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ABSTRACT
This paper attempts to provide an insight into current Brain-
Computer Interaction (BCI) research, and review the state
of the art. It provides a general overview of the methods of
data acquisition (primarily focussing on non-invasive EEG
BCI technology), detailing specific studies into pivotal ex-
periments in BCI research, such as experimentation perfor-
med into the “Common Spatial Pattern” analysis technique
popularised by C. Guger (cited by 55 other papers, accor-
ding to Google Scholar). Further, it attempts to explain in
non-scientific terms how the data obtained from an EEG is
analysed in a useful manner. Finally, the paper describes so-
me practical applications of BCI technology, such as aiding
physically disabled persons and as an input device for com-
puter games.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
With the recent announcement of the OCZ “Neural Image
Actuator” (NIA) in 2008 [OCZ, 2008], media attention has
been directed towards the BCI community, and the potential
it presents. While BCI technology is still in very early stages,
research has been ongoing from as early as 1994 [Wolpaw
and McFarland, 2004], and is now reaching a more mature
level. Research completed at the Pontifical Catholic Univer-
sity of Peru indicates that commodity hardware with as little
as 256MiB of RAM can now approach real-time BCI trans-
lation [Tupayachi et al., 2006], and OCZ make note of the
proliferation of multi-core CPUs in modern hardware as one
of the reasons their product has become commercially via-
ble. There are still several complications in the path forward
for using BCIs as viable input mechanisms, but research con-
tinues at an extremely rapid pace.

Due to the clinical risks associated with invasive BCIs, most
current research focusses on non-invasive methods of in-
teracting with the brain. Ostensibly, the most popular non-

invasive BCI technology is Electroencephalography (EEG),
in which electrodes are placed on the scalp of a person in
order to measure brain activity. While not as accurate as in-
vasive BCI technology, EEGs can still provide interpretable
data to researchers.

However, non-invasive BCIs preclude any form of compu-
tational output being fed back to the brain (as in neurofeed-
back). Non-invasive BCI technology means that the brain is
viable as an input device. This has led to applications across
several domains, including as an assistive technology for di-
sabled persons (replacing joysticks on wheelchairs, for in-
stance), for video-gaming, or even to aid in musical input.
Mention that this focusses on input only.

READING THE BRAIN
The core focus of current BCI research is how best to use
data obtained from Electroencephalogram (EEG) readings,
and standardisation of practises involved in obtaining this
information. Consequently, several academic papers (such
as [Blankertz et al., 2004]) revolve around the use of diffe-
rent algorithms for decreasing errors found in data, and in-
creasing the accuracy of EEG readings while increasing the
efficiency of algorithms used.

Methods of Reading the Brain
Methods of reading the brain broadly fall into two catego-
ries: invasive and non-invasive. Invasive methods of obtai-
ning data from the brain involve physically attaching elec-
trodes to the brain of the subject, and carry a large amount of
risk. The two prominent fields of research in this regard in-
volve inserting electrodes into the brain [Gopal et al., 2006],
or inserting electrodes onto the brain, in the subdural space
(the space between the skull and the brain) as used in Elec-
trocortographical readings [Leuthardt et al., 2004].

The data obtained from invasive BCI technology is of a sub-
stantially higher spatial resolution than that obtained from
non-invasive methods; [Leuthardt et al., 2004] estimates the
spatial resolution of ECoG technology to be as small as
tenths of millimetres, as opposed to centimetres in EEG
technology. However, the substantial clinical risk involved
with directly attaching foreign objects to the brain means
that invasive BCI research is primarily executed on “non-
human primates” (as discussed in [Wolpaw and McFarland,
2004], [Gopal et al., 2006]). Figure 1 displays a picture ob-
tained by [Leuthardt et al., 2004] during ECoG research
(subjects in this case were healthy human patients who vol-
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Figure 1. An image obtained from a report by [Leuthardt
et al., 2004], depicting electrodes attached to a human
brain during ECoG based BCI research. The clinical
risks of such research cannot be understated, and other
invasive research at this stage focusses on “non-human
primates” [Gopal et al., 2006].

unteered and consented to the trial), illustrating how ECoG
systems are deployed.

Non-invasive BCI interfaces typically revolve around the use
of EEG technology, however, there has been some success
recently using functional Magnetic Resonance Imaging (fM-
RI) [Wang et al., 2005]. Most commonly referenced acade-
mic papers (such as [Wolpaw and McFarland, 2004], [Gu-
ger et al., 2000], [Tupayachi et al., 2006], [Blankertz et al.,
2004]) make use of the substantially more mature EEG tech-
nology, and this paper focusses on the current state of EEG
research. This attention is spurred by participants at the 2005
BCI conference voting non-invasive EEG research “more
desirable” [Birbaumer, 2006].

How Electroencephalograms Work
EEG data is obtained by placing electrodes on the scalp of a
subject. These electrodes measure the electrical potential at
the positions they have been placed, which is indicative of
brain activity. In turn, based on the positions and patterns of
brain activity, useful data is obtained.

One of the major issues associated with using data obtai-
ned from EEGs as opposed to data obtained from invasive
methods is that the spatial resolution, and the accuracy of
the data obtained is decreased. Typically, electrodes used in
EEG based experiments can only obtain amplitudes of 10µ V
to 50µ V (as found by [Leuthardt et al., 2004], [Tupayachi
et al., 2006]) compared to an electrical earth, meaning that
equipment providing amplification of significant magnitude
is required to obtain useful data. According to one experi-
ment, [Tupayachi et al., 2006], equipment capable of appro-
ximately a 50,000 level gain was necessary to obtain useful
data. This can introduce significant noise to the signal. Con-
versely, data obtained via ECoG can have an amplitude of
up to 100µ V [Leuthardt et al., 2004]. In order to address
this problem, typically a form of conductive gel is placed
between the EEG electrode and the scalp (in order to redu-
ce electrical impedance). While this provides some success
(in one experiment, the reduction in impedance is measu-
red to be in the range of 5kΩ [Wang et al., 2005]), it cannot

Figure 2. An image describing the international “10-20”
system for the placement of electrodes, designed so that
EEG researchers could easily describe the locations of
electrodes placed on the scalp of a subject. All odd num-
bered electrodes are on the left hemisphere, and all even
numbered electrodes are on the right hemisphere. The
name “10-20” is derived from the fact that the distance
between electrodes is either 10% or 20% of the horizon-
tal or vertical length of the skull.

be denied that invasive BCIs provide substantially more via-
ble data, and the larger BCI community does recognise this
fact [Birbaumer, 2006].

However, data obtained via EEG is still perfectly usable. Fi-
gure 2 shows the locations of electrodes placed according
to the international “10-20” system. Typically, current BCI
techniques involve obtaining data from the primary senso-
rimotor cortex, and thus several experiments focus on data
obtained from electrodes in positions C3 and C4. Figure 3
shows the positions in which electrodes were placed in one
of the seminal papers in BCI research [Guger et al., 2000].

The sensorimotor cortex is used as a primary source of in-
formation in several BCI experiments due to the viability
of sensorimotor rhythms as a control mechanism. This is be-
cause when imagining physical movement (for instance, mo-
ving your left or right hand), sensorimotor rhythms display
an “event-related de-synchronisation” close to contralateral
primary motor areas. That is, when one imagines physically
moving, a notable difference in electrical rhythms the brain
produces can be observed, especially close to sections of the
brain we now recognise as governing movement - in both
hemispheres.

Hence, Electroencephalograms work by measuring electri-
cal potentials across the scalp of a subject. These potentials
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Figure 3. An image showing the locations of electrodes
placed on the scalp of a subject in experiments perfor-
med by [Guger et al., 2000]. The two electrodes refe-
renced to positions C3 and C3 are marked.

are sampled at regular intervals (which in turn allow obser-
vers to see “rhythms” in electrical activity) and amplified to
a level useful for study.

Approaches Used to Obtain Useful Data for Brain-
Computer Interaction
The general approach for making use of BCI data is to
“train” the system for a given subject, and have the compu-
ter react to learned patterns. As mentioned, one of the most
common topics of recent research papers is how to increase
the accuracy of the data obtained; that is, how to correctly re-
cognise brain activity while reducing the effects of artefacts.
Artefacts in EEG data are primarily caused by electromyo-
graphic (EMG) or electrooculographic (EOG) activity in the
brain. EMG signals are produced by nearby muscle activity
(such as subjects blinking [Miranda and Brouse, 2005]), and
EOG signals are produced by subjects moving their eyes.

Figure 4 is an image obtained from experiments performed
by [Guger et al., 2000]. It illustrates a method known as
“common spatial patterns”, or CSP. The images represent
calculated sets of CSP for a test subject; the black dots (of
which there are 27) indicate the positions of the electrodes,
and the crosses indicate the positions of electrodes C3 and
C4 as according to the 10-20 system (Figure 2). The white
areas represent weighting; the whiter the area, the more im-
portant the electrodes are for determining usable data from
this particular subject. C. Guger’s experiment used this in-
formation (obtained from a training session) as an approach
to reducing the effects of artefacts, however, in most cases it
took up to 160 trials to produce accurate data. More recent
studies echo this approach, using mathematical algorithms
in order to allow the BCI software to adapt to user input, re-
cognising active areas of the brain and “weighting” them in

Figure 4. An image showing the weighting of electrode
importance in finding useful data from 27 channels of
EEG, for a particular subject. The white areas indicate
more “important” regions, which receive a higher weigh-
ting. This image is obtained specifically from experimen-
tation performed by [Guger et al., 2000].

order to obtain better data [Wolpaw and McFarland, 2004].
However, as recently as 2005 it has been noted that the ex-
tensive training sessions necessary for EEG BCI technology
are actively hampering research [Birbaumer, 2006].

In [Wolpaw and McFarland, 2004] (in which an attempt at
moving a cursor in two dimensions is attempted), data obtai-
ned at regular time intervals underwent mathematical analy-
sis (an autoregressive function) in order to obtain the relevant
amplitudes, and the changes in them. Pattern recognition of
this data is interpreted according to the specific subject, and
subsequently, the cursor is moved on the screen. [Wolpaw
and McFarland, 2004] makes specific note of the significant
improvement in BCI technology with respect to time; Figu-
re 5 shows the increase in accuracy of the technology since
an experiment in 1994 [Wolpaw and McFarland, 2004].

An Assessment of the State of EEG-based BCI Techno-
logy
As this paper is written from the perspective of an observer
of the BCI community rather than a participant, some sali-
ent observations can be made. Chiefly is the concern with
the variance in the early research completed. Clinical con-
figurations differ widely, with participants in the 2003 BCI
Competition [Blankertz et al., 2004] using from six to sixty-
four electrodes depending on the situation. This indicates
that while research is ongoing, it would perhaps be bene-
ficial to the BCI community to push towards a standardised
solution in order to promote the research community, and
allow differing groups to accurately compare results.

The BCI community itself also recognises this issue, particu-
larly with regards to “the variance in BCI designs” presented
at the first International Meeting of Brain-Computer Techno-
logy [Mason and Birch, 2003]. A paper released by the IEEE
in 2003 notes the necessity of a “common functional model
of a BCI system”, in order to facilitate comparisons between
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Figure 5. An image showing the relative improvement in
R2 from 1994 to 2004. R2 measures the correlation bet-
ween the input variables of a BCI to the desired outcome.
That is, the correlation between, for instance, the hori-
zontal signals read from the brain, and the desired ho-
rizontal signal for the subject to perform the required
operation [Wolpaw and McFarland, 2004].

differing technologies [Mason and Birch, 2003]. The paper
proposes such a functional model, defining terms necessary
for a system to be classed as a BCI system, and details the
creation of this framework. The framework intends to allow
direct comparison of BCI systems, by separating them into
separate functional areas which can be analysed.

It must be noted that since the proposal of the framework, si-
gnificant strides have been made towards standardising BCI
systems. The development of the BCI2000 software paid
specific attention to the framework [Schalk et al., 2004],
stating that “BCI2000 is based on a model that can descri-
be any BCI system and that is similar to the one described
in [Mason and Birch, 2003]”. Since its inception, BCI2000
has released two major versions, and has made its source co-
de available to contributors. It is currently used in several
experiments (such as in [Cincotti et al., 2007]), and is free
to non-profit organisations (as stated on their site [BCI2000,
2008]).

PRACTICAL APPLICATIONS
As mentioned, current BCI research focusses on increasing
the accuracy of data obtained (and the speed at which it
is processed), as opposed to how to use that data. Howe-
ver, there are several practical applications for BCI being
actively researched, including helping physically disabled
(but mentally able) persons, video-gaming, and even deve-
loping a Brain-Computer Music Interface (BCMI) [Miranda
and Brouse, 2005]. The research into these areas is widely
varied (but active), and the diversity of the application do-
mains demonstrates that BCIs could fundamentally change
the current HCI paradigm.

BCIs for Disabled Persons

Figure 6. An image depicting the path followed by a cur-
sor being moved in a 2-dimensional space by test subjects
in recent research [Wolpaw and McFarland, 2004].

Several experiments approach this particular application do-
main. It has the potential to drastically increase the quality
of life for persons with physical (rather than mental) disa-
bilities; for instance, people with Spinal Muscular Atrophy
type II (SMA II) or Amyotrophic Lateral Sclerosis (ALS)
have been targetted by research papers as standing to benefit
from a non-invasive BCI.

There are several individual ways in which this particular do-
main can be approached, however. Experimentation in 2004
[Wolpaw and McFarland, 2004] attempted to demonstrate
the viability of a BCI as a two-dimensional control inter-
face. While fully abled persons were used as test subjects,
the testing confirmed that without moving a muscle (elec-
tromyographic activity was monitored), subjects were able
to move a cursor through two dimensions with a reasonable
rate of accuracy (up to 92%). Figure 6 shows the paths fol-
lowed by the cursor during testing; the cursor started in the
middle of the screen, and patients attempted to move it to the
locations displayed purely through EEG activity.

This experimentation paved the way for further research. In
2007, F. Cincotti used the previously mentioned BCI2000
software framework to further study the viability of BCI de-
vices in order to aid disabled persons, as opposed to ocular
monitors (using eye movement as a guide) or head trackers
[Cincotti et al., 2007]. The experiment compared the results
of able-bodied persons to those of disabled persons suffering
from SMA II, and attempted to expand the possibilities of
BCI software. Instead of focussing purely on the movement
of a 2D entity (correlating to a wheelchair), F. Cincotti’s ex-
periment studied other aspects where a BCI may be useful
- for instance, in increasing home automation (such as tur-
ning on lights in a room), reducing the reliance on a third-
party caregiver for disabled persons. The experiments were
completed with some success, and the paper notes that whi-
le a “larger cohort of patients” are needed in order to prove
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the clinical significance of the study, the “BCI application is
promising in enabling people to operate an environment con-
trol system”. This is a particular application domain towards
which EEG BCIs are useful; [Birbaumer, 2006] asserts that
they are capable in providing “binary” control - that is, for
instance, turning a light off or on.

Finally, experiments completed by the Pontifical Catholic
University of Peru attempt to ratify the viability of BCI re-
search in Peru, making specific note of the significant in-
vestment traditionally required for BCI research [Tupaya-
chi et al., 2006]. P. Tupayachi’s research proves that BCI
research can be completed on a computer with only MAT-
LAB and 256MiB of RAM. The hardware external to the
PC consisted of cheaper components, such as the ATmega32
(a commodity electronic chipset). The paper asserts that this
particular BCI (which only collects 20 channels of EEG)
is specifically oriented to the “later construction of a brain
computer interface” which could “offer aid to people motor
and/or communication disabilities”. Again, the results (the
construction of a device capable of obtaining BCI data wi-
thout significant expenditure) prove promising.

BCIs in Video-Gaming
As mentioned, a commercial BCI designed for this particular
realm already exists. It should be noted that while the adver-
tising for the product claims it uses EEG activity, the device
only uses three electrodes placed directly on the forehead - a
significantly different location to the typical C3 and C4 po-
sitions targeted by the BCI research reviewed in this paper.
As there is no documentation released for the OCZ NIA, one
must assume it attempts to interpret different signals to those
traditionally used [OCZ, 2008].

Regardless, the commercial viability of a BCI as an input
mechanism for video-gaming is a topic that has not gone un-
noticed by the wider community. A paper released by the
University of Twente, in conjunction with a Microsoft em-
ployee, attempts to investigate “the possible role of brain-
computer interaction in computer games” [Nijholt and Tan,
2007]. Rather than regarding a BCI input as the primary
source of information on a player, however, the paper in-
vestigates the possibility of using it to augment an existing
interface - by “evaluating the human” during interaction. In-
terestingly, the paper notes that a BCI could aid in traditional
HCI usability testing, perhaps using information obtained to
directly evaluate cognitive load. The paper is speculative, but
presents some interesting possibilities nonetheless.

CONCLUSION
As can be seen, significant strides have been made in BCI re-
search since its inception. Marked improvements have been
made in the accuracy of data obtained, as evidenced by [Wol-
paw and McFarland, 2004], in which R2 increases as much
as four times (Figure 5). Further, alongside the ever-accurate
predictions of Moore’s Law (that the number of transistors
on processors doubles roughly every year and a half; from
which a correlation can be drawn to performance), the re-
duction in price of hardware (and the increase in availabili-
ty of hardware) has led to non-invasive EEG BCI technolo-

gy becoming more commercially viable ( [Tupayachi et al.,
2006], [OCZ, 2008]).

Meanwhile, the BCI research community has put significant
effort into standardising research. While the 2003 BCI com-
petition [Blankertz et al., 2004] notes a wide variance in
equipment used, a subsequent conference led to the deve-
lopment of a framework [Mason and Birch, 2003] allowing
for better comparison of BCI results; in turn furthering re-
search efforts. The consequent development of the BCI2000
software [Schalk et al., 2004] has further solidified the ef-
fort, and several recent experiments (such as [Cincotti et al.,
2007]) have made use of the software.

Finally, it is worth mentioning the ever widening field of
application domains. While it has been noted that research
currently focusses on developing BCI technology as an aid
to disabled persons (noted by [Nijholt and Tan, 2007], and
evidenced by [Cincotti et al., 2007], [Guger et al., 2000]), the
potential exists to apply the technology in video-gaming [Ni-
jholt and Tan, 2007], HCI usability testing or even musical
markets [Miranda and Brouse, 2005]. As research continues
(and technical barriers such as cost disappear), one can only
expect the practical applications to expand rapidly.

REFERENCES
BCI2000 (2008). Bci2000 website.
http://www.bci2000.org.

Birbaumer, N. (2006). Brain–computer-interface research:
Coming of age. Clinical Neurophysiology, (117):479–483.

Blankertz, B., Müller, K.-R., Curio, G., Vaughan, T. M.,
Schalk, G., Wolpaw, J. R., Schlögl, A., Neuper, C.,
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