in the Real World” [16] still
holds 13 years later by looking at this topic through the use
of two studies of vulnerabilities in two complex systems with
large user bases. They are “Finding and Preventing Bugs in
JavaScript Bindings” by Brown et al which examines bind code
bugs in Chrome’s V8 engine [5], and “An In-Depth Study of
More Than Ten Years of Java Exploitation” by Holzinger et al
which is a taxonomical study of Java exploits [14], as well as
three well documented exploit classes XSS, SQLi, and CSRF.
Fundamentally the problem is who should bear the burden of
responsibility when systems fail, the user or the provider? Why
is this problem seemingly intractable as it is intrinsically the
same type of problem that has been faced by older engineering
disciplines.

I. INTRODUCTION

The Global Risks Report 2016 [1] cites that the second
greatest concern of CEOs in 2015 was cybersecurity. Given
the scale and costs of this problem it might be expected
that decade old vulnerabilities, for which solutions are well
known [24], [26]–[29], would be all but non-existent so
attackers would not have an easy foot hold. Unfortunately
this assumption would be wrong. In his article “Computer
Security in the Real World” B.W. Lampson states “Most
computers are insecure because security is expensive” [16],
combine this with a general lack of security awareness among
managers and developers [1] and it isn’t difficult to see why.

Although there are vulnerabilities that can exist solely in
hardware [13], most exploited vulnerabilities occur in software
[1], [18], [19], [21], [28], [32], [39], [40], [45]. Broadly, there
are two types of code: functional code, and code that accounts
for erroneous user input [38]. Functional code is what is
taught in most entry, and even mid-level, university Computer
Science and Software Engineering Courses. It is said that this
code fulfils the functional requirements of the client. It in
no way accounts for if the user types a character instead of
an integer, supplies a number that is too large, or does any
one of a multitude of different things that could cause the
application to crash. Code that accounts for erroneous user
input, checks for such actions by the user and redirects the
control flow of the application to correct for this. This type
of coding is not usually taught until functional coding has

already been mastered. When developers are learning how
to write functional code it is common practice for them to
use online resources such as tutorials to help develop their
applications. These tutorials, like the 64,000 PHP tutorials
found by Unruh et al [41], work from a functional perspective
but contain very insecure code. For most amateur developers,
once the functional code has been written, error checking
code is added to or around it. It is not very common for the
functional code to be changed very much, if at all, during
this transition. Therefore, any insecurities in the functional
code are likely to be present in the finished product as well.
In addition, insecurities can also be introduced in the error
checking code compounding this problem.

The combination of Lampson’s observation and the
prevalence of bad coding practices has led to much of today’s
software being filled with security bugs [18], [19], [21], [28],
[32], [39], [40], [45]. A quick read of Microsoft, Apple,
IBM, etc end user agreements will tell you that the software
is provided “as is” and is used at the user’s own risk. It could
be argued that those software companies which continuously
produce suspect software will lose customers in the long
run due to their damaged reputations. However for three
consecutive years (2013-2015) iOS was responsible for over
80 per cent of mobile vulnerabilities [39], [40] but people
still lined up for the latest iPhones. Brown et al in “Finding
and Preventing Bugs in JavaScript Bindings” [5] found 81
vulnerabilities in the Chrome browser but Chrome is still
used by millions of people. In their paper “An In-Depth Study
of More Than Ten Years of Java Exploitation” Holzinger et
al [14] found nine generic weaknesses that break the Java
security model leading to 61 unique exploits but Java is still
executing on billions of devices. Therefore if market forces
will not motivate companies to fix these issues, a shift in
culture and education is needed. Bad habits formed early on,
have led to many university graduate developers being unable
to write secure code [9]. This, combined with the fact that
writing secure code is a preventative measure that does not
provide any direct benefit other than blocking potential losses
later on, means that the managers of these developers have
not made secure code a priority either [38].

These aforementioned affects have led to statistics
like: cybercrime cost US$445 billion in 2014, which has
subsequently increased [19]; more than 430 million new



unique pieces of malware in 2015, up 36 percent from 2014;
and approximately 429 million identities were exposed in
2015 of which more than 90 million of those came from
just 9 breaches [39]. Here we argue that although Lampson’s
observation from 2004 still holds today, we can do better, so
why don’t we? To help answer this we look at the two works
documenting vulnerabilities in Chrome [5] and Java [14]. We
compare these complex vulnerable systems with three other
old classes of vulnerabilities with well known solutions to
try to uncover why vulnerabilities with known solutions still
persist.

II. WHY IT’S HARD TO SECURE SYSTEMS

Lampson also provides us with a framework for
what “computer security” looks like. He breaks
security systems into 3 aspects: specification/policy,
implementation/mechanism, and correctness/assurance.
Put simply what is the systems purpose, how is this realised,
and does it work? In terms of policy Lampson tells us that
secrecy, integrity, availability, and accountability should be our
main concerns. This is slightly different from the traditional
confidentiality, integrity, and availability [35]. The first three
of Lampson’s policy headings are isomorphic with Russell
and Gangemi’s aspects of computer security but Lampson’s
accountability requirement is not. By accountability Lampson
means “knowing who has had access to information or
resources”. This last policy doesn’t seem to generalise as
well as the first three.

Lampson suggests five broad implementations of these
policies. They are: isolate, exclude, restrict, recover, punish.
Lampson puts these in order of decreasing levels of security.
In this case to isolate is to keep everyone out, to exclude is
to discriminate against the “bad guys”, to restrict is to limit
the damage that can be done, to recover is to replace/repair
that which was damaged, to punish is to hurt the attacker
making the exploit more expensive.

When it comes to assurance, Lampson places the heaviest
burden of responsibility on the developers of these systems
“Developers also need a process that takes security seriously,
values designs that make assurance easier, gets those designs
reviewed by security professionals, and refuses to ship code
with serious security flaws”. Lampson’s reasoning here is that
both users and administrators are very resilient to education
and therefore if the goal is to create secure systems then,
security must be design driven.

Here we present two examples of non-trivial systems that
have had serious vulnerabilities exposed in them. These
examples are illustrative of both the problems faced when
securing real world systems and some of Lampson’s points
about the difficulties of “real world security”. We will also see
how Lampson’s security framework fits with these systems.

A. Finding and Preventing Bugs in JavaScript Bindings

Binding code is a layer of code that handles that translation
of value representation, error propagation, and types between a
“high level” language, usually a dynamically typed language,
and its runtime system, which is normally written in a “low
level”, statically typed language. In the case of Chrome the
high level, dynamically typed, language is JavaScript and its
runtime system is V8 which is written in C++, a statically
typed language.

Along with enhanced system features, there are security
advantages to this design. Many low level security bugs
such as buffer overflows, use-after-frees, and memory leaks
can be abstracted away from the developer and managed
by the runtime in a secure way. However this assumes that
the runtime is capable of dealing with such bugs. The main
reason that the authors give for the occurrence of these
security flaws is “Binding code has the dangerous distinction
of being both hard to avoid and hard to get right”. Brown et
al appear to be in agreement with Lampson here in that both
agree that software is complicated, and in this case, necessary.

The problem of binding code is particularly pronounced in
JavaScript because of the extreme flexibility of the language.
The binding code in the V8 runtime even allows call backs
from the binding layer to the JavaScript code. For instance
the toPrimitive property allows a developer to define the
behaviour exhibited by a variable when it is accessed. When
such a variable is passed to the binding layer and the runtime
attempts to retrieve its value, a call back to the JavaScript
is required. This behaviour is important because it gives an
attacker a greater attack surface.

Brown et al [5] describe how the binding code of V8,
and runtime systems like it, can be vulnerable to crash-,
type-, and memory-safety vulnerabilities in their binding code.

• Crash-safety: These bugs occur when input, given to
the V8 runtime, causes the C++ code to hard crash or
segfault. The result of this type of crash is a loss of
control over the information flow. The most obvious
use for this vulnerability is a denial of service attack.
However this type of bug can also be used to break
language level security abstractions leading to covert
channel attacks and information leakage. For instance,
in the event of a segfault, the OS will take a core dump
which could contain sensitive information. If the attacker
can still execute code on the machine, possibly via a
redirect prior to the segfault, then this core dump could
be read by the attacker.

This type of bug was, in fact, introduced with the runtime
systems like V8, in their binding code since JavaScript
itself is crash-safe.



• Type-safety: Because type mismatches can be used to
crash the system, all of the problems with crash-safety
bugs are present with type-safety bugs as well. Type-
safety bugs occur when a pointer/reference of type t
points to an object in memory of type u and t is not
compatible with u. This can allow an attacker to carry
out a type confusion attack which could allow remote
code execution. The result of this could be system wide
penetration.

Since this type of bug only occurs because of the
difference in type systems between JavaScript and C++,
this bug is a result of the V8 runtime.

• Memory-safety: As type-safety violations are a form of
memory violation all of the problems with type-safety
are present with memory-safety bugs as well. Memory-
safety violations occur when an attacker can avoid the
safety checks in binding code and read/write to memory
that is restricted. For instance if an attacker is able to
cause a segfault in the course of the core dump and the
attacker is able to control the program counter then, the
attacker could execute arbitrary code that is in memory.

As with the other two bugs this one has nothing to do
with JavaScript itself. Since JavaScript cannot access
memory without preserving abstraction, it can only
access the memory that has been allocated by its runtime.

Although Brown et al do not provide evidence for their
claim “it would be remarkable if these languages did not
contain essentially identical flaws. Therefore, we believe that
other high-level language runtimes [...] stand to benefit from
lightweight checkers and more principled API design”, it is
likely that other JavaScript runtime systems, such as Mozilla’s
Rhino engine, will share many of these vulnerabilities with V8.

Brown et al also argue that vulnerabilities in binding code
are worse than vulnerabilities introduced by a JavaScript
developer at the application level. This makes sense since
an adversary wouldn’t have to create an application specific
attack they could create one attack that would affect all
applications using JavaScript.

Brown et al developed static code checkers along with an
API to find bugs like these in V8’s code, so the developers
can patch these problems, and build V8 code in a secure
way. As with all new security technology this API isn’t battle
hardened nor did Brown et al formally test it.

1) Fitting V8 into Lampson’s Framework: At its most
basic level Chrome is a web browser, created by Google,
that runs on personal computers. As such, what is to be
kept confidential is the users private communications, the

integrity we want to protect is that of the data stored on the
users machine, and the availability we wish to preserve is the
access to web applications. However it isn’t immediately clear
who is to be held accountable for Lampson’s fourth criterion.
Is the user accountable for a breach in the security model?
Are the creators of the web application? Is it Google, who
created the web browser? Or is it the attacker that managed
to inject some malicious JavaScript into the web application?
The way Lampson talks about accountability is in the context
of auditing an institution like a business, but this isn’t very
applicable here since browsers don’t keep logs to that level
of granularity and the malicious code is executed in a way
that appears it was intended all along.

What about Lampson’s 5 implementations? Isolation
doesn’t apply since the browser will connect to any web
application the user wants. Exclusion is applicable since
the user will try not to connect to bad web applications.
Restriction is applicable since this is what the browser tries to
do through sandboxing its processes. Recovery is applicable
if the user maintains backups. Punishment is not applicable
as neither browser or users have the authority to do this.

Overall, most of Lampson’s framework is applicable to this
system. However the pieces of Lampson’s framework that
aren’t as applicable are the pieces where he deviates from the
standard security model. This is possible because browsers
are quite different from other types of software in that they
are programs that essentially download arbitrary code from an
unknown source(s) and run it locally. Nevertheless, it could be
said that this is a bit of an edge case for Lampson’s framework.

B. An In-Depth Study of More Than Ten Years of Java
Exploitation

Holzinger et al document a decades worth of security
vulnerabilities against Java [14]. They break these
vulnerabilities into three categories: single-step–, restricted-
class–, and information hiding– attacks. These three categories
contain 9 weaknesses or attack vectors.

To make things clear, the authors break each vulnerability
they investigate into final goal, attack vector, primitive, attack
primitive, helper primitive, implementation, and exploit; in
order of abstraction. The final goal is the end objective of
an attack and is why it is considered malicious. An attack
vector is a set of intermediate steps or goals needed to realise
the final goal. These intermediate steps or goals are labelled
as primitives by the authors. Attack primitives are a subtype
of primitive defined as a primitive that breaks the security
model of the target system without necessarily achieving
the final goal state by itself. Helper primitives do not break
the security model of the target system, are a counterpart to
one or more attack primitives, and if absent, would render
the attack primitive redundant. Implementations instantiate



primitives. An exploit is an instance of an attack vector.

The 9 weaknesses described by Holzinger et al are:

• Caller sensitivity: This refers to certain methods that
should only be accessed by trusted code. The authors
describe this weakness as using an intermediate trusted
function to avoid the permissions check and access the
sensitive code.

• Confused deputies: This type of weakness is used to
invoke caller sensitive methods. The intermediate trusted
function in the caller sensitivity weakness is a confused
deputy. This type of weakness can be generalised as any
trusted guard that can be confused, allowing untrusted
code to access trusted code. In this case allowing
untrusted code to route a call sequence through a system
class.

• Privileged code execution: The authors hold this type
of attack as distinct from confused deputy attacks
since, here an attacker can execute code that passes
the privilege checks and does not depend on caller
sensitivity. That is, the attackers code is executed with a
higher level of privilege than it should be.

• Loading of arbitrary classes: This vulnerability allows
an attacker to load classes that their code should not be
able to access such as the system class.

• Unauthorized use of restricted classes: This can be
either defining a custom class in a privileged context or
accessing field values or access modifiers when they are
private.

• Unauthorized definition of privileged classes: This is a
means of achieving arbitrary code execution by way of
defining a class in a trusted domain.

• Serialization and type confusion: This weakness can,
for instance, be used to instantiate a classloader defined
ahead of time by the attacker. This can then be used to
create classes with higher privileges.

• Reflective access to methods and fields: If reflection has
been used improperly in system classes or caller sensitive
methods then this can be used to bypass information
hiding.

• MethodHandles: This is similar to the previous weakness
except it uses methodHandles instead of reflection.

These weaknesses are not entirely discrete. For instance
many of the exploits involving the restricted classes as either
the final goal or as part of the attack vector also involve a

confused deputy and caller sensitive method. This suggests
that most of the exploits studied by Holzinger et al could be
solved by applying a few conceptually, and in some cases
technically, simple patches. For instance removing caller
sensitivity from public interfaces for classloading. However
this would break backwards compatibility making this a very
undesirable fix for both Java developers and users alike.

In light of this, Holzinger et al also seem to agree with
Lampson when they state “... the Java sandbox is actually
anything but a simple box. Instead it comprises one of
the world’s most complex security models in which more
than a dozen dedicated security mechanisms come together
to–hopefully–achieve the desired isolation.” [14]. It would
also be reasonable to point out that the exploits themselves
are not trivial in their own right.

1) Fitting Java into Lampson’s Framework: Just as
with the previous example, the first three of Lampson’s
specifications apply here. The JVM aims to keep parts
of itself (restricted classes) and parts of its host system
confidential or secret. The integrity of the host system,
restricted access classes and variables, as well as the JVM
itself must be preserved. The availability of the host system
and the JVM must also be maintained. In this case it is also
clearer which party is accountable for the security. Oracle
is responsible for developing and assuring the Java security
model and therefore are the accountable party.

As for Lampson’s mechanisms, the JVM is not isolated
as Lampson meant it, because it has to allow untrusted code
to execute and it has to interact with the host system. The
Java security model does try to exclude untrusted code from
its trusted code. The JVM does operate as a sandbox and
therefore restricts untrusted code according to Lampson’s
definition. One of the ideas behind Java’s sandbox is that it
doesn’t matter if things go wrong in the sandbox so long as
it can be thrown away and restarted. In this sense the JVM is
recoverable, however if the developer has not backed up the
state of the JVM then, this cannot be recovered. The JVM
has no capacity to punish attackers.

Lampson’s framework seems more appropriate to this
example then it does to the previous example as it fits more
of Lampson’s specifications and is more in line with his
mechanisms.

III. LAMPSON LIVES ON

In “Computer Security in the Real World” [16] Lampson
talks about many other important aspects of system
security. Such as: local access control, where an access
control list is used to authenticate users, normally with a
password; distributed access control, which has the same
principle as local access control but occurs between multiple
autonomous systems, with special care taken to encrypt any



communication; trust chains, where one trusted node passes
trust to one other node and then another and so on forming
a chain. Although the papers discussed above do use some
of these aspects, for simplicity and because they are not
what is being attacked directly, we do not discuss these ideas
further. These ideas are well established and researched by
the system security community and the specific technologies,
such as Kerberos [2], have been updated. For these reasons
we concentrate on Lampson’s ideas of how to view security
systems.

Lampson sums up the two aspects of the above example
systems which have led to many of these bugs: “First,
software is complicated, and in practice it’s impossible to
make it perfect. Even worse, security must be set up, and [...]
setup is complicated too. Second, security gets in the way of
other things you want. [...] security interferes with features
and with time to market.” [16]. These examples are large
development efforts, with many stakeholders, resulting in
software which can be deployed in almost any environment.
From this perspective Lampson appears to have found a
reasonable upper bound for what we can expect from “real
world” system security.

Both examples fit, to varying degrees, Lampson’s
framework and this framework does offer some ways
forward. For instance neither system has a satisfactory
punishment mechanism. If, the law permitting, such a
mechanism were to be developed then, an amnesty may be
reached with attackers, given that some kind of mutually
assured destruction principle would now be in play.

IV. WHY WE CAN DO BETTER

Lampson was right when he said “Practical security
balances the cost of protection and the risk of loss” and
“The bad guys balance the value of what they gain against
the risk of punishment”. In other words both sides perform
a cost benefit analysis. This, in addition to his points about
the complexity of systems and the setup cost of security
systems contributing nothing to the useful output, makes
the task of securing any non-trivial system seem truly
daunting. Even Google is not immune to this effect. When
Lampson’s point of view is taken in light of the fact that
the companies responsible for developing these systems do
not bear the brunt of the cost for security flaws, one can
see that these companies are not incentivised very well to
build secure systems. As Milton Friedman put it “nobody
spends somebody elses money as carefully as he spends his
own” [11]. If risk is the product of the asset’s cost with the
probability of an exploit occurring then, regulating the ‘tech’
industry in a similar way to other engineering industries,
where companies are punished for not meeting minimum
safety standards, would increase the cost and therefore
increase the risk of an exploit to the company developing the
system. The cost to the companies for a reasonable standard

of security wouldn’t be too great either since for many bugs
the fixes are free, maintain backwards compatibility, and are
well documented for ease of implementation. In other words,
without regulation it is cheaper to do the bare minimum in
terms of security. However it would not require heavy handed
regulation to tilt the economics in favour of better security.

V. SOME BUGS ARE FIXABLE

Some, particularly those in the employ of these development
companies, may think that the above is excessive. However
there are many security flaws that have been around for a
very long time, have well known solutions and yet, still
persist in causing havoc to this day. Below are three such
examples from the OWASP top 10 list [28]. Part of the reason
for this is developers have not done as Lampson suggests and
“[refused] to ship code with serious security flaws”. After
all there is little incentive for them to do this and a large
employment incentive for them not to. Next we examine
three security flaws that have existed for almost as long as
the first commercial web applications. We look at their root
causes and accepted defences.

A. Cross Site Scripting (XSS)

XSS attacks are a type of code injection which have existed
since at least 1999 [33] and are a particularly dangerous and
wide spread type of attack. For this reason the Symantec
Internet Security Threat Report 2016 [39] places this attack
at number 5 on its list of top ten unpatched vulnerabilities,
and at the time of writing, XSS is at number 3 on OWASP’s
top 10 most critical web application security risks [28]. These
attacks are so dangerous because of how easy it is to detect
XSS vulnerabilities in applications and how difficult it can be
to secure an application against them. Once the code has been
injected into the web application, the user’s web browser has
no way of knowing that this code did not come from the
otherwise trustworthy application. Thus the web browser will
execute the injected code with the same privilege level as any
other code sent to it by the same entity.

XSS attacks can occur when data enters a web application
through an untrusted source. This is most commonly a web
request but can be through other means such as a page with
mixed content i.e. a page that has content loaded from many
different sources; some using a HTTPS [8] connection, and
others not. These attacks can also occur when data is included
in dynamic content that is sent to a user without being
validated for malicious content. For example manipulation of
the Document Object Model (DOM) objects on the client side
or insecure scripts being executed by the application server
[26]. From these two attack vectors three different types of
XSS vulnerability can be derived: persistent XSS, reflected
XSS, and DOM based or client side XSS.



a) Persistent XSS: sometimes referred to as stored XSS
[26], occurs when a vulnerable application stores user input
without validating it first. This type of XSS is less common
than reflected XSS but is considerably more damaging since
the injected code affects all users visiting that section of the
site and will continue to do so until it is manually removed.
Applications and websites which allow content to be shared
between users are most vulnerable to this type of XSS. Some
examples of these sites are:

• Social networking sites
• Blogs
• Message boards and forums
• Collaboration services like github.
• Webmail clients
• Enterprise resource planning or customer relationship

management applications

b) Reflected or non-persistent XSS: is the most prevalent
and pervasive category of XSS attack. These attacks are so
called because they are “reflected” off the web server. In
other words, a request with some malicious code in it is
sent to the web server and the response from the web server
contains that injected malicious code which is then executed
by the client’s web browser as code from a trusted source [26].

In order for a malicious third party to use a reflected XSS
attack effectively malicious code is duplicitously injected
into a single HTTP request [23]. The attacker can then
URL-encode that HTTP request and devise some scheme
to have the client send it to the web server. For this reason
reflected XSS attacks are usually combined with another style
of attack such as a phishing attack.

c) DOM based XSS: attacks are the least common of
the three categories of XSS attacks [15]. These attacks can
be impossible for an application or server to detect since no
data is required to leave the victim’s browser allowing them
to elude most detection techniques. DOM XSS attacks are
made possible by the insecure use of DOM objects by the
client’s browser i.e. the use of DOM objects that is not fully
controlled by the server side logic.

It is important to note that placing full control of DOM
objects on the server side is easier said than done. This
security requirement may come into conflict with certain
design decisions made by developers for ease of coding and
satisfying the client’s requirements. For instance, one might
have a client-server application with some dynamic content
on certain pages where the content of the page changes
based on the session information. It is considerably easier,
in a development team, for a front end developer to write
some JavaScript on the client side to manipulate the page
contents, believing that this session information is safe if
the connection is under HTTPS [8], than it is for the front
end developer to have to communicate this design feature

to a back end developer, requiring the two developers to
coordinate their implementations.

In a DOM based XSS the attacker takes advantage of the
fact that it is the user’s web browser that will populate the
DOM objects, like document.location, based on the browser’s
point of view and not the server’s. The user’s web browser
can populate DOM objects with user defined URL parameters
and if those objects are then used in an execution context of
the application, any code injected into those URL parameters
may be executed there. This is the crux of a DOM based XSS
and is why full control over the DOM must be maintained
by the web application. A DOM based XSS vulnerability is
present if the site uses data from any of the DOM objects in
an insecure way.

In a HTML document there are good places and bad
places to put untrusted data1. These input fields should be
encapsulated in a data context so that whatever the input
is, it is never executed as code. Most of this encapsulation
is achieved through using the correct character escaping
techniques for each part of the HTML document. In general
a Whitelist approach is preferred because it is secure by
default. That is all things allowed by the list are known to be
safe and all things not allowed by the list are prevented from
progressing as soon as they are detected whether they are safe
or not. Thus all non-safe actions are prevented. OWASP has
produced a Whitelist of rules to mitigate XSS attacks [31].
This list follows industry standards and the preponderance
of the literature [20], [37], [42], [43] on prevention of XSS
attacks. Following these guidelines will significantly reduce
the attack surface with respect to XSS.

B. Structured Query Language injection (SQLi)
SQLi attacks have been known since before the year

2000 [36] and are similar to XSS attacks in that they are
both command injection attacks. SQLi attacks occur when
a SQL query is executed directly by way of user input into
the application [29]. These queries will then return private
information from the database to the client, modify the
database’s contents, or run commands on the database such
as creating a new database or revealing other databases.
The most common case is for a SQL injection to modify
a legitimate SQL query that the application would have
otherwise made. SQLi attacks come in three distinct flavours:
inband SQLi, out-of-band SQLi, and inferential SQLi attacks.
Their descriptions are below.

a) Inband SQLi: are attacks that occur entirely within a
single channel of communication. In other words, the attacker
enters a SQL query into an input field, that query is executed
by the database and the results are returned to the attacker
through their client.

1Here untrusted data means data that could contain a malicious payload.



b) Out-of-band SQLi: attacks also fit into another
category of attack called cross channel scripting (XCS)
attacks [4]. Out-of-band SQLi attacks are launched in one
communication channel and whatever is returned by the
database after the query has been executed arrives to the
attacker through a different channel. Out-of-band SQLi attacks
are especially easy to combine with other attacks [10] such as
XSS exploits, insufficient authentication vulnerabilities [22],
(distributed) denial of service attacks [17], and domain name
server hijacking [44].

XCS attacks such as out-of-band SQLi attacks are
described by Bojinov et al as “Detecting an XCS or reverse
XCS vulnerability can be difficult because these attacks
abuse the interaction between the web interface and an
alternate communication channel. Simply inspecting the web
application code and the other service code is not enough
to detect the vulnerability. The web application and the
other service, such as an FTP server, can be completely
secure in isolation and become vulnerable only when used in
conjunction.” [4]. Despite the complexity of this bug solutions
are possible.

c) Inferential SQLi: according to Chandrashekhar
et al “[Inferential SQLi is] where the attacker does not
actually receive any direct data in response to injection
attempts. Instead, the attacker has to infer the data present by
reconstructing data based on variations in responses from the
application” [7]. This is not the same as inband SQLi because
the database does not actually return anything necessarily; nor
is it akin to out of band SQLi since all the communication
can occur along a single channel. This is why it is the most
sophisticated of the three types of SQL injection [7].

Given that two out of the three different types of SQL
injection attack are at least very difficult to detect in general,
it is very important that developers implement logically sound
defences to SQL injections. A determined attacker or group of
attackers could create site specific tests to discover and exploit
vulnerable sites. Thankfully there are such logically sound
defences and they are quite easy to implement. These are [30]:

• Prepared Statements (Parameterized Queries), by
creating predefined SQL queries, with variables to be
bound to user input later, the developer ensures that an
attacker cannot change the intention of the queries. So
even if an attacker enters a malicious SQL payload, this
payload will be treated as text just like a legitimate query.

• Stored Procedures, pre-defined queries that are stored in
the database ahead of time.

• Whitelisting and Escaping user input, these should be
used as a last resort but only known safe values should
be allowed and all user input should be escaped using

the BDMS escaping scheme.

If developers apply these strategies and best practices in a
coherent design, the resulting application will avoid the vast
majority of SQL injection flaws.

C. Cross Site Request Forgery (CSRF)

There are some misconceptions about defences for CSRF
attacks [24]. These misconceptions arise from a fundamental
misunderstanding about how CSRF attacks are carried out.
Many purported defences such as “secret” cookies (which are
included in every request by the user and can be copied by
the attacker) and multi-step transactions (which the attacker
can emulate) do not in fact work [3].

Cross site request forgery is the exploitation of certain
browser behaviours to hijack an unsuspecting user’s session
with a server [12], [24]. This class of attack was named
in 2001 but was known about prior to 2000 [6]. The main
objective is to make the user’s web browser send state
changing requests to the web server or impersonate the user
by reusing their session information. In contrast to the other
types of attacks discussed in this section, CSRF does not
exploit the trust the user has in the web server, but rather
the trust the web server has in the user. It is worth noting
here that if XSS is present then CSRF is implied because
any XSS vulnerability can be used to gather and manipulate
the session information of a user in spite of any other CSRF
defence.

A successful CSRF attack requires certain information
about the session in progress in order to be successful:

1) Browser behaviour regarding the handling of session
information.

2) Knowledge of valid web application URLs. Potentially
within the authentication space2.

3) Information known by the browser relied upon for
session management. For instance basic authentication
as opposed to form based authentication.

4) (Optionally) Existence of HTML tags which require
a HTTP resource. Such as the image tag. This is an
especially “nice to have” element for an adversary3.

It should be noted that in the case of item 3 form based
authentication is considered more secure because instead of a

2Authentication space here has the meaning: The set of all URLs that a
user must be authenticated to access.

3This is nice to have because if content is not loaded under HTTPS then
an attacker can replace the HTTP response with their own. Meaning that
an attacker can inject JavaScript directly into the site without needing prior
contact with the client.



digest of the user’s credentials being passed back and forth as
in basic authentication, the server uses the credentials entered
in the form fields to create a unique session key which is
invalidated when the user logs out. With basic authentication,
if the web browser does not properly close the session by
clearing the user’s credentials when they logout then the
user’s session can be revived by simply resending the digest
to the server in a HTTP request.

Items 1, 2, and 3 are individually necessary and together
sufficient for a successful CSRF attack. It should be noted
that all CSRF attacks are blind. That is the attacker cannot see
what the response from the target site looks like. Therefore
CSRF attacks almost always use state changing requests
since it does not benefit the attacker to simply request data
on behalf of the user. As an example, if an application
relies upon information that would be known to the browser;
while simultaneously engaging in behaviours such as basic
authentication then, a CSRF is possible since an attacker can,
in most cases, discover application URLs with relative ease.

The general best practices for defending against CSRF
are to implement all XSS defences, check standard HTTP
headers to verify the request’s origin, and check CSRF
tokens, provided they have been managed correctly [25]. The
Origin header was invented to help prevent CSRF [3]. This
can be achieved by comparing the Origin header’s field with
the target origin. The Origin header would be sufficient on its
own to verify the origin except there are situations where the
Origin header is null, as in the case of cross origin redirects.
In this case the Referer header must be used to verify that
the hostname matches the target origin. Ideally both checks
should be performed and if either fails then the request should
be discarded. In the cases where the Origin header will be
null then the Referer header check must be performed.

a) Lampson asks a similar question: “Will things get
better?” he answers this in the affirmative by stating that the
market may change its priorities but only after a calamity
has occurred. The basic idea here being the level of risk that
users profess they are prepared to accept before a security
breach is much higher than the level of risk they say they
will accept after such a breach has taken place. Does progress
in the security industry have to look like this? Could users
and administrators not simply be reasoned with to implement
better security before a catastrophe?

D. A Reasonable Level Of Security

It would be incorrect for the reader to infer that the above
details “perfect” defences against the mentioned classes
of vulnerabilities. However these vulnerabilities remain on
watchdog top vulnerability lists because such basic steps
are not taken to secure web applications [28], [39]. As was
shown in Section II not all systems are simple to secure,
nor would it be cheap to do so. However, what the above

tells us is some security issues do, in fact, have well known,
simple, solutions that can be implemented in a cost effective
manner. As a concrete example lets take another look at the
first example in Section II about binding bugs. All those
binding bug exploits started with JavaScript. Hardening a
web application against XSS as described above would not
only help to stop XSS exploits but also help defend against
malicious JavaScript code that targets binding code bugs
from being injected. Therefore a reasonable level of security
is somewhere between Lampson’s upper bound for real
world security and the relative ease with which systems like
ASP.NET’s Linq library deals with XSS and SQLi threats
on behalf of the developer. Given that a vulnerability in
one system may represent a threat, not just to itself or its
users but to other systems as well, it seems reasonable that
a regulation mandating certain minimum security standards
for IT systems is warranted in the same way that adventure
tourism; engineering; food processing; manufacturing; and
farming all seem to need regulations.

However, unlike adventure tourism and other forms of
engineering, system security, along with the rest of its
industry, grows and changes at a much faster rate. By the
time a body has written regulations, gone through a reviews
process, had committee meetings, heard public submissions,
heard public appeals, etc, the technology the regulations were
suppose to regulate will have evolved. For this reason any
regulation must focus on returning the onus for building
reasonable secure systems back to the systems’ creators and
not focus directly on the implementation of the systems
themselves. At the very least it would discourage software
companies from shipping code like that found in the 64,000
PHP tutorials mentioned earlier [41] and would help to fulfil
one of Lampson’s goals for developers.

There are of course many more difficult questions around
regulating the development of secure systems, such as
sovereignty, fairness, the extent and power to be held by
the regulating agency(ies), the security requirements for a
given system in a given context, etc. Notwithstanding these
challenges the prodigious resilience users have to education
may prove to be insurmountable in its own right. Having said
that if our university graduates cannot write secure code [9]
then, maybe education is part of the problem. If light weight
regulations were introduced and the security awareness of
developers is increased from an early stage in their training
to a reasonable level as above then, simpler more secure
systems should follow.

VI. CONCLUSION

As we have shown security is still as big an issue today as
it was when Lampson wrote his article “Computer Security
in the Real World” in 2004. Cybercrime cost US$445 billion
in 2014, and has subsequently increased [19]; more than
430 million new unique pieces of malware were discovered



in 2015, up 36 percent from 2014; and approximately 429
million identities were exposed in 2015 of which more than
90 million of those came from just 9 breaches [39]. In their
paper Brown et al [5] found 81 vulnerabilities in Chrome’s
binding code and Holzinger et al [14] found nine generic
weaknesses that break the Java security model neither of
which is an indication that the aforementioned statistics
will improve. In addition to this basic XSS, SQLi, and
CSRF vulnerabilities are still among the most ubiquitous
vulnerabilities in web applications [6], [28], [36], [39]. It is
hard to deny that the catastrophe Lampson said was required
for things to improve has happened without claiming that
such a catastrophe must be singular and/or existential in
nature.

In spite of this, we have not seen the change in the IT
industry that is needed to address these security issues, not
because users haven’t shifted their priorities but because users
do not have more than a superficial understanding of what
they are buying. As Donald Rumsfeld put it “As we know,
there are known knowns. There are things we know we know.
We also know there are known unknowns. That is to say we
know there are some things we do not know. But there are
also unknown unknowns, the ones we don’t know we don’t
know” [34]. So why don’t we do better? As long as the cost
burden of exploits remains on users and users remain largely
ignorant of the problems, the developers of these systems will
not have the incentive to change. If the IT industry wants to
be taken seriously like other engineering fields then, it needs
to mature and take responsibility for itself.
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