
Behavioral Reflection
Yashasvi Appilla Chakravarthi

Department of Software Engineering
The University Of Auckland

38 Princes Street, Auckland 1020, New Zealand
yapp001@ec.auckland.ac.nz

ABSTRACT
With a rapid advance in computer technology, user
interfaces are one of the most important aspects in the
development of software architecture today. As the
complexity of the software products is increasing day by
day, it is important that the users find the system easy to use
and convenient. One of the new software mechanisms that
evolved due to the demands on software development is a
dynamic approach called reflection. This paper discusses
how reflection can be used in the development of user
interfaces and how the usability of software systems can be
improved. Reflection is a mechanism that supports meta-
computations in the program, which allow the program to
adapt itself during run-time. This concept has been widely
used in the programming side of the software development.
However, due to the increasing demand of usable and easy
to use systems, reflection is being applied in the world of
user interfaces.

1 Introduction

Reflection is a software mechanism that supports
computations of computations i.e. meta-computations in a
program which allow the program to modify its structure or
behavior during run-time. One of the applications of
reflection in the software development is in the field of user
interfaces. This mechanism can be used to provide feedback
to the user based on the current behavior or state of the
program. It allows the users to understand the software
better and use it efficiently.

This paper discusses the applications of reflection in
software development in the field of user interfaces. In
Section 2, the relation between reflection and user
interfaces is defined. This section also explains how
reflection can be used in this area. Section 3 discusses the
different types of reflection that exist and Section 4 explains
how reflection is implemented in the software. Section 5
describes the different ways in which reflection can be used
for extending user interfaces and Section 6 explains some
examples of how reflection has been used. Finally, the
paper describes some of the future work in Section 7 and
concludes with Section 8.

2 Reflection in User Interfaces

Reflection allows a program to modify itself during run-
time by using meta-computations or meta-data. This
concept is used similarly in the field of HCI i.e. user
interfaces, where the meta-data is used to identify the
current state of the program and enable the user interface to
modify the program. Thus, the concept of reflection has
spread from the programming aspect of the software field to
the area of user interfaces, with a slight modification to the
mechanism.

3 Types of reflection

Based on the type of runtime mechanism, there are two
common types of reflection [4].

3.1 Structural reflection

In this type of reflection, the reificiations of the program are
based on the structure of the program itself and its
respective data. The program is able to read and modify its
own structure, and hence enables users to adapt the
structure to their own needs.

3.2 Behavioral reflection

The reifications in this type of reflection are based on the
behavior of the program during runtime. The program can
read information about its current state and modify its
behavior at runtime.

These types of reflection provide a useful mechanism for
adapting the software during runtime, and providing a
dynamic user interface. Thus, the operations in this
mechanism are split into two types: introspection and
intercession.

The introspection operation allows the program to read
information about a specific aspect of itself based on the
type of reflection that takes place. Thus, structural
introspection allows the user interface to present application
data along with their data structure, while behavioral
introspection allows the user interface to acquire
information on how the system interacts with the user.

The intercession operation allows the program to modify a
specific aspect of it, thereby, allowing the user interfaces
access to either the structure or the behavior of the program
depending on the type of reflection. One of the uses of

1

structural reflection is in the field of generic templates,
while behavioral reflection can be used for providing
feedback to the user’s actions.

4 How does reflection work

The software architecture consists of two levels of
computations – the base computations and the meta
computations [4]. The metalevel is represented by
metaobjects or metadata. These levels are connected such
that a modification in one level triggers the modification of
the computations in the other.

Figure 1. The model of the reflection mechanism – hooksets
and metaobjects

These metaobjects are linked to reifications of the program
such as its behavior or its structure. This allows the
software to adapt its specific aspects during run-time
without enforcing any static modification. A model that
defines behavioral reflection is based on the concept of
metaobjects which are linked to hooksets which represent
certain execution points in the program. These metalinks
are defined by several attributes and conditions which are
dynamically evaluated.

During the run-time of the program, specific events trigger
the modification of metadata. These events are then
processed by the metalinks to select the hookset that should
be used in order to invoke the new reification. Once the
required link is found, the reification takes place and the
program adapts during run-time.

5 Uses of Reflection in User Interfaces

There are a number of applications of reflection in the field
of user interfaces. Some of them have been listed and
described in [1].

5.1 Master Instances

Master instances represent the functionality of their normal
instances i.e. any change in the formatting of the master
instance propagates the same change to all the instances of
that master instance. In this concept, the metadata as well as
the data are represented by a single data model. The
metadata is also displayed in the same format as the main
data and can be modified too.

The main factor in this type of functionality is the degree of
freedom that the user has to modify the metadata. Usually,

not all the metadata is available for modification to the user.

One of the main drawbacks of this type of application is
that the master instances are file-specific i.e. they act as
templates only for their own file and cannot be spanned
across a directory of files.

5.2 Generic User Interfaces

One of the most useful applications that reflection is useful
for is in the field of generic user interfaces. With an
advance in software technology, there are many programs
that can use data in different formats. These programs can
use these different data formats using a single data model
using reflection.

They provide a generic user interface that can accept almost
any type of data set, due to the underlying data model. This
allows the program to accept data of one type and use the
reflection mechanism to process this data along with a data
set of another type.

Thus, this allows the programs to accept a wide range of
data sets without needing to manually create data models
for each type of dataset.

5.3 Dynamic Help for User Interfaces

A major field of software development where reflection is
playing a very important role is dynamically generated help
for user interfaces. Due to the advance in software
technology, the software products that are being developed
are very complicated and hence, it is required that the users
are able to use the software without any difficulties.

From [3], some of the qualities that the help document
should provide are consistency, navigability, completeness,
relevance, conciseness, coherence, fidelity and reuse.

The user interface acquires information about its current
state and any other attributes present [2, 7]. Then, the help
document dynamically builds questions or tips based on the
actions just performed or on the current state of the program
(see Figure 2). Sometimes, the document also responds to
the cursor location, a key stroke etc.

Once the help comments are generated, the user interface
displays the reason why a specific event happened and how
the event can be rectified. For example, the user can enquire
why a particular button is disabled and what is required to
enable it.

When reflection was first used for generating help
dynamically, textual help documents were produced. The
questions or tips that were displayed were listed in a textual
format either in a menu task bar or as a separate document.
Gradually, dynamically generated animated help was
implemented. This enabled the users to understand the help
menus more clearly and made it easier for them to use the
systems.

2

Figure 2. An example of a dynamically generated help menu
based on actions that just took place

5.4 Other application areas

There are several other application areas where reflection
can be used in the software development. Some of them are
plug-in architectures, direct data access and document-
oriented user interfaces [1].

Plug-in architectures allow the user to add additional
functionality to a system, which changes the behavior of the
program during run-time. This uses structural and
behavioral intercessions, and shows a little bit of behavioral
introspections.

Direct data access allows the user to directly access the data
model and different types of data structures, which will
allow the program to accept these data structures too. This
type of mechanism can be handled by the reflection
process.

Metadata is normally stored in auxiliary dialogues which
have different life scopes with different variations. In
document-oriented user interfaces, the metadata and the
data is stored together as a whole document. This gives the
user an idea of the scope of the metadata in the document
and allows the metadata to be integrated with the data
model. Thus, reflection can be used for this purpose of
producing document-oriented user interfaces.

6 Applications using reflection in user
interfaces

Section 5 describes a number of application areas where
reflection can be used in user interfaces to make the system
more user-friendly. This section discusses some of the
applications and user interfaces that use reflection.

One of the major advances in user interfaces is the
automatic generation of context-sensitive dynamic help.

6.1 Dynamic Help Generation

In the early days of software development, the help manual
was hard-coded within the software code before its
compilation. Thus, the user would be able to view the same
help context repeatedly irrespective of the actions that they
performed. As the user interfaces got more complicated,
advances were made in displaying help tutorials. Automated
help manuals were implemented which displayed
information to the user related to the actions that had just
been performed.

In the earlier versions of the dynamic help generation, the
widgets in the user interface consisted of pre-conditions and
post-conditions [6]. These conditions needed to be fulfilled
in order to make the widgets enabled or visible. Whenever
the widget was disabled, the help menu would display to
the user that some of the conditions for that particular
widget were not met. Moreover, the help menu displayed
the conditions that needed to be set in order to make the
widget enabled. However, these versions had a few
drawbacks that rendered these versions inefficient. They
were based on an assumption that each widget was used
independently, whereas there were several cases where a
combination of widgets needed to be activated to perform a
specific task. This would have made it cumbersome to load
all the widgets into the help menu. Also, due to the large
number of widgets, it was not efficient to store a group of
condition constraints for each widget to generate the help
menu. Thus, newer user interface help generators evolved.
One of these help generators was HelpTalk which was
created in the UIDE (User Interface Design Environment)
[2].

6.1.1 HelpTalk – UIDE

HelpTalk is an automated help generator in UIDE which
clearly separates help access and help generation as two
different mechanisms. UIDE separates its application into
two separate models – the application and the interface
models. The application model can have a number of
interface models linked to it. Each of these models consists
of their respective actions and objects. These actions and
objects are linked to one another through action-object
mappings (see Figure 3).

Figure 3. Application and Interface models in UIDE

3

These models are represented by their respective
blackboards during the runtime of the UIDE. It also consists
of a User Interface Controller (UIC) which processes the
user’s interactions, invokes the application action and
displays dialogues in order.

HelpTalk has access to the UIDE’s entire knowledge base
and produces its comments using the state that the
blackboards are in. Once the help is generated, it displays
an animation of how to perform the specific task.

Using the knowledge base, HelpTalk generates the textual
help by explaining the reasons why the interface is in that
particular state. The reasons are phrased based on the
models present in the UIDE’s knowledge base. Then, it
generates an animation that displays the procedures
required to complete the textual help displayed.

There are a number of help generators that use a different
mechanism to that of HelpTalk. One of these generators is
CogentHelp.

6.1.2. CogentHelp

CogentHelp is a prototype tool that generates dynamic help
for user interfaces built using Java Abstract Windowing
Toolkit. It uses a different mechanism for creating help
documents using snippets and servers [3].

CogentHelp accepts a set of “human-written” snippets as an
input and attaches these snippets to their respective widgets
in the user interface. When the help system for a specific
widget is generated, the snippets for the specific widget are
linked together. The help system consists of different views
including a thumbnail and a tree view (see Figure 4).

Figure 4. CogentHelp consists of different views

The help topics are delivered through an HTTP server via a
Java Servlet API. When a help request is made, the help
server is loaded through a particular URL. This URL
encodes the current state of the system, some parameters
and attributes as well as the “snippets” for the
corresponding widgets. The generated HTML forms can be
used by the program authors to edit snippets using “frames”
which allow the authors to add in missing keywords in the

snippets.

The help authors generate exemplars which are frameworks
that support different text generation methodologies. These
exemplars follow object-oriented design and can inherit
from one another. They have been implemented in the
system to make use of Java’s object-oriented design and to
help the authors. Once the exemplars are prepared, the help
documents are generated through the server.

6.1.3 SmartAide

SmartAide is another help system which takes the
automated help generation to the next level [5]. Apart from
displaying step-by-step textual instructions to the user, it
also executes the action sequence of the task being
described and changes the state of the interface.

When a user requests for help, an AI planning system
generates an action sequence which are designed to execute
within the user’s workspace. It changes the state of the user
interface and completes the task that the user desires.

Thus, there are a number of advantages over the other help
generation methods. First, the action sequences are
executed by changing the state of the system and the help
authors do not have to worry about the intermediate states.
Also, the action sequences that are executed can be tailor-
made to suit the user’s preferences.

From Section 6.1, it can be seen that there are a few
applications that use reflection for developing user
interfaces by creating help manuals. Another example for
this is the CRYSTAL framework which is similar in
structure to the HelpTalk framework [7].

6.2 Operating Systems

There are a number of examples where reflection has been
used in other software fields such as operating systems [1].
Unix-style operating systems maintain a particular approach
known as the “all-file” approach. In this approach, all the
objects in the system are stored as files, including metadata.
Thus, this is the case of structural introspection and
intercession where the metadata and the data share the same
data model. This enables the files to be modified similarly.
Later versions of these operating systems are even storing
windows as files as well.

In the MS operating system, the registry directory service
also uses structural reflection.

One of the major applications of reflection in MS Office is
the use of master instances. As discussed in Section 5.1,
these master instances can be modified to alter all the
instances of the master instances.

6.3 META-Case tools

META-Case tools provide the users the ability to modify
the metadata and specify the functionality of the underlying

4

models. A user has to define a model using a diagram and
specify the model elements as well. Since the user has
direct access to the metadata and the functionality of the
model, these tools use structural reflection in their
implementations.

7 Summary and Conclusion

This paper discusses the role of reflection in user interfaces
in the field of HCI. Reflection has been used in the
programming aspect of computer technology, but has been
used for user interfaces recently. Some of the applications
that reflection is useful for has been listed, along with
examples in the software field where reflection has already
been used. These examples have been explained briefly to
give an overview of how reflection is implemented in these
systems.

In conclusion, reflection is a powerful mechanism that can
be used in user interfaces to improve the usability of
systems as these systems are becoming more complicated
day by day. It can be used to generate help documents or to
process different types of data structures. Even though
reflection has not been broadly used for this purpose, it has
a very important role to play in the field of HCI.

8 Future Works

Even though reflection is used in the generation of the help
documents, these documents only last for the session that
they have been used for. One of the next steps would be to
consider using reflection to store these help documents as
files which can be used in later sessions. Another step
would be to look into the use of reflection for other aspects
of the software development such as debugging and so on.
One of the final steps would be to conduct a research on the
completion of many of the current application frameworks
that use reflection and conclude whether reflection has been
successfully used in all the fields of the user interface.

9 References

1. Lutteroth, C., Weber, G. (2007), Reflection as a principle
for better usability. In Proceedings of the Australian
Software Engineering Conference, ASWEC, Art. No.
4159682, pages 297-306

http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4159
639/4159640/04159682.pdf?tp=&arnumber=4159682&isn
umber=4159640

2. Sukaviriya,P.N., Muthukumarasamy, J., Spaans, A. and
de Graaff, H.J.J. (1994) Automatic generation of textual,
audio, and animated help in UIDE: the user interface
design. In AVI’94: Proceedings of the workshop on

Advanced visual inter-faces, pages 44–52, New York, NY,
USA, ACMPress.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/200
000/192322/p44-
sukaviriya.pdf?key1=192322&key2=9342819021&coll=A
CM&dl=ACM&CFID=65452701&CFTOKEN=34290955

3. Caldwell, D.E. and White, M.. (1997) Cogenthelp: a tool
for authoring dynamically generated help for java guis. In
SIGDOC’97: Proceedings of the 15th annual international
conference on Computer documentation, pages 17–22, New
York, NY, USA. ACM Press.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/270
000/263371/p17-
caldwell.pdf?key1=263371&key2=0093719021&coll=AC
M&dl=ACM&CFID=65440510&CFTOKEN=94513471

4. Caromel, D., Cointe, P., Noye, J., Tanter, E. (2003),
Partial behavioral reflection: spatial and temporal selection
of reification. In OOPSLA’03 Proceedings of the 18th

annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, Vol.
38, Issue 11, ACM Press.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/950
000/949309/p27-
tanter.pdf?key1=949309&key2=1453819021&coll=ACM&
dl=ACM&CFID=65452701&CFTOKEN=34290955

5. Ramachandran, A., Young, R.M. (2005), Providing
intelligent help across applications in dynamic user and
environment contexts. In IUI ‘05Proceedings of the 10th

international conference on Intelligent user interface, ACM
Press.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/105
0000/1040893/p269-
ramachandran.pdf?key1=1040893&key2=8183819021&col
l=ACM&dl=ACM&CFID=65452701&CFTOKEN=342909
55

6. Foley, J.D., Gieskens, D.F. (1992), Controlling user
interface objects through pre- and post conditions. In
Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 189-194, Monterey, California,
USA.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/150
000/142787/p189-
gieskens.pdf?key1=142787&key2=6424819021&coll=AC
M&dl=ACM&CFID=65452701&CFTOKEN=34290955

7. Chau, D.H., Ko, A.J., Myers, B.A., Weitzman, D.A.
(2006), Answering why and why not questions in user

5

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/150000/142787/p189-gieskens.pdf?key1=142787&key2=6424819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/150000/142787/p189-gieskens.pdf?key1=142787&key2=6424819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/150000/142787/p189-gieskens.pdf?key1=142787&key2=6424819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1050000/1040893/p269-ramachandran.pdf?key1=1040893&key2=8183819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1050000/1040893/p269-ramachandran.pdf?key1=1040893&key2=8183819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1050000/1040893/p269-ramachandran.pdf?key1=1040893&key2=8183819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/950000/949309/p27-tanter.pdf?key1=949309&key2=1453819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/950000/949309/p27-tanter.pdf?key1=949309&key2=1453819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/950000/949309/p27-tanter.pdf?key1=949309&key2=1453819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/270000/263371/p17-caldwell.pdf?key1=263371&key2=0093719021&coll=ACM&dl=ACM&CFID=65440510&CFTOKEN=94513471
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/270000/263371/p17-caldwell.pdf?key1=263371&key2=0093719021&coll=ACM&dl=ACM&CFID=65440510&CFTOKEN=94513471
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/270000/263371/p17-caldwell.pdf?key1=263371&key2=0093719021&coll=ACM&dl=ACM&CFID=65440510&CFTOKEN=94513471
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/200000/192322/p44-sukaviriya.pdf?key1=192322&key2=9342819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/200000/192322/p44-sukaviriya.pdf?key1=192322&key2=9342819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/200000/192322/p44-sukaviriya.pdf?key1=192322&key2=9342819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4159639/4159640/04159682.pdf?tp=&arnumber=4159682&isnumber=4159640
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4159639/4159640/04159682.pdf?tp=&arnumber=4159682&isnumber=4159640
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4159639/4159640/04159682.pdf?tp=&arnumber=4159682&isnumber=4159640

interfaces. In CHI’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
Montreal, Quebec, Canada. ACM Press

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/113
0000/1124832/p397-
myers.pdf?key1=1124832&key2=6934819021&coll=ACM
&dl=ACM&CFID=65452701&CFTOKEN=34290955

6

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1130000/1124832/p397-myers.pdf?key1=1124832&key2=6934819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1130000/1124832/p397-myers.pdf?key1=1124832&key2=6934819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1130000/1124832/p397-myers.pdf?key1=1124832&key2=6934819021&coll=ACM&dl=ACM&CFID=65452701&CFTOKEN=34290955

