

 1

Constraint Based Drawing Tools

Tim Judkins

Auckland University

Auckland, New Zealand

Tjud007@ec.auckland.ac.nz

ABSTRACT

Constraint based drawings are useful in many applications

and have been an ongoing area of research since the early

60s. The specifics of six constraint based drawing tools

were examined; Spetchpad, CoDraw, Juno, Brair, EREP 2D

Sketcher and Juno 2. Common problems the different tools

faced were looked at, as well as the methods each used in

tackling these different problems. Overall it was found that

Juno 2 was the best of the tools examined, being a highly

powerful and extensible system. However, it still was not

completely successful at solving all problems constraint
based drawing tools face, having problems with the obvious

displaying of constraints on a diagram and the high level of

learning required to use some of its features. There is still

room for some improvements in these areas.

INTRODUCTION

Drawings with underlying constraints can be very useful

things in certain applications. Ideas of constraint based

drawing have been around for a long time and the concepts

surrounding them are actually useful in many other

applications, such as automatically generated user

interfaces and interactive diagramming tools. The main
work in this area has mostly been in two particular areas,

creating an overall tool to create constraint based drawings

with and the more underlying mathematical techniques and

processed to actually recalculate values of a drawing. This

report looks at some of the different specific tools that have

been created, rather than the pure mathematical research. It

then moves onto look at some of the common problems

associated with constraint based drawing tools and how the
different tools tried to overcome these problems when they

were encountered.

There are 6 different tools looked at in this report, they are

each introduced in the chronological order in which they

were created. Firstly Sketchpad (Sutherland, 1963),

considered the first constraint based drawing tool and

graphical user interface for that matter, then Juno (Nelson,

1985), a tool that brought in an underlying semantic
language to describe constraints. Next is CoDraw (Gross
1992) that looked mostly at the user interface and visual

representation of structures of constraints. Then Brair

(Gleicher and Witkin, 1993) which tried to make the whole

process of creating constraint based drawings more visual

and separated the establishing and maintaining of

constraints. Then it looks at the EREP 2D Sketcher (Fudos,

1993) which used some similar techniques to Juno in the

underlying semantic language for a drawing, and finally

Juno 2 (Heydon and Nelson 1994), which built upon much

of the work done in Juno, improving on it in a few

particular areas.

It is also of note to mention that the work in this area has

mainly been very linear, with little concurrent work. This
report highlights the specific areas of problems in creating a

good constraint based drawing tool and the things different

tools tried in solving these common problems.

SUMMARY OF TOOLS

Sketchpad

Sutherland (1963) presented the Sketchpad system which

allowed a user to interact with the computer screen with a

light pen. It was a huge step in human computer

interaction, being the first real graphical user interface and

actually allowing direct manipulation of an image on the

screen. But besides the advancements this brought in the

interaction space, the entire program it centered around was

in fact a constraint based drawing system. The editor itself

was fairly limited in that it only allowed the drawing of

points, straight lines, circles and arcs, but the real power
came from the constraints that could be made between these

components.

Figure 1 - User interface of the Sketchpad system

The basic constraints and relations Sketchpad included

were “to make lines vertical, horizontal, parallel, or

perpendicular; to make points lie on lines or circles; to

make symbols appear upright, vertically above one another

or be of equal size; and to relate symbols to other drawing

parts such as points and lines have been included in the

system”. It also had an option to see graphical icons that

represented the constraints attached to particular points and
lines. Over all, Sketchpad was a big stepping stone in both

the area of constraint based drawings as well as the general

areas of human computer interaction as a whole.

Juno

Nelson (1985) produced the constraint based solving

program Juno, which presented some new ideas on the

common problems already existing in the field. The key

feature it had was as well as having a 'what you see is what

you get' type editor, it also had an underlying semantic

language to describe pictures and their constraints. The two

parts were connected, so that any changes you made in the

image editor would be made in the code and any changes to

the code would reflect in the image. This made it so the

constraints were very precisely described and added another
very powerful ability of user defined procedures. Having

procedures just described as a programmatic method, it was

simple to create your own in the same way. This meant that

a user was able to create their own procedures and apply

them to a drawing if they wished.

The interface tried to give a visual representation of

constraints when adding them to a drawing by using

somewhat intuitive icons, such as a pencil to draw lines and

a showman to freeze points. The underlying constraint

solver of Juno also attempted to allow for dragging of parts

of the image while keeping the constraints active, but there
were problems with this which will be mentioned later.

Figure 2 - An example of a Juno picture and its textual

representation

CoDraw

CoDraw by Gross (1992) was a constraint based drawing

tool that did not provide too much in the way of different

constraints itself, but was more of a exploration into better

ways to represent things and build an underlying system.

Although there were not many constraints available to use,

CoDraw actually allowed users to define new constraints in

the program itself using linear algebra.

CoDraw‟s interface was also an aspect of importance in the

design. The drawing of diagrams was wanted to be a

simple point and click method, with constraints displayed

graphically so they can be seen on a diagram. The tool had

different icons for easy selection when drawing shapes, as

did the different constraints which were also added to a

diagram by simple pointing and clicking. The constraints

were also visually displayed on the diagram with different

representations so the user could see how they applied to a

drawing and predict how it would behave when modified.

There were also many different pallets that could be opened

to display and edit different areas of information, such as a
constraint graph displaying how constraints linked together

and a part graph showing assembly structures. These gave

the user access to see much of the information about a

drawing, without cluttering up the screen by trying to show

them all at once by default.

Figure 3 - CoDraw's worksheet, part graph and tool pallets

Brair

Further down the track of work on constraint based drawing

editors came Brair, created by Gleicher and Witkin (1993).

The main constraint based drawing problems Brair focused

on improving upon was making the creation of constraints

much easier and their visualization more obvious. Different

constraints were represented on the image with different

icons, making them easily identifiable by just looking at

them. The interface also used many horizontal and vertical
lines to display locations of lines on the drawing and

parallel constraints between them.

In their constraint solver, Brair also managed to keep

constraints across the drawing during dragging parts

 3

updated to create smooth transitions that showed how other

parts are affected, though this did stumble when drawings

became too complex. They also tried to separate the

declaration of constraints from the modification process,

meaning that having been already solved on declaration,

when being modified they just had to be kept in a solved
state, which was a simpler process.

Figure 4 - Brair editing a constrained drawing

EREP 2D Sketcher

Around the same time Brair was created, Fudos (1993)

made the Editable Representations 2D Sketcher, or EREP.

It used a similar idea to the Juno editor where the user

makes an initial sketch and adds constraints to it in the

drawing interface, then this is transformed into a high level

textual description which contains all the information
needed to represent the image. The constraint solver would

then take this high level description, find the solution and

return the result in the same high level description.

Figure 5 - The EREP user interface panel

One particlaurly nice feature the EREP had was that if a

constrained drawing that had been solved found multiple

possible solutions, it let the user choose which one was

correct. This was much better than a solver finding what it

thought was the correct solution and changing the drawing

to an incorrect state. The constraint solver was also able to
identify clusters of constraints that affected each other, to

better work out what needed to be changed on an edit to the

diagram.

Juno 2

The work in the original Juno was furthered by Heydon and

Nelson (1994) to create Juno 2. It used the same system of

a double view editor, with the graphical representation and

textual language describing the image and its constraints.

By having both these views visible at the same time,

someone who knew the meaning behind the text could quite

easily see what constraints existed in a diagram without
having to clutter it up with iconic representations. The

underlying language was also very extensible, allowing for

user defined constraints to be written and then used in the

editor.

Figure 6 - Double view of the Juno 2 editor

The constraint solver for Juno 2 was also very powerful, in
that it could deal with many of the harder problems such as

cyclic constraints. It would also preprocess to reduce the

number of variables the solver had to deal with as well as a

number of other techniques to speed up the whole solving

process. This meant that the solver worked very fast and

complex diagrams could be changed and dragged with near

real time changes. Another interesting factor of the

constraint solver was the concept of hints. Hints helped the
common problem many constraint solvers hit upon when

there were multiple solutions to a problem, of the solver

finding a correct solution that was not the one the user was

intending. Juno 2‟s hints used user supplied points or the

existing locations of points for an approximate area to look

for a numeric solution around. This was surprisingly good

at speeding things up and finding the solution a user was

intending the solver to find.

COMMON PROBLEMS

Displaying Constraints

One of the hardest areas in a constraint based drawing tool

is the visual representation of already created constraints in

a diagram to a user. The two main methods groups have

tried to solve this problem have been to annotate the

diagram as constraints are added, or to separate the

constraints out to a separate view.

Sketchpad largely did not show the constraints on the

interface and although it was possible to have it display

constraints relating to points and lines the graphical

representation was very unclear as to how they related to

the diagram. Juno, EREP, Juno 2 and CoDraw all separated

out the constraints to separate views, although CoDraw did

also give some representation on the diagram too. CoDraw

also allowed many other bits of information to be viewed

visually about constraints and how they interrelated. The

problem with the separation of constraints from the diagram

they relate to was that it often takes hard mental operations

to work out how they apply to the drawing. It also creates
hidden dependencies between the two, with no visual

information as to how they were connected but still having

the two inexorably tied together.

Brair took the other option of trying to display all

constraints on a diagram using icons and lines. There was

however problems with this too as drawings became larger

and more complex. As all constraints were displayed on

the screen, for larger drawings the display would get very

messy and cluttered. It also suffered from not being as

clear as to how some of the constraints related across a

diagram.

Constraint Declaration

Another area that different tools have tried to improve upon
is the process of adding constraints to a diagram. Often

constraints are simple for you to imagine them as you want

them to be but hard to add to a tool as intended. Also many

of the tools suffered from having only a few constraints

built in.

Generally all the tools tried to work the declaration of

constraints into the visual editor. Juno, EREP and Juno 2

also allowed for the declaring of constraints to happen in

their underlying language of the diagrams, which while

initially unintuitive was powerful once you got the hang of

it. CoDraw and Juno 2 allowed for user defined constraints

to be added, giving a major added power to them as tools,
making the systems more extensible and giving larger uses.

Initial Constraint Solving

The initial solving of constraints was an issue for most of

the earlier tools, where their solving system would find

unexpected solutions and the whole diagram could jump

unexpectedly. Sketchpad, Juno, Brair and CoDraw all

suffered from this problem.

EREP presented one solution to the problem, of detecting

when a constrained system had roots involved, meaning

that there were multiple solutions possible. It would then

tell the user this and give them the option of choosing
between the different possible solutions. The problem was

that this could not work for numeric solving methods

needed for some constraints to be solved.

Juno 2‟s method of hints was a different approach to the

problem that worked rather well. Having a solver that

could essentially be told „the solution should be somewhere

around here‟ made it so solving almost always lead to the

intended result the user wanted.

Constraint Maintenance

An issue all constraint based drawing tools have had to deal

with as well is the problem of how they maintain

constraints. It is generally preferred for the user to be able

to grab points or lines of the diagram and drag them, with

the constraints of the diagram remaining consistent
throughout. But as this essentially means solving all the

constraints for every single step while moving, for a

complex diagram which takes a significant time for the

solver to compute a solution, this is simply not possible.

All of Sketchpad, CoDraw, Juno, Brair and EREP suffered

from this problem, being able to deal with smaller diagrams

but having major slowdown as the diagrams became more

and more complex. Juno 2‟s solver however managed to

significantly improve its solving through the preprocessing

and variable packing and unpacking to be able to handle

reasonably complex diagram movement in real time. Its
hint system was also good for this, being able to supply the

previous positions of points as the hints for finding their

new locations as they moved.

General Limitations

Many of the drawing tools were limited in what they could

actually use in a drawing. Like Sketchpad, many of the

programs were limited to circles, arcs, lines and points, with

curved lines being much more difficult to create. The

learning curve for all the different tools was also quite high,

with none of them succeeding in making the drawing

process intuitive and easy, as well as keeping it powerful.

This is especially evident in some of the more complex

operations such as the declaration of new constraints in

Juno 2 being recommended to be left only to experts to
carry out.

SUMMARY

Across all six tools examined, all faced many common
problems they had to deal with. Often the tools chose to

deal with these problems in different ways and most tended

to focus more on trying to solve a particular subset of

problems. The problems that tools have had the least

success in solving seem to be the intuitive display of

 5

existing constraints in a drawing, and the problem of actual

methods of solving constraints, which is still ongoing

research today.

Of the tools examined Juno 2 was the best overall, with

good ability to tackle complex constraints and a high

extensibility. Although there were hidden dependencies
between the code view and the pictorial view of a drawing,

this helped to avoid much of the clutter that tools such as

Brair faced when there were a large number of constraints.

However what it did not manage to achieve, along with

none of the other tools, was to give a nice way to link the

constraints to the actual drawing. Some areas in Juno 2,

such as the creation of entirely new constraints, are also

very difficult and require large amounts of learning to do.

Although, once a user learns how to use it fully, Juno 2

becomes a very powerful constraint based drawing tool that

much can be done with.

DISCUSSION AND FUTURE WORK

Although there has been more recent work on the solving

methods in constraint based systems, since the creation of
Juno 2 there has not been a lot of work on creating more

drawing tools. Research has more seemed to focus on other

application of the constraint systems, such as user

interfaces.

There has been similar appliance of the ideas into computer

aided design tools for areas such as making precise models

of objects for engineering applications. A few of the tools

examined actually mentioned the ideas of moving their

constraint solving from two dimensions into three for their

future work, which is likely what lead to the creation of

some of these computer aided design tools. Juno 2‟s solver
could in fact do this already and is a nice example of being

able to scale a well made project.

But it seems that there has been no real demand for a new

tool to specifically make two dimensional constraint based

drawings. Generally, other than a nicer more intuitive

interface, Juno 2 did a very good job in creating a constraint

based drawing tool. It was highly extensible and was very

powerful in what it could do. It seemed to cause a lull in

the research field of making an actual editor and moved

research more into use in other applications and to the pure

solvers.

REFERENCES

1. Sutherland, I. E. (1963, May 21-23). SketchPad: A man-

machine graphical communication. Paper presented at

the AFIPS Spring Joint Computer Conference (pp. 329-

346) Detroit, Michigan. Online reproduction retrieved

March 28, 2008, from

http://www.guidebookgallery.org/articles/sketchpadama

nmachinegraphicalcommunicationsystem

2. Nelson, G. (1985) Juno, a constraint-based graphics

system. International Conference on Computer Graphics

and Interactive Techniques (pp. 235 - 243). New York,

USA: ACM.

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/

330000/325241/p235-

nelson.pdf?key1=325241&key2=7849396021&coll=GU

IDE&dl=GUIDE&CFID=22224249&CFTOKEN=4793
7893

3. Gross, M. D. (1992) Graphical constraints in CoDraw.

1992 IEEE Workshop on Visual Languages (pp.81 -

87). Seattle, USA

http://ieeexplore.ieee.org/iel2/895/6833/00275780.pdf?t

p=&isnumber=&arnumber=275780

4. Fudos, I. (1993) Editable Representations for 2d

Geometric Design. Master's thesis, Purdue University

http://citeseer.ist.psu.edu/cache/papers/cs/1432/ftp:zSzz

Szftp.cs.purdue.eduzSzpubzSzfudoszSzMsczSzMsc.pdf/

fudos93editable.pdf

5. Gleicher, M., & Witkin, A. (1993) Drawing With
Constraints. The Visual Computer 11(1), 39-51.

http://citeseer.comp.nus.edu.sg/cache/papers/cs/1814/htt

p:zSzzSzwww.gleicher.comzSzmikezSzPaperszSzbriar.

pdf/drawing-with-constraints.pdf

6. Heydon, A., & Nelson, G. (1994) The Juno-2

Constraint-Based Drawing Editor. Digital Systems

Research Center. California, USA
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/

papers/cs/133/ftp:zSzzSzgatekeeper.dec.comzSzpubzSz

DECzSzSRCzSzresearch-reportszSzSRC-

131a.pdf/heydon94juno.pdf

http://www.guidebookgallery.org/articles/sketchpadamanmachinegraphicalcommunicationsystem
http://www.guidebookgallery.org/articles/sketchpadamanmachinegraphicalcommunicationsystem
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325241/p235-nelson.pdf?key1=325241&key2=7849396021&coll=GUIDE&dl=GUIDE&CFID=22224249&CFTOKEN=47937893
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325241/p235-nelson.pdf?key1=325241&key2=7849396021&coll=GUIDE&dl=GUIDE&CFID=22224249&CFTOKEN=47937893
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325241/p235-nelson.pdf?key1=325241&key2=7849396021&coll=GUIDE&dl=GUIDE&CFID=22224249&CFTOKEN=47937893
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325241/p235-nelson.pdf?key1=325241&key2=7849396021&coll=GUIDE&dl=GUIDE&CFID=22224249&CFTOKEN=47937893
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325241/p235-nelson.pdf?key1=325241&key2=7849396021&coll=GUIDE&dl=GUIDE&CFID=22224249&CFTOKEN=47937893
http://ieeexplore.ieee.org/iel2/895/6833/00275780.pdf?tp=&isnumber=&arnumber=275780
http://ieeexplore.ieee.org/iel2/895/6833/00275780.pdf?tp=&isnumber=&arnumber=275780
http://citeseer.ist.psu.edu/cache/papers/cs/1432/ftp:zSzzSzftp.cs.purdue.eduzSzpubzSzfudoszSzMsczSzMsc.pdf/fudos93editable.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/1432/ftp:zSzzSzftp.cs.purdue.eduzSzpubzSzfudoszSzMsczSzMsc.pdf/fudos93editable.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/1432/ftp:zSzzSzftp.cs.purdue.eduzSzpubzSzfudoszSzMsczSzMsc.pdf/fudos93editable.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/1814/http:zSzzSzwww.gleicher.comzSzmikezSzPaperszSzbriar.pdf/drawing-with-constraints.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/1814/http:zSzzSzwww.gleicher.comzSzmikezSzPaperszSzbriar.pdf/drawing-with-constraints.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/1814/http:zSzzSzwww.gleicher.comzSzmikezSzPaperszSzbriar.pdf/drawing-with-constraints.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/133/ftp:zSzzSzgatekeeper.dec.comzSzpubzSzDECzSzSRCzSzresearch-reportszSzSRC-131a.pdf/heydon94juno.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/133/ftp:zSzzSzgatekeeper.dec.comzSzpubzSzDECzSzSRCzSzresearch-reportszSzSRC-131a.pdf/heydon94juno.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/133/ftp:zSzzSzgatekeeper.dec.comzSzpubzSzDECzSzSRCzSzresearch-reportszSzSRC-131a.pdf/heydon94juno.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/133/ftp:zSzzSzgatekeeper.dec.comzSzpubzSzDECzSzSRCzSzresearch-reportszSzSRC-131a.pdf/heydon94juno.pdf

