
OAuth 2.0

Muhammad Rizwan Asghar
The University of Auckland

September 17, 2015

For template of slides, 
thanks to kingsoftstore.com

https://www.cs.auckland.ac.nz/~asghar/
http://www.kingsoftstore.com/education-ppt-template.html


Overview of OAuth 2.0

• An open standard for authorisation

• Evolved from OAuth

• Not backward compatible

• Created in late 2006

• OAuth 2.0 was published as RFC 
6749 in October 2012



Why OAuth 2.0

• OAuth 2.0 is better than OAuth 1.0 
due to

• Clear separation of roles

• Simplicity

• Support of a variety of use cases

• Addressing native applications



Basic Purpose

• Enabling third-party applications 
• To obtain limited access 

• To protected resources

• On behalf of a Resource Owner

• Or on its own behalf



Roles in OAuth 2.0

• Resource Owner
• Grants access to protected resources

• Resource Server
• Hosts protected resources

• Client
• Requests access to protected resources

• Authorisation Server
• Issues Access Tokens to the Client



Roles in Detail

• The Authorisation Server may be the 
same server as the Resource Server

• A single Authorisation Server may 
issue Access Tokens accepted by 
multiple Resource Servers



OAuth 2.0 Flow

Client Authorisation 

Server

Resource 

Owner

Resource 

Server

1 – Authorisation Request 

2 – Authorisation Grant 

3 – Authorisation Grant

4 – Access Token

5 – Access Token 

6 – Protected Resource



Authorisation Grant

• A credential representing 
authorisation by the Resource Owner

• To access protected resources

• Used by the Client to obtain an 
Access Token



Access Token

• Credentials used to access protected 
resources

• Tokens represent specific scopes and 
durations of access

• Granted by the Resource Owner

• Enforced by the Resource Server and 

Authorisation Server



Refresh Token

• Credentials used to obtain Access 
Tokens

• Used when the current Access Token 
expires

• It is optional



OAuth 2.0 Flow: 
Refresh Token

Client
Authorisation 

Server

Resource 

Server

1 – Authorisation Grant 

2 – Access Token & Refresh Token

7 – Refresh Token 

8 – Access Token & 

Optional Refresh Token

3 – Access Token

4 – Protected Resource

5 – Access Token

6 – Invalid Token Error



Security Requirements

• It requires the Transport Layer 
Security (TLS) mechanism for ensuring

• Confidentiality 

• Integrity

• Prevention of replay attack



Client Registration

• First, the Client registers with the 
Authorisation Server

• When registering a Client, a Client 
Developer specifies

• Client Type

• …



Client Credentials

• Client Identifier
• It is unique but not secret

• Client Secret
• Password, private/public key pair

• Only for Confidential Clients (see next 

slide)



Client Types

• Confidential
• Clients maintaining the confidentiality of 

their credentials

• Capable of secure client authentication

• Public
• Clients incapable of maintaining the 

confidentiality of their credentials

• Incapable of secure client authentication



Client Profiles

• Web application
• Confidential Client

• User-agent-based application
• Public Client

• Native application
• Public Client



Grant Types

• Authorisation code

• Implicit

• Resource Owner password 
credentials

• Client credentials

• Extensibility mechanism for defining 
additional types



Authorisation Code

• Used to obtain both Access Tokens 
and Refresh Tokens

• Optimised for Confidential Clients

• Client interacts with User Agent of 
the Resource Owner



OAuth 2.0 Flow: 
Authorisation Code

1b – Client Identifier & Redirection URI

Authorisation 

Server

Client

User-

Agent

Resource 

Owner

1a 3b

2a

2b – Authentication

3a – Authorisation Code

4 – Authorisation Code & Redirection URI

5 – Access Token (with Optional Refresh Token)



Implicit

• Used to obtain Access Tokens

• It does not support the issuance of 
Refresh Tokens

• Optimised for Public Clients

• Client interacts with User Agent of 
the Resource Owner

•A Client receives the Access Token as 
the result of the Authorisation Request



OAuth 2.0 Flow: 
Implicit

1b – Client Identifier & Redirection URI

Authorisation 

Server

Client

User-

Agent

Resource 

Owner

1a

2a

2b – Authentication

3 – Access Code

4 – Access Code



Resource Owner 
Password Credential

• Suitable when the Resource Owner 
has a trust relationship with the Client

• Examples
• Operating system

• Highly privileged application



OAuth 2.0 Flow: 
Resource Owner Password Credential

Authorisation 

Server

Resource 

Owner

2 – Resource Owner Password Credential

Client

3 – Access Token (with Optional Refresh Token)

1 – Resource Owner Password Credential



Client Credentials

• A Client can request an Access Token 
using only Client Credentials

• Only used by Confidential Clients



OAuth 2.0 Flow: 
Client Credentials

1 – Client Authentication

Authorisation 

Server

Client

2 – Access Token



Access Token Response

• Access Token

• Expiry

• Refresh Token

• Scope



Refreshing Access Tokens

• Client makes a refresh request
• Grant type

• Must be ‘Refresh Token’

• Refresh Token

• Scope



Accessing Resources

• Client interacts with the Resource 
Server

• Client accesses protected Resources 
by presenting Access Tokens

• The Resource Server validates
• Validity of the Access Token

• Scope



• Obtaining Client Secrets
• Revoke Client Secrets

• Obtaining Refresh Tokens
• Revoke Refresh Tokens

• Obtaining Access Tokens
• Keep lifetime short

Attacks and 
Countermeasures 



• No backward compatibility 

• It relies on SSL/TLS for ensuring
• Confidentiality

• Integrity

• Prevention of replay attack

• Phishing attack 

Limitations



Limitations (2)

• Privacy issues
• Servers will know more about Resource 

Owners and Clients

• Denial-of-Service (DoS) attack
• Effect on Clients and Servers



OAuth Service Providers

• Flickr

• Google App Engine

• Netflix

• Yahoo

• …



OAuth 2.0 
Service Providers

• Amazon

• AOL

• Facebook

• GitHub

• Google

• Microsoft

• Paypal



Service Providers 
Supporting Both

• Dropbox

• LinkedIn

• Twitter

• …



Summary

• OAuth 2.0 is evolved from OAuth

• Provides clear separation of roles

• A variety of use cases
• Native applications

• Enterprises offer OAuth, OAuth 2.0 
or both





References

• OAuth 2.0, http://oauth.net/2/

• The OAuth 2.0 Authorization Framework, 
http://tools.ietf.org/html/rfc6749

• OAuth 2.0 Threat Model and Security 
Considerations, 
http://tools.ietf.org/html/rfc6819

http://oauth.net/2/
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6819

