
Modeling Submit/Response Style Systems with
Form Charts and Dialogue Constraints

Dirk Draheim and Gerald Weber

Institute of Computer Science, Freie Universtität Berlin
draheim@inf.fu-berlin.de

Abstract. Form-Oriented Analysis is an approach tailored to the mod-
eling of systems with form-based, submit/response style interfaces, a
distinct and ubiquitous class of software systems. Form-Oriented Anal-
ysis models the system interface with a bipartite finite state machine
and relates it to a layered data model. The paper explains the main vi-
sual artifact of our technique, the form chart, and introduces dialogue
constraint writing. Model decomposition is explained. The analysis tech-
nique is firmly based on existing well-understood analysis notions and
techniques, and consequently extends these methods.

1 Introduction

In this paper we present Form-Oriented Analysis, a new analysis technique for
a distinct and ubiquitous class of interactive software systems. This class covers
well-known form-based applications ranging from typical Internet shops through
supply chain management to flight reservation systems. We give a precise def-
inition of the considered class of software systems and have coined the term
submit/response style applications for this system class.

Submit/response style applications are such applications that present to the
user a page that offers information as well as a number of interaction options,
typically forms. If the user has filled out a form and submits the form the system
processes the data and generates a response page. This response page again offers
different interaction options to the user. We model such a submit/response style
application in a way that will turn out to be well suited for such systems, namely
as a bipartite state machine, which alternates between presenting a page to the
user and processing the data submitted by the user. This bipartite state ma-
chine is depicted in the key artifact of Form-Oriented Analysis, the form chart.
Form-Oriented Analysis describes then, how to annotate this bipartite state ma-
chine with constraints, which specify the behavior of the system. The definition
submit/response style is not intended to cover all kinds of software systems, but
to single out a well-defined and important class of systems. There are of course
other interactive software systems that do not follow this metaphor. In many
software systems such as text editors or drawing tools the interaction with the
system does not proceed by submission of forms that lead to a new page. Instead,
the current screen is constantly updated as the interaction proceeds. However,

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 267–278, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

268 D. Draheim and G. Weber

submit/response style applications form a ubiquitous class of important systems,
which justifies the development of an analysis method specifically designed for
this type of systems.

Technically, submit/response style applications can appear as modern web
applications or as client/server applications or of course as classic mainframe
applications. However, we deal in this paper with the analysis of such systems,
and the particular technical representation shall be transparent for the func-
tional specification as a result of the analysis phase, hence we want to achieve
a specification independent from implementation. It is therefore the key goal of
this paper to establish a high level view on this type of systems, in which we
abstract from the underlying technology and focus on the inherent properties of
submit/response style systems. Not every problem is amenable to a solution by a
form-based system. But if a system is intuitively thought of as being accessible by
a submit/response style interface this gives an important starting point for the
problem analysis. In the analysis technique proposed here, called Form-Oriented
Analysis, we will give a powerful approach to system modeling by understanding
the system along its usage through a submit/response style interface. This inter-
face model in Form-Oriented Analysis is an abstract interface; it is a conceptual
tool for the understanding of the system. But it can be thought of as a working
prototype of the actual application interface. Hence Form-Oriented Analysis is
a technique for modeling a system along a prototypical submit/response style
interface.

The restriction of Form-Oriented Analysis to submit/response style applica-
tions allows us to employ the clear semantics of submit/response style interfaces
within the analysis phase. Hence a model obtained in form-based analysis ben-
efits in its formal strictness and semantic clarity from the restriction to this
interaction style. Form-Oriented Analysis covers the area of analysis which is
typically called the functional specification.

Form-Oriented Analysis uses mainly visual artifacts for modeling. But in con-
trast to other visual modeling techniques we understand these artifacts mainly
as a visualization of information, which also could be given in a textual repre-
sentation. This flavor of visualization is important for Form-Oriented Analysis
since it is a technique designed for tight integration into a suite of code based
tools.

This paper explains the form chart, which is the main contributed artifact of
Form-Oriented Analysis. The other form-oriented diagram types, page diagram
and form storyboard [9], are important informal predecessors of the form chart,
which highlight specific aspects. Page diagrams offer a natural conceptual basis
for modeling of submit/response-style software system. Form storyboards are
designed with respect to informal communication between domain experts and
system analysts. The special way that signatures of server actions are visualized
as forms make form storyboards able to serve as high-level prototypes. Form
storyboards can be transformed into form charts without structural friction.
Form charts are used for rigorous software system specification. Our method

Modeling Sumbmit/Response Style Systems 269

offers a simple yet powerful composition mechanism for artifacts, called feature
composition.

Form-Oriented Analysis does not prescribe any process model. Of course,
the different degree of formality of the different artifacts as well as the feature
composition mechanism hints at a process like intuitive succession of diagrams
from informal to formal, but it is important to realize that this is by no means
necessary. Since the semantics of the diagrams is completely independent from
any process definition, the diagram is basically neutral with respect to its use
in a process of whatever kind. However, our method can be used easily with
agile methodologies due to similarity between form charts and the actual code
architecture. With the feature composition paradigm, form charts can easily
cope with changing requirements.

In section 2 we present the central artifacts of Form-Oriented Analysis. Dia-
logue constraints are discussed in section 3. Composition of artifacts is addressed
in section 4. Tool-support for Form-Oriented Analysis is described in section 5.
We give a dedicated discussion on selected related work in section 6.

2 Form Charts and Model

Form charts introduce into the system model one of the major conceptual cor-
nerstones of Form-Oriented Analysis: the system is seen as a bipartite state
transition diagram. The bipartite state machine is the basic structure of form
charts. In this view the system is alternating between two kinds of states. The
first kind of states corresponds to the pages of the system. These states are
called client pages. The system remains in such a client page state until the user
triggers a page change. In that moment the record with her previous input is
sent to the system. The second kind of states represent the system actions in
response to page changes and are therefore called server actions. These states
are left automatically by the system and lead to a new client page.

We demonstrate Form-Oriented Analysis for an example seminar online regis-
tration system. Our example system is a form-based seminar registration system
as it is suited for a single course. The screen shots of the system are shown in
Figure 1. The front page shows the students registered so far and contains links
to the different interaction options. New students can register themselves. From
the homepage, students already registered can change or delete their registration.
Each link leads to a new page specific for the chosen option.

The form chart has the task to make the analysis model amenable to formal
constraint writing and coupling to the semantic data model, and it is therefore
accompanied by two other diagrams, first the semantic data model and second
the data dictionary mediating between both. Furthermore a textual document
containing formal constraints has to be seen as attachment to the form chart.
The document bundle consisting of form chart with attached constraints, data
dictionary and semantic data model comprise the form-oriented specification
of the system. A complete specification of a system is often a valuable goal,
but in many cases it may not be practically achievable. Our method allows the

270 D. Draheim and G. Weber

New student
name
phone
student ID
passwd
repeat pwd

resetsubmit

home
Seminar Registration

Nr. name phone

1. Alon 001 98 765

2. Bert 089 1234

3. Charles 00358 4567

4. Dan 001 23 456

register yourself

delete

change

Change your Data
name
phone
student ID
passwd

resetsubmit

homedelete

Delete Record
name: Bert
passwd

home

confirm delete

Fig. 1. Overview of the screens of an online seminar registration system.

modeler to create a complete specification, but of course it is usable for partial
specification as well and therefore gives the modeler the freedom to choose the
degree of precision which seems appropriate for the project.

The form chart as shown in Figure 2 contains the bipartite state machine.
Server actions are depicted as rectangles and client pages are depicted as bub-
bles. In the form chart only the names of the states and transitions appear. The
form chart also contains the start marker. The second new artifact type, the data
dictionary, is shown in Figure 3. The data dictionary contains types and is there-
fore a class diagram in the terms of modern modeling languages like the UML.
However, the data dictionary types are of a special kind of data types, namely
algebraic data types. Instances of these types are immutable values. The types
can have structure, but only a hierarchical structure, namely composition. They
represent sent messages, comparable to written and sent documents. Remaining
in that metaphor, once you have sent a letter the content is unchangeable. In
the data dictionary there must be a message type for each form chart state, and
it must have the same name, except that the initial letter is lower case in the
form chart, but upper case in the data dictionary.

The last diagram in the bundle that forms the specification is the semantic
data model. This diagram is the conceptual data model that specifies the system
state. Pure data record specifications which are needed by both, the semantic
data model as well as the data dictionary, are put in a separate part of the data
dictionary, the business signature repository. In our example the semantic data
model is rather simple and consists mainly of the class holding the student in-
formation. The semantic data model is connected with the data dictionary again
through the dialogue constraints, but also through so called opaque references.

Modeling Sumbmit/Response Style Systems 271

newForm

changeLink

deleteForm

deleteLinknewLink

changePagedeletePagenewPage

list

changeForm

home

menu

newPage,

deletePage,

changePage list

home

Fig. 2. Form chart of the seminar registration system.

Semantic Data Model

ListEntry

name: String

phone: String
person: Person

List

ordered *

ChangeForm

person: Person

passwd: Passwd

NewForm

passwd: Passwd

passwd2: Passwd

DeleteForm

person: Person

passwd: Passwd

ChangePage

errorMsg: String

person: Person

NewPage

errorMsg: String

DeletePage

errorMsg: String

person: Person

name: String

Person

name: String

phone: String

studentID: int

passwd: Passwd

ChangeLink

person: Person

NewLink DeleteLink

person: Person

participants

PersonData

name: String

phone: String

studentID: int

<<Singleton>>

PersonTable

Data Dictionary

ordered *

participants

1 personData

Home

Fig. 3. Semantic data model and data dictionary

Take the client page list as an example. The message type List contains a list
of different ListEntry objects that contain only the information presented to
the user. This ListEntry submessage contains an attribute of type Person, the
class from the semantic data model. Such a reference from the data dictionary to
the semantic data model is called opaque reference. As one can see, if one follows
the message types associated e.g. with the delete subdialogue, this reference is

272 D. Draheim and G. Weber

passed along the dialogue and hence specifies, which person object is subject
to the deletion process. The reference is passed along the form chart, yet the
reference is opaque in the sense that only through certain operations that again
access the semantic data model the content of the person object can be accessed.

The whole semantic data model forms a single data abstraction module with
possibly as many opaque reference types as it contains classes. The opaque refer-
ences are therefore the border of the data dictionary. The reference itself is part
of the message, but not the referenced object. Therefore the object can change
without violating our demand, that messages are unchangeable.

3 Dialogue Constraints

The message represents the signature of the state of same name. Each time
this state is entered, a new message of this type has to be provided. We also
specify signatures for the client pages. These client page signatures represent the
information shown on the page. The page content is immutable. A page shows
the same content to the user until she triggers a page change and therefore gets
a new page, although possibly from the same type. Page interaction, i.e. user
input in forms is not considered a change of the page content, but preparation of
a new message. The fact that now the data dictionary contains the information
shown on pages as well as the information sent back to the system as part of a
page change is important with respect to the specification of so called dialogue
constraints. Indeed one of the main advantages of form charts is that it allows
elaborate constraint writing. We want to be able to express e.g. that the data
record the user chooses for deletion must have been presented on the page. Such
a constraint is called client output constraint. It is written in the following style.

list to deleteLink {
clientOutput:
source.participants.person->
includes(target.person)

}

As we see in this example, we need the signature of the client page as well
as the signature of the server action, called source and target, in order to set
both in relation to each other. There are a number of different types of dialogue
constraints, and they form together the dialogue constraint language, DCL for
short. The DCL constraints are typically written in an attachment of the form
chart, although in principle they can be written into the form chart diagram
itself.

The Dialogue Constraint Language DCL introduces special purpose con-
straint types, which are shown in Figure 4. Transitions from client pages to
server actions, page/server transitions for short, host two kinds of constraints,
namely enabling conditions and client output constraints. An enabling condition

Modeling Sumbmit/Response Style Systems 273

specifies under which circumstances this transition is enabled, based on the state
during the last server action. The enabling condition may depend on the current
dialogue history. The data submitted from a client page is constrained by the
client output constraint. Server actions host server input constraints. They are
server action preconditions in an incompletely specified system, they must be
transformed to other conditions. Transitions from server actions to client pages,
called server/page transitions for short, host flow conditions and server output
constraints. The flow conditions specify for each outgoing transition, under which
condition it is actually chosen. The server output constraint determines which
information is presented on the client page that follows in the sequel. The client
input constraint is a constraint on the information on the client page, which is
independent from the server page.

The constraints in the form chart are written in a variant of OCL [18]. For
this purpose OCL is enriched by new contexts and key labels with appropriate
semantics due to the needs of dialogue constraint writing. Consequently data
modeling is done with the pure data kernel of UML, whereby we distinguish
message types in the so-called data dictionary from persistent data within the
semantic data model. Persistent data can be accompanied by ephemeral session
related data. The system functionality is seen as side effects of server actions.
It may be specified in the context of the server action, but it typically will be
structured by functional decomposition.

ba source name target name
transition name

client page
server action

client pagepage/server transition server/page transition

enabling
condition

server
input constraint

client
output constraint server

output constraintm
flow condition two

2

flow condition one

1
client

input constraint

Fig. 4. Form chart notational elements

4 Feature Composition

Feature composition is introduced as the composition mechanism for form charts.
The graph structure of a form chart has been specified as being a bipartite di-
rected labeled multigraph. Every sub graph of the form chart is called a feature

274 D. Draheim and G. Weber

chart. Two feature charts are combined by graph union. A form chart decompo-
sition is a collection of feature charts in such a way that the combination of the
feature charts yields the complete form chart.

The perhaps most intuitive explanation, why feature composition is pos-
sible and meaningful in Form-Oriented Analysis is the inverse operation, fea-
ture decomposition. A complete form chart has a uniquely stable semantics:
If page/server edges, i.e. interaction options are removed, the data integrity is
not endangered. Certain usages of the system may of course become impossible,
if one removes key interaction options for the system. But the semantic data
model is not corrupted by such operations: the system remains stable, if it was
stable before. As a consequence the form chart covers system behavior that is
inherently stable against runtime customizations.

The composition of the analysis model is of course especially important with
respect to the task of expressing preferences and priorities in the system specifi-
cation, as well as to enable the discussion of alternatives and trade-offs between
them.

4.1 Compatibility Issues

There are some rules for the composition of two features. The rules follow from
the fact that the features to merge must be subgraphs of one single form chart.
First no node is at the same time client page in one graph and server action in
the other. Nodes of the same name must have the same data dictionary type,
because different features are different form charts over the same data dictionary
and model.

If two features are combined, the constraints have to be compatible. If in a
feature composition step a server action receives server/page transitions from
different features, the flow condition numbers in both features must be different
in order to be merged into a single order unless they are mutually exclusive.
The server/page transition without flow condition has to be the same in both
features, or one of the features should have no server/page transition without
flow condition.

4.2 Hierarchical Feature Decomposition

A form chart can be decomposed in a hierarchical manner. The result is a tree
of chart decompositions. Decomposition makes the form chart manageable. It
is a tool for organizing the form chart artifact during the analysis phase. The
feature hierarchy as such is not semantically relevant for the specification. Every
combination of feature charts, even from different levels of the tree, yields a
correct sub graph of the form chart.

4.3 Menu-Like User Interface Parts

An important special case of feature composition is the modeling of menu-like
options, i.e. interaction options, which are offered on many, perhaps even all

Modeling Sumbmit/Response Style Systems 275

pages. A new notation element for this purpose is the state set, that is depicted
by a double lined state icon. It is annotated by a list of state names and serves
as shorthand notation for these states. The example in Figure 5 shows page sets.
An edge between two state sets of say m client pages and n server actions repre-
sents the complete bipartite graph Km,n between the elements of the state sets.
A feature chart may be annotated as menu. Then the page/server transitions
contained in this feature must not be contained in the main form chart or its
decompositions. Affected states may reference the respective menu feature chart
by an explicitly given name. Figure 5 shows how the described mechanism fos-
ters readability of system interfaces with menu-like user interface parts. Another
notation flavor is to give the state set a single name, and to reference the page
set in its member states. The menu construct is used in the form chart of the
seminar registration system in order to model the home button.

a

b

c

d

p

q

x

y

z

w

a,b,c p

M

b,c,d q

N

menu

form chart
decomposition

menu

M

M,N

M,N

N

a

b

c

d

x

y

z

w

Fig. 5. Modeling menu-like user interface parts

5 Tool-Support for Form-Oriented Analysis

The model obtained in Form-Oriented Analysis can be transformed without
impedance mismatch into an interface design and an implementation based on
well-established technologies for web interfaces like server pages [6]. GENTLY is
a proposed specification language for web-based presentation layers that provides

276 D. Draheim and G. Weber

a textual format of form charts. The forward engineering tool GENTLY [8]
and the design recovery tool JSPick [7] both exploit the specification language
GENTLY. The GENTLY tool generates a complete prototypical dialogue based
on Java Server Pages from a high-level system description in GENTLY. The
JSPick tool generates high-level system descriptions for Java Server Pages based
web presentation layers in a GENTLY dialect.

6 Related Work

Structured Analysis [15] is a very successful approach to both business model-
ing and system modeling that is still used in practice. It combines hierarchical
data flow diagrams, sum-of-product data specification, local functionality spec-
ification and later [21] entity-relationship diagrams. The method is deliberately
ambiguous with respect to the semantics of the several notational elements of
the data flow diagrams and therefore heavily relies on the intuition of the mod-
eler. Structured Analysis does not at all take into account driving forces of the
solution domain.

The use-case driven approach to object oriented software engineering had
deep impact. From the beginning [13] to state-of-the-art versions [14] of this
approach the recommended human computer interface specification techniques
exclusively target the modeling of GUI’s. Furthermore the approach still lacks
real world examples clarifying the meaning of use case specifications and how
these can be exploited during system design and implementation.

State diagrams has been used for a long time in user interface specifica-
tion [19], [10], [12], [20]), partly with the objective of user interface genera-
tion [4]. All of these approaches target user interface specification only at a
fine-grained level, in our terminology concerning page interaction. Another early
approach [11] targeted the modeling of push-based, form-based systems like the
already disussed single-user desktop databases.

Within the UML Community the Discussion about dealing with the user in-
terface is still underway [3]. In [5] a visual language for presenting user interfaces
is proposed. The new artifacts are basically visualizations of page components.
The method is tightly coupled with the use case driven approach. In our view,
the diagrams do not reach the intuitive clarity of our proposed artifacts. A
stereotype framework specifically for web applications is presented in [2]. This
approach allows to model the design level concepts appearing during web site
development with a typical web application framework. For this purpose the
Conallen approach uses a set of stereotypes. The approach targets rather design
than analysis.

Schwabe et al. presented a diagrammatic tool for representing web interac-
tion [16], [17]. The diagrams are called user interaction diagrams (UID). They
resemble page transition diagrams without server actions. Very restricted and
very specific annotations are placed on the transitions concerning required se-
lections by the user.

Modeling Sumbmit/Response Style Systems 277

The aim to reduce the necessary navigation primitives is adressed in
WebML [1], a visual language for conceptual modeling of complex web sites [1],
in which all concepts are defined visually as well as in XML. WebML offers
icons for page elements for composing web sites, e.g. catalogue pages and single
item views. The WebML approach can be seen as an advanced and customizable
successor of model driven interface generators.

7 Conclusion

Form-Oriented Analysis is an analysis technique for submit/response style appli-
cations. This class can be seen as a characterization of typical enterprise appli-
cations, including e.g. web applications. We model a submit/response style ap-
plication with bipartite finite state machines, layered data models and dialogue
constraints. Form charts are given by rigorous semantics and rules of usage. Our
analysis technique is firmly based on existing well understood analysis notions
and modeling techniques and consequently extends the state of the art in an
important application domain: our analysis method is tailored to the class of
submit/response style applications, but not designed as an analysis technique
for all kinds of software systems. This strategic decision allows Form-Oriented
Analysis to fit optimally to submit/response style applications and to provide
added value for the analysis of such systems.

References

1. S. Ceri, P. Fraternali, and S. Paraboschi. Web Modeling Language(WebML): a
modeling language for designing web sites. In Proceedings of the 9 th. International
World Wide Web Conference, pages 137–157. Elsevier, 2000.

2. J. Conallen. Modeling Web Application Architectures with UML. Communications
of the ACM, 42(10):63–70, 1999.

3. J. F. E. Cunha and N. J. Nunes. Towards a UML Profile for Interaction Design:
The Wisdom Approach. In Proc. UML’2000, LNCS 1939. Springer, 2000.

4. P. P. da Silva. User Interface Declarative Models and Development Environments:
A Survey. In Proceedings of 7th International Workshop on Design, Specification
and Verification of Interactive Systems, LNCS 1946, pages 207–226. Springer, June
2000. Limerick, Ireland.

5. P. P. da Silva and N. W. Paton. UMLi: The Unified Modeling Language for
Interactive Applications. In Proc. UML’2000, LNCS 1939, 2000.

6. D. Draheim, E. Fehr, and G. Weber. Improving the Web Presentation Layer Archi-
tecture. In In Proceedings of APWeb 2003 - The 5th Asia Pacific Web Conference,
LNCS. Springer, 2003. to appear.

7. D. Draheim, E. Fehr, and G. Weber. JSPick - A Server Pages Design Recovery
Tool. In CSMR 2003 - 7th European Conference on Software Maintenance and
Reengineering. IEEE Press, 2003. to appear.

8. D. Draheim and G. Weber. Specification and Generation of JSP Dialogues with
Gently. In Proceedings of NetObjectDays 2001. tranSIT, September 2001. ISBN
3-00-008419-.

278 D. Draheim and G. Weber

9. D. Draheim and G. Weber. Storyboarding Form-Based Interfaces. In INTERACT
2003 - Ninth IFIP TC13 International Conference on Human-Computer Interac-
tion. IOS Press, 2003. to appear.

10. M. Green. A Survey of Three Dialogue Models. ACM Transactions on Graphics,
5(3):244–275, 1987.

11. P. J. Hayes. Executable Interface Definitions Using Form-Based Interface Abstrac-
tions. Advances in Human-Computer Interaction, 1:161–189, 1985.

12. R. J. K. Jacob. Using Formal Specifications in the Design of a Human-Computer
Interface. Communications of the ACM, 26(4):259–264, 1983.

13. I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

14. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

15. D. Ross. Structured Analysis: A language for communicating ideas. IEEE Trans-
actions on Software Engineering, 3(1), 1977.

16. P. Vilain, D. Schwabe, and C. S. de Souza. Modeling Interactions and Navigation
in Web Applications. In Proceedings of 7th International Workshop on Design,
Specification and Verification of Interactive Systems, LNCS 1921, pages 115–127.
Springer, October 2000.

17. P. Vilain, D. Schwabe, and C. S. Souza. A Diagrammatic Tool for Representing
User Interaction in UML. In Proc. UML’2000, LNCS 1939. Springer, 2000.

18. J. Warmer and A. G. Kleppe. The Object Constraint Language. Addison-Wesley,
1999.

19. A. I. Wasserman. A Specification Method for Interactive Information Systems.
In Proceedings SRS - Specification of Reliable Software, IEEE Catalog No. 79
CHI1401-9C, pages 68–79. IEEE, 1979.

20. A. I. Wasserman. Extending State Transition Diagrams for the Specification of
Human-Computer Interaction. IEEE Transaction on Software Engineering, SE-
11(8):699–713, 1985.

21. E. Yourdon. Modern Structured Analysis. Yourdon Press, Prentice-Hall, 1989.

	Introduction
	Form Charts and Model
	Dialogue Constraints
	Feature Composition
	Compatibility Issues
	Hierarchical Feature Decomposition
	Menu-Like User Interface Parts

	Tool-Support for Form-Oriented Analysis
	Related Work
	Conclusion

