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ABSTRACT 

The notion of solely using the human brain to interact with 

computers, without relying on the typical output pathways 

of peripheral nerves and muscles, is an enthusing and 

fantastical paradigm to grasp. However, the term, Brain-

Computer Interface (BCI), was in fact, coined several 

decades ago, and was considered to be a technological 

revelation that emerged fairly ahead of its time. This 

revolutionary approach to interfacing breaks down 

conventional barriers that exclude the physically disabled 

demographic from using technology. While both invasive 

and non-invasive brain-computer interface technology 

exists today, the non-invasive method is largely favoured 

because of its portability, functionality and sans surgery 

approach. Over the years, many challenges have been 

encountered in this domain, particularly with regards to the 

unreliability of the electroencephalographic (EEG) signal, 

which manifests a whole range of consequential setbacks 

such as low information transfer rates and degraded BCI 

performance. While large strides have been made in this 

sector in recent years, challenges such as the variability and 

low signal-to-noise ratio of the EEG signal, still prevail. 

This paper outlines the progress made in the field of non-

invasive BCI technology, and more specifically, the 

research efforts undertaken to improve the usability and 

performance of BCI systems. Results from these studies 

demonstrate that a hybrid BCI can indeed be effective in 

eliminating the unwanted phenomenon of illiteracy, and 

that SSVEP based BCIs have the potential to be the ideal 

BCI with their non-invasive approach, minimal training and 

high information transfer rates, in instances where external 

stimuli is used. The results also attested that the 4-8 is the 

optimal electrode configuration to obtain a better signal, 

and thus yield better BCI performance. 
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INTRODUCTION 

A Brain-Computer Interface is a medium which allows 

direct communication between the brain and an electronic 

device. The underlying concept behind a BCI is to first 

capture the brain’s electrical impulses under precise 

functioning and categorize those impulses so that output 

commands to a device can be established. However, BCIs 

should not be perceived as mind-reading devices, or as 

decryption systems of arbitrary, cognitive activities. 

Conversely, only well typified inferred brain activity 

patterns can be detected [9]. 

 

Several non-invasive techniques are now available to 

monitor brain function, namely electroencephalography 

(EEG), magnetoencephalography (MEG), Positron 

Emission Tomography (PET) and functional magnetic 

resonance imaging (fMRI) [10]. MEG, PET and fMRI have 

largely been dismissed as being too technically taxing and 

expensive, while EEG is identified as the only practical and 

inexpensive method for recording and processing brain 

signals. It is therefore, the optimal choice for BCI 

implementation [2]. 

 

Non-invasive BCIs typically use one of four types of 

electroencephalographic (EEG) activity for control: namely, 

steady state visual evoked potentials (SSVEPs), event-

related de-synchronization and synchronization (ERD/ERS) 

and related rhythmic activity associated with imagined 

movements or other common mental tasks; P300s; or slow 

cortical potentials (SCPs) [1]. 

 

Typical BCI applications involve device control, letter or 

icon selection, or cursor manipulation. EEG-based brain 

computer interfaces (BCIs) can also provide a novel 

augmentative communication solution for completely 

paralyzed individuals, diagnosed with conditions such as 

ALS or other severe motor impairments. This is precisely 

why BCIs are mainly used today in this setting [10]. 

However, other applications for BCI technology also exist 

[2]. 



 

The following details an analysis and discussion on specific 

challenges encountered in the field of non-invasive BCIs 

and the approaches used to address them.  The subsequent 

sections report the methodologies and findings of the 

examined BCI research studies, while also drawing 

conclusions on the progression of the field and identifying 

gaps in the knowledge base.  

 

 
CHALLENGES 
 

(i) Variability and Noise of EEG Signal 

The EEG is an extremely complex signal, since it reflects 

the electrical fields produced by many trillions of individual 

synaptic connections in the cortex and in subcortical 

structures. EEG signals are bioelectrical potentials recorded 

from electrodes placed on the scalp. The measured 

potentials reflect the collective activity of large populations 

of cortical neurons located underneath the sensor position. 

Thus, EEG has low spatial resolution and provides only a 

far-reaching and very noisy overview of brain activity.  

This in turn, leads to further problems like low information 

transfer rates [9]. 

EEG is also known to be an extremely degraded signal, due 

to the complex anatomy and electrical characteristics of the 

cranium. Most importantly, it is an extremely variable 

signal. While the brain is capable of producing a given 

motor performance repeatedly with very slight variation, 

the brain activity underlying that output varies substantially 

from performance to performance. As a result, the EEG 

associated with a given output also exhibits variation. [10] 

 

(ii) Electrode Placement 

In BCI systems, the process of recording the brain signals, 

generated by the user is one of the principal parts of the 

system. With EEG as the tool, brain potentials can be 

recorded in the central-parietal scalp locations [1]. Because 

the non-invasive method is much more user-friendly and 

takes considerably less time to set-up, it is generally viewed 

as the more desired option for disabled individuals [2]. 

However, due to this lack of invasiveness, the recordings 

are done on the scalp, as opposed to, within the skull or 

within grey matter. As a consequence, the Signal to Noise 

Ratio (SNR) is low. So the challenge lies in deciding how 

many electrodes are to be used on the scalp and also 

determining their optimal locations for best results. The 

greater the number of electrodes used, the better the signal. 

However, there is a trade-off between accuracy and 

usability. Having a large number of electrodes in the EEG 

would generally take much longer to set up, when 

compared to having fewer electrodes. In many cases, the 

longer set-up time can dissuade the user from wanting to 

use the system. 

 

(iii) Information Transfer Rates 

Information Transfer Rate (ITR) is a measure used to 

calculate the amount of information (bits) that is transferred 

over time (per minute), also referred to as the bit rate. 

Current BCIs can be classified as being relatively low 

bandwidth devices, offering maximum information transfer 

rates of 5–25 bits/min at best [1]. At this rate, it may take 

several minutes to simply type a single word into a 

computer, thus making the user experience long and 

painful. It is highly probable that this time delay would 

cause users to get fatigued and agitated. The increase of 

ITRs would allow BCIs to offer all individuals useful ways 

of interacting with their environment [1]. 

 
 

(iv) Illiteracy 

While BCI research efforts have succeeded in providing 

communication for some users, it is not yet clear whether 

BCIs could help all users [1]. As stated in [1], Brain-

Computer Interface (BCI) systems do not function equally 

for all users, thus making universality a prime concern in 

BCI research.  

A BCI user is considered illiterate if their accuracy 

classification is less than 70%. This occasionally occurs as 

each individual is different and therefore responds 

differently to the presented stimuli. So while the system 

may work smoothly for the majority of the demographic, 

there will be individuals who are unable to use this interface 

at all. This phenomenon of BCI-illiteracy needs to be 

eliminated to allow for a system that provides universality 

[1]. 

Improving BCI universality (that is, reducing illiteracy) 

should be a top priority. Improved training, subject 

instructions, and/or signal processing can make BCIs more 

universal, to some extent. [1] 

 

(v) User Training  

 

Another issue faced is the lengthy training time needed for 

BCI users to develop competence. BCIs that do not rely on 

external stimuli provide direct control over the 

environment, but these typical BCIs often require extensive 

training, from several hours to several months. BCIs based 

on evoked potentials may not need extensive training, but 

still do require a structured environment. [2] 
  

[2] Showed that systems that use no external stimuli, and 

therefore allow for high user control, require more initial 

training than BCIs that do employ external stimuli. The 

challenge lies in creating a BCI that is natural to minimise 

the amount of needed training.  

 



As stated in [5], previous BCI systems by Birbaumer at al 

(1999) included training sessions that lasted more than 

several months. Similar training session durations were also 

observed in the study by Pfurtscheller (2001) [5]. Although 

long periods may give the user in depth knowledge on how 

to use the system, the overall performance of the process is 

diminished due to the large amount of time dedicated to 

training. 

 

APPROACHES 

 

(i) Electrode Arrangement 

In order to obtain the choicest signals from the BCI system, 

the number and placement of the electrodes must be taken 

into consideration. The best way to determine the most 

rewarding arrangement is by experimenting, using varying 

placements. The most extensive research on electrode 

placement was done by [5] where four electrode-placement 

combinations were tested. These used 4, 8, 16 and 32 

electrode combinations respectively; this can be seen in 

Figure 1. 

On the other hand, [1] used 5 bipolar electrodes placed at 

positions C3, Cz, C4, O1 and O2.  

 

 

 

Figure 1: Electrode configurations used in the 

experiments: Configuration I (4 electrodes), 

Configuration II (8 electrodes), Configuration III (16 

electrodes) and Configuration IV (32 electrodes) [5] 

 

(ii) Signal Processing 

[2] and [1] both, used steady-state visual evoked potentials 

(SSVEPs) recorded from the occipital scalp as inputs for 

their BCI systems. Systems which use SSVEPs as inputs 

have the advantage of focusing on EEG activity that occurs 

at a specific frequency. This characteristic simplifies the 

feature extraction methods, which means that users require 

little or no training [2]. 

 

EEG-based research in the ACT program also harnessed the 

steady-state visual-evoked response (SSVER) as an 

effective communication conduit for brain–computer 

interfaces [6]. Their second method of using multiple 

SSVERs for control required little or no training as the 

system capitalized on the naturally occurring responses [6]. 

 

SSVEPs can only be generated with stimuli frequencies 

higher than 6Hz. Using these recorded potentials, the 

amplitude spectrums can then be analysed to determine 

which stimuli caused the respective wave form. See Figure 

2 for the evident peaks in the SSVEP recording at 7Hz, 

14Hz and 21Hz, which can be concluded that a 7Hz stimuli 

has been evoked [2]. 

 

[5] used the control signal P300 as the potential to be 

detected in the human EEG. P300 is a positive deflection in 

the signals which arises 200-700ms after being presented to 

a stimulus, and is relatively easy to detect. 

 

 

Figure 2: P300 waveforms of participants after a 

stimulus. (Top: Average waveforms for disabled 

participants.  Bottom: Average waveforms for able-

bodied participants) [5] 

 

(iii) Stimuli 

Research has been conducted to determine the impact of the 

difference between external and internal stimuli on user 

performance [1]. Internal stimuli cause Event-Related De-

synchronization (ERD, which is achieved by the use of 

motor-imagery. The users produce potentials by imagining 

an explicit physical movement, which will, as a 

consequence, generate corresponding signals. Using 

internal stimuli gives a lot more freedom to the user, but on 

the other hand it also means that it is up to the user to create 

the correct imagery in order to generate a sufficient 

potential. The other form of stimuli, namely, external 

stimuli can be evoked on the user by using visual aids. 

These give rise to Steady State Visually Evoked Potentials 

(SSVEP) in the user. The potentials generated are to the 

response of visual cues such as flashing buttons or lights on 

a screen. The user has less control with this approach. 



Secondly, if the stimuli are external, the visual layout of the 

interface can impact its interaction with the user. The 

presentation of the stimuli can increase or decrease the 

classification accuracy. Authors of [2] varied the 

frequencies of the flickering stimuli, the dimensions of the 

buttons on screen as well as the RGB values of the buttons 

to experiment which conditions resulted in the best 

classification accuracy, in order to determine whether a 

correlation exists in the instances between each stimuli and 

BCI system performance. Lastly, the duration of each 

external stimuli as well as the Inter Stimuli Interval (ISI) 

may also impact the overall performance of the system. [5] 

took this into consideration by selecting an appropriate ISI 

value and flashing duration that was long enough to 

generate a valid signal but was also within the desired 

session times. 

 

Another possibility is a hybrid approach which includes 

both ERD and SSVEP stimuli being evoked simultaneously 

[1]. Hybrid BCIs could improve universality because a 

second approach might convey user intent if another 

approach cannot. Hybrid BCIs could also improve 

information throughput if subjects exhibit both types of 

activity [1].  

 

(iv) Co-adaptive Training 

One strategy to improve noisy EEG activity patterns is 

through the mutual optimization of pattern detector 

(machine learning) and pattern generator (human brain), 

better known as co-adaptive training [9]. The common 

practice is to firstly record EEG patterns from the user prior 

to BCI use and then train the pattern recognition algorithms. 

The trained models are then applied in real-time, and 

feedback on the detection quality is given to the user. 

Feedback training helps users in generating more distinct 

EEG patterns, which in turn, increases detection 

performance. These upgraded EEG patterns can then be 

used to retrain pattern recognition algorithms. The above 

steps are to be repeated until the desired performance level 

is reached. The required level of brain and machine co-

adaptation depends considerably on the EEG signal types 

used to translate information [9]. 

 

METHODOLOGY AND FINDINGS 

The research conducted in [1] was motivated by the goal to 

inspire more accurate BCI systems than conventional BCIs, 

especially for users who were unable to acquire at least 

70% accuracy for effective communication (the accuracy 

classification standard to determine illiteracy). In order to 

achieve this, an original combination of tasks was 

introduced, typically used in two distinct BCI approaches, 

namely ERD and SSVEP. These approaches were used 

both, individually and collectively, in a ‘hybrid’ condition 

which effectively blended both tasks. Subjects visualised 

moving their left or right hand (ERD), fixed their attention 

on one of the two fluctuating visual stimuli, and then, 

concurrently carried out both tasks, all whilst EEG data was 

being recorded across the three conditions. [1] 

 

Test participants were 14 healthy adults (6 women, 8 men; 

age range 17–31 years, mean 22.9), all of whom were 

undergraduate students. All subjects were free of any 

neurological or psychiatric disorders and were confirmed to 

have no usage history of medication known to adversely 

affect EEG recording. None had former experience with 

EEG recording or BCIs [1]. 

 

[1] also carried out an experiment with the aim of 

discovering the best form of stimulus creation in order to 

obtain the best BCI performance. Event Related De-

synchronization (ERD) was tested where users were 

prompted to visualize one of the following two types of 

motor imagery: opening and closing of left hand or the 

opening and closing of the right hand. The second form of 

stimuli was the SSVEP. The participants were asked to 

concentrate on one of the two flashing LEDs which were 

oscillating at 8Hz or 13Hz. The final test was carried out to 

ascertain if a Hybrid of the two techniques listed above 

changed the results. Lastly, the participants were directed to 

perform both the ERD (visualize motor–imagery) while 

concentrating on the flashing LED (SSVEP) 

simultaneously.  

Authors of [1] collected the results of ERD having a 

classification accuracy of 74.8%, SSVEP with 76.9% and 

Hybrid with 81.0%. The more significant finding was that 

users who were deemed BCI illiterate in either ERD or 

SSVEP (5 subjects in ERD, 5 subjects in SSVEP) were no 

longer illiterate in Hybrid (0 BCI illiterate subjects). 

Therefore, it was found that the use of the hybrid 

mechanism could indeed “educate” the otherwise illiterate 

participants, thus increasing BCI performance.  

 

[2] presented a brain-computer interface (BCI) to help users 

enter phone numbers. The system was based on the SSVEP. 

Twelve buttons which lit up at different rates were 

displayed on a computer monitor. The buttons collectively 

represented a virtual telephone keypad, implying the ten 

digits 0–9, BACKSPACE, and ENTER. Users could input a 

phone number as a sequence of digits by gazing at these 

buttons. The frequency-coded SSVEP was used to 

determine which button the user desired. [2] 

 

[2] conducted experiments using 13 healthy participants. 

The participants were comfortably seated in front of a 

computer screen which had a 3x4 matrix with digits, 

backspace and enter key. The rows and column of this 

matrix flashed randomly and the user had to count how 

many times their target cell had lit up as a selection 



mechanism. The goal of the experiment was to successfully 

dial a given phone number using the BCI. The first task 

tested the ITR while the second task tested the button 

spacing theory. In an effort to increase reliability of the data 

collected by this experiment, the fast Fourier transform 

(FFT) was used. Four consecutive FFT had to be present for 

a positive detection to be confirmed. 8/13 participants were 

successful in dialing the phone number correctly, and the 

others were unable to do so. From the last task, it was found 

that it was in fact viable to have a high number of stimuli in 

a confined area without it affecting the performance or 

classification accuracy of the system [2] 

Eight of the thirteen subjects succeeded in dialling the 

number correctly. The average transfer rate over all subjects 

was 27.15 bits/min. Consequently, after analysing the test 

results, the desirable features of this particular BCI system 

were identified as non-invasive signal recording, minimal 

required training, and high information transfer rate. [2] 

 

[3] described a study which was designed to evaluate a 

previously formulated P300-based BCI [4]. Ten able-

bodied (six female) and four disabled subjects (wheelchair-

bound; three with complete paraplegia, one incomplete 

paraplegia; two female) from the university community 

participated in the experiment.  

 

The evaluation was conducted by employing a 

bootstrapping approach, which demonstrated that an off line 

version of the system could communicate at the rate of 7.8 

characters a minute and also attain an 80% accuracy. In 

addition to the offline assessment, the real-time 

performance of the BCI system was also measured. The 

results indicated that the P300-based BCI was both practical 

and viable. The study also confirmed the earlier report by 

Farwell and Donchin [4], that a BCI can indeed be 

constructed using the P300, which allows an individual to 

manipulate a virtual keyboard without the need of any 

skeletal muscle activation [3].  

 

It was also observed that the BCI described in this 

particular study outperformed Farwell and Donchin’s BCI 

[4], as far as communication rates were concerned. Under 

the conditions of the present study, the communication 

speed at which the system allowed communication at the 

80% level of accuracy was 7.8 characters/minute. The 

speed decreased to 4.8 characters/minute at the 90% 

accuracy level. This demonstrated a substantial 

improvement when compared to the rates reported by 

Farwell and Donchin [4]. One significant difference 

between the BCI used in this study and the previous BCI 

was that the discriminant analysis in this study was applied 

to the 36 individual cells rather than to the rows and 

columns. It was observed that it was this tactic which most 

likely caused the detection to execute with greater 

sensitivity. However this was not confirmed [3]. 

[5] conducted extensive research on electrode placement 

and also explored the differences between healthy and 

disabled participants as a response to their BCI systems. 

Four configurations of electrode placements of 4, 8, 16 and 

32 electrodes were used. 4 disabled and 5 able-bodied 

subjects took part in the experiment. The participants were 

presented 6 images; TV, lamp, radio, door, window and 

telephone, in order to control various electronics in a house. 

These images flashed randomly in front of them and the 

participants had to keep track of how many times their 

target image had flashed. It was found that when using an 

8-electrode configuration, 6/8 participants got an average of 

100% classification accuracy. The highest accuracy was 

recorded when using either the 4 or 8-electrode 

configuration. Increasing the number of electrodes further 

from 8 did not significantly improve accuracy in any form. 

However, it was noted that using more than 8-electrodes in 

some cases, actually caused a lower amplitude signal to be 

generated. There was no distinct difference in performance 

between the disabled and able-bodied users. However, the 

rise in classification accuracy was found to be slower in 

disabled subject when compared to the healthy subjects [5]. 

[5] also obtained the highest bit rate of all the other 

experiments at 25bits/min. 

 

The Air Force Research Laboratory also implemented and 

evaluated two brain–computer interfaces (BCI’s) [6]. Their 

systems translated the steady-state visual evoked response 

into a control signal in order to operate a computer program 

or physical device. In one approach, operators were 

expected to self-regulate the brain response while the other 

approach used multiple evoked responses. 

 

Two virtual buttons (2.9 by 3.8 cm) were displayed on the 

left and right sides of a monitor (separated by 10.3 cm) and 

regulated at 23.42 and 17.56 Hz, respectively. The buttons 

were viewed at a distance of 71 cm, resulting in visual 

angles of 3.0° vertically and 2.3° horizontally. This BCI 

system was experimentally assessed using eight 

participants. Their task was to select the virtual button 

indicated by a yellow command box. Participants 

performed 200 trials each, with no training trials. The 

participants averaged 92% correct selections (range: 83–99) 

with an average selection time of 2.1 s [6]. 
 

[7] involved an offline study of the effect of motor imagery 

on EEG and an online study that used pattern classifiers 

incorporating parameter uncertainty and temporal 

information to discriminate between different cognitive 

tasks in real-time. In order to keep the system as simplistic 

as possible, the initial prototype only made use of three 

electrodes, a single isolation amplifier and a 266-MHz PC. 

The electrodes were placed 3 cm behind C3 and C4 while a 

reference electrode was positioned over the right mastoid. 

Subjects moved a cursor on a computer screen and 

attempted to hit targets appearing at the top or bottom of the 



screen. Cursor movements were driven by two different 

types of cognitive tasks: 

1) motor imagery versus a baseline task and  

2) motor imagery versus a math task. 

For the motor imagery tasks, subjects were asked to 

visualise opening and closing their hand (right or left 

according to handedness), and for the maths tasks, subjects 

were asked to successively subtract seven from a large 

number. “Stationary cursor trials” were also carried out, in 

which the cursor would not move. In this particular trial 

instance, cursor movements were generated by extracting 

autoregressive (AR) features from the EEG and classifying 

them using a Bayesian logistic regression model. 

 

Results were reported from online experiments by 

analysing the EEG data on a segment-by-segment basis. In 

the stationary cursor trials, the imagery versus maths 

pairing was more easily differentiated than the imagery 

versus baseline pairing, and this difference was notable in 

four of seven subjects. In the moving cursor trials, however, 

the two different task pairings were equally well 

differentiated. An analysis of the spectra associated with 

each cognitive task showed that, for most subjects, the 

majority of differential activity is in the µ-band (8–13 Hz) 

while some subjects also showed differences in the beta 

(14–20 Hz) band and, for the maths tasks, also in the theta 

(4–7 Hz) band [7]. 

 

Overall, in the moving cursor trials, four out of seven 

subjects achieved at least 75% accuracy. In this instance, 

accuracy is defined as the percentage of correctly classified 

data segments. The average accuracy over all seven 

subjects was 61% which, it was noted, could be increased to 

87% with the use of a reject option. These figures 

corresponded to bit rates of 0.02, without a reject option, 

and 0.12 with a reject option; a six-fold increase in 

communication rate. This upper bit rate corresponded to 

communicating two to three letters of the English language 

per minute, which is quite fast as far as BCI information 

transfer rates are concerned. A further benefit of using a 

reject option was identified as the observation that sections 

of EEG containing irrelevant cognitive components (e.g., 

during lapses of concentration) do not result in spurious 

cursor movement. This greatly enhances the robustness of 

the system. [7] 

 

SUMMARY 

Non-invasive Brain-Computer Interfaces have evolved 

considerably over the past few decades, in tandem with the 

rapid advances in science and technology. Insights into the 

EEG signal and its limitations have spurred research to 

address the consequential problems with a broad range of 

results. The successful use of the hybrid BCI system in 

minimising illiteracy must be explored further to determine 

the underlying cause of the improved performance [1]. The 

usage of SSVEP based BCIs should also be substantiated 

further to determine whether the research conducted which 

described characteristics of non-invasiveness, minimal 

training and high information transfer rates, was merely an 

anomaly or in fact, a certainty [2]. Also, since the research 

done on optimal electrode configuration was quite 

conclusive and thorough, it would be wise to use the 4-8 

electrode configurations for future BCI systems. 

Additionally, stimuli variation, optimal electrode 

arrangement, signal processing techniques and co-adaptive 

training should be continually put into practice, to further 

reduce the adverse effects of the hindrances encountered in 

the field of BCIs. While there is still plenty that needs to be 

accomplished before BCIs are ready to be deployed to the 

general public, specifically in terms of improving usability 

and performance, the progress that has been made in this 

field in such a short span of time is noteworthy. But, in 

order to ensure that progress continues to climb, 

complacency must be avoided and the challenges in BCIs 

must be faced squarely. Issues like the variability of the 

EEG signal and its consequences, long training times, 

illiteracy and low information transfer rates which degrade 

BCI performance must be frankly identified as the 

roadblocks which obstruct further advancement, and 

research must continue, to discover innovative and cost-

effective solutions to these problems.  

 

FUTURE WORK 

Further work should explore precisely why the hybrid 

condition yielded better accuracy, evaluate online 

performance, and also address numerous other options for 

various types of hybrid BCI systems [1]. 

 

The work described in [1] only explored the possibility that 

a hybrid BCI could improve accuracy, and thereby 

universality. However, information transfer rate (ITR) 

depends on the number of selections per minute (S) and the 

number of selections available (N), as well as accuracy (P). 

Other hybrid BCI paradigms could instead aim to increase S 

or N instead of P.  

 

In the future, experiments should be conducted with 

completely locked-in participants to evaluate the real 

usability of the system. [2] hopes to use CTR monitors in 

the future to allow for a higher refresh rate, which would, in 

turn, greatly impact the performance of the BCI systems. 

 

While the observed improvement in the BCI in [3], when 

compared to the older P300 based BCI [4] was identified as 

being the probable effect of the adopted strategy of 

applying the discriminant analysis to the 36 individual cells 

rather than to the rows and columns, the authors stated that 

all the underlying factors would need to be further 

investigated, before any concrete conclusions could be 

reached. [3] 



Despite the success demonstrated with the self-regulation 

based BCI, substantial training is required. For this reason, 

the ACT program aims to focus its future BCI efforts on 

approaches that use naturally occurring SSVER’s. The next 

step with this BCI will be to compare its performance to 

that of a standard computer mouse using a Fitts’ Law 

paradigm in order to evaluate the speed and accuracy of the 

two controllers [6].  

 

There is also a need to persevere with methods involving 

little or no biofeedback training and also to focus on other 

ways of improving classification accuracy [7]. Additionally, 

the concept of training subjects using a biofeedback 

approach also warrants some exploration. This involves the 

interaction of two adaptive controllers; the user and the 

computer.  

 

Also, other paradigms of visual feedback such as games 

should be examined more thoroughly to determine whether 

better visualization of the signal could optimise and 

improve the effectiveness of training, thus reducing 

illiteracy [8].   
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