
 1 

Command Line Interactions using Natural Language 
James Kim 

Department of Software Engineering 

University of Auckland 

jkim202@ec.auckland.ac.nz 
 

ABSTRACT 

In recent years, graphical user interface (GUI) has rapidly 

dominated human-computer interaction. Although GUI is 

favored by many ordinary users, its limitations have been 

heavily noticed, especially with modern systems that 

contain rich set of functionalities. In particular, scalability is 

the key concern, which leads to usability and performance 

issues. GUI fails to scale with increasing number of 

functionalities. Another popular user interface is command 

line, which outperforms GUI in terms of speed. Despite 

many advantages a command line interface (CLI) has over 

GUI, CLI is almost merely used by software developers. 

Typical CLI requires special knowledge such as syntactical 

rules, command names and optional arguments, therefore 

ordinary users find it rather complex to use. In order to 

resolve dilemmas of two major user interfaces, enhanced 

ways of interacting with command lines have been 

proposed. Improvements in command line interaction 

include providing natural language commands, adaptive 

commands, and global-level command lines. This report 

explores these enhancements, focusing on the utilization of 

natural language and the mapping techniques between 

natural language expressions and commands. 

INTRODUCTION 

Natural language processing has been attempted in various 

papers. While researches agree natural language processing 

helps to build user-friendly command lines, it is still 

considered extremely difficult (Raskin, 2008). In order to 

prove the claim which suggests presence of user-

unfriendliness in current GUI and CLI, an early study 

(Hayes, 1985) examined advantages and disadvantages of 

natural language interfaces and factors that affect the utility 

of natural language interfaces. Manaris, Pritchard and 

Dominick (1994) developed a restricted natural language 

interface for the Unix operating system. Michos, Fakotakis 

and Kokkinakis (1996) revealed various techniques to 

achieve an adaptive natural language interface that is 

portable, can handle complex commands and can learn new 

commands. Kate, Wong and Mooney (2005) proposed a 

similar concept of learning transformation rules. Their 

approach is based on incremental mapping of natural 

language sentences with formal query or command 

language. Little and Miller (2006) presented keyword 

commands which merely focuses on the presence of 

keywords in a command. They developed a Web-based 

prototype that demonstrates translation of “keyword 

commands” into executable code. The idea of attaching 

keywords or labels to resources such as files, emails, and 

photos improve the ability of searching commands 

(Norman, 2007). Norman explored the current search 

functions in the Web and operating systems. In contrast to 

previous proposals, Raskin (2008) stretched the concept one 

step further by illustrating a global-level command line 

interface called the “linguistic command line”. 

This report discusses drawbacks of current user interface 

paradigms and compares various articles that attempt to 

enhance human-computer interaction through utilization of 

natural language commands. This report also explores 

partial details of mapping techniques that have been applied 

in order to produce their solution. Potentials and limitations 

of natural language processing have also been identified. 

LIMITATIONS OF CURRENT USER INTERFACES 

Hayes (1985) suggested that two categories of user 

interface are graphical and command line or combination of 

the two. This fact still stays valid today. However, these 

two major user interface paradigms are facing many 

problems with demand of both humans and computers 

today. 

Limitations of GUI 

Until now, GUI has served as an important user interface. 

GUI is still considered as a valuable interaction channel 

between humans and computers, but they fail to scale with 

the demands of modern systems (Norman, 2007). In GUI, 

number of menu items is increasing proportionally with 

growing number of functionalities. An immediate solution 

to overcome this problem was to divide the system into 

smaller applications by compartmentalizing the tasks. Each 

of the applications would provide specific collection of 

functions. However, different problems emerge through 

compartmentalization (Raskin, 2008). Firstly, needless 

compartmentalization forms the necessity to switch 

between applications, which lead to performance reduction 

 



 

and user frustration. Also, redundancy concerns caused by 

overlapping functions are not avoidable. Similarly, 

scalability issues are also noticed in file systems, where it 

has become inefficient to find something in typical huge 

hierarchical file structures. These examples already provide 

enough evidence that the window-icon-menu-pointing-

device (WIMP) paradigm, which forces recognition, does 

not fulfill the requirements of current systems in terms of 

usability. 

Limitations of CLI 

Despite the fact that textual interface has many advantages 

over a visual interface including functionality and 

performance, classic CLI is overall less popular than GUI. 

While command languages assume user to be expert 

enough to carry out their tasks (Michos et al., 1996), novice 

and intermediate users experience significant loss of 

productivity (Manaris et al., 1994). Memorizing command 

names and command line options are considered most 

difficult in utilizing typical CLI (Raskin, 2008). Also, strict 

syntax rules largely contribute in raising the complexity. 

Little and Miller (2006) found that other barriers involve 

learning and switching between different command 

languages and learning the Application Program Interface 

(API) of the domain, which can be very large, especially for 

end-user programming. 

NATURAL LANGUAGE COMMAND LINE INTERACTION 

Despite the presence of difficulty in using command 

languages, it has more advantages than GUI. In fact, they 

are still being used in many applications, usually without 

the users’ intentions. People do not notice simple command 

line interfaces that have been incorporated into systems, 

such as the search box on the Web and page range box in 

Microsoft Word’s printing options. Unnoticeable interface 

is a sign of a good interface (Raskin, 2008). Wide range of 

functions can be effortlessly provided by a text interface 

compared to GUI, which lack scalability (Raskin, 2008). 

The key reason is that text is so much lighter than graphics. 

The ability for pure texts to be easily viewed, edited, copied, 

pasted, stored and shared is offered in almost every user 

interface and application (Little & Miller, 2006). 

This section discusses how natural language enhances 

command line interaction, the solutions that have been 

proposed, the approaches in mapping natural language to 

command language, and the key findings in researches. 

Advantages of Natural Language Utilization 

Natural language interface’s key advantages over other 

paradigms had been recognized early (Hayes, 1985). Firstly, 

commands or queries can be expressed in many ways, 

hence the expressiveness. Secondly, there is no learning 

involved since everyone is already familiar with natural 

language. Another benefit is its naturalness. People are 

comfortable with “natural” language. Michos et al. (1996) 

also pointed out that natural language broadens audience by 

facilitating the use of command languages. Flexibility and 

robustness are other key advantages of natural language. 

This overcomes the problems of old CLI outlined in the 

previous section by allowing variations of commands that 

are not strictly adhered to syntax rules (Norman, 2007). All 

of these advantages contribute to increased user-friendliness 

(Kate et al., 2005). 

Proposed Solutions 

Prior to building natural language interface, it is important 

to recognize key factors that may affect the utility of natural 

language. These have been identified early, which include 

types of user, interface hardware, application domain, input 

medium, degree of coverage, and combination with other 

input types (Hayes, 1985). 

At present, it is impossible to fully anticipate the user input. 

Norman (2007) mentioned that natural language succeeds 

with well-defined tasks but natural language processing is 

still considered extremely difficult (Raskin, 2008). 

Therefore, the following solutions provide close-to-natural-

language commands based on restricted natural language 

interface. Translating natural language expressions to 

commands is a very sophisticated task. Some papers 

revealed their mapping procedures on specific domains, 

which will be discussed later. 

Earlier research (Manaris et al., 1994) focused on 

developing a natural language interfaces for operating 

systems (NLIOS). Their primary goal was to provide 

“natural” interaction between users and the operating 

system. They built a natural language interface for the Unix 

operating system, using a user interface management 

system called Natural Language Interface to Operating 

System Generation Environment (NALIGE). NLIOS 

integrated synonymy and polysemy of words, which refers 

to words that have same meaning and words that have more 

than one meaning, respectively. For example, “create” and 

“make” or “file” and “files” are correspondingly recognized 

to have same meaning and treated identically due to 

synonymy. In contrast, “move” either means rename or 

change directory depending on the rest of the expression 

due to polysemy. These attributes create flexibility by 

enabling variants of natural language commands to be 

accepted and interpreted equally. The following phrases 

equivalently create a new directory called x: “create x”, 

“make directory x”, “new directory x”, “create directory 

named x”, “create new directory x”, “make a new directory 

x”, and “make a new directory named x”. 

Similarly, Michos et al. (1996) proposed a method of 

interpreting variants of command expressions equivalently, 

by using semantic grammar rules that remove unnecessary 

information. The command “I would like you to display me 

the files of the directory GAMES” would ignore all 

redundant words such as ‘I’, ‘would’, ‘like’, ‘you’, ‘to’ and 

‘me’. Therefore same function can be expressed in multiple 

styles. This system also supports synonyms, handling 

alternatives of commands more effectively. For example, 

“Show the contents of the list GAMES” executes the same 



 3 

command as before. In addition to the benefits offered by 

Manaris et al. (1994), Michos et al.’s system can expand its 

knowledge base through a learning paradigm called User-

Assisted Symbolic Concept Acquisition. It is capable of 

learning new vocabulary and actions by both casual users 

and system developers, which significantly increases 

flexibility. 

Self-expandable interface has also been introduced by Kate 

et al. (2005). They developed SILT (Semantic 

Interpretation by Learning Transformations) based on two 

domains, RoboCup Coach Language (CLANG) and 

database query application. SILT uses a novel approach in 

mapping natural language sentences into domain-specific 

commands using transformation rules. The system learns 

transformation rules by iteratively comparing patterns 

found in natural language with templates based on 

command language. 

In contrast to previous methods, Norman (2007) anticipated 

a simple, yet an effective solution, “enhanced searching”. 

Search engines on the Web have transformed into answer 

services as users are increasingly typing commands, instead 

of search terms, for prompt answers. Modern search 

engines support search commands based on natural 

language syntax. On Yahoo!, the phrase “time in Nagoya” 

returns the current time in Nagoya and on Live.com, “cars 

in China” returns “15 per 1000 people”. Similarly, 

definitions from various knowledge bases are immediately 

returned by expressions like “define: polysemy” on Google. 

Many search engines are capable of tolerating command 

variants as well. Grammar and spelling errors are 

automatically retrieved by returning most-likely results or 

suggesting possible alternatives. Also, it has been observed 

that some advanced search engines cope with synonyms as 

well. These features contribute significantly towards 

flexibility and usability. Norman discovered that recent 

operating systems have started to integrate powerful search 

mechanisms after learning lessons from the Web. Attaching 

keywords or labels to files increases the performance of 

search, for example, allowing quick navigation of file 

system. 

Little and Miller (2006) developed a Web-based prototype 

which demonstrates “keyword commands” being translated 

into executable code. Their system follows the idea of using 

keywords. In fact, keyword commands focus only on the 

presence of keywords in the expression and do not oblige to 

any language constructs. Downside is that users require 

prior knowledge of the domain because the keywords 

recognized by the system are domain-specific. For instance, 

in Microsoft Word domain, the keyword command “left 

margin 2 inches” requires the user to know the term 

“margin”, which is the white border around the page. 

Keyword commands eliminate strict requirements for 

punctuation and grammar, which allows for many 

variations of expressions. Their concept is quite similar to 

method presented by Michos et al. (1996). Verbose 

expressions such as “set the left margin to 2 inches”, and 

different word ordering like “2 inches, margin left”, would 

equivalently evaluate to the earlier command. A prototype 

in the Web browsing domain (Figure 1) has been developed 

to demonstrate automatic translation of keyword commands 

into executable code. When a (a) command is typed into the 

textbox, two types of output are generated: (b) textual 

feedback of the executed command in a form of pseudo-

natural language and (c) graphical representation on the 

target control. For example, when “click search button” is 

entered into the textbox, the text “click on the Google 

Search button” is displayed and the “Google Search” button 

is highlighted. 

Unlike all of the approaches outlined above, where 

commands only worked on domain-specific applications, 

Raskin (2008) introduced a distinctive CLI called linguistic 

command line interface, which is currently available at no 

cost under name of “Enso”. Enso provides all functionality 

at any time regardless of the application you are using. It 

was designed primarily to eliminate the 

compartmentalization of applications. Although Enso relies 

on structured syntax, its commands are easily guessed. 

Most commands begin with a verb and some are even 

complete English expressions. For example, the command 

“translate <selected text> to french” translates the selected 

text into French using Google’s translation service. Figure 2 

illustrates interaction of Enso’s interface. Users are guided 

with a list of potential commands dynamically, as keys are 

being entered. 

Figure 1. Web-based prototype which demonstrates 

keyword commands (Little & Miller, 2006) 



 

 

Mapping of Natural Language and Commands 

This sub-section reports key parts in various mapping 

techniques between natural language expressions and 

commands. The methods outlined here are incomplete 

because further knowledge is required to understand them 

in depth. 

Michos et al. (1996) found that the task of discovering set 

of natural language expressions to be modeled was most 

challenging. They identified these by conducting a survey 

on undergraduates and postgraduates who had computer 

science background. Their system knowledge base consists 

of knowledge structures of both verbs and nouns, that is, 

natural language commands and arguments, respectively. 

For example, if “Display the contents of the directory 

GAMES” is requested, the system looks up the knowledge 

base, examining the following knowledge structures. 

bkey(‘Display’,[‘dir’, ‘cd’, ‘date’, ‘doskey’, ‘mem’, ‘time’, 

‘tree’, ‘ver’, ‘vol’]) 

bgkey(‘directory’,[‘dir’, ‘chkdsk’, ‘cd’, ‘copy’, ‘del’, ‘print’, 

‘rd’, ‘tree’, ‘type’, ‘xcopy’]) 

The intersection of above knowledge structures is ‘dir’, 

which is returned as an expected command identifier. 

Through an advanced linguistic parser, simple and complex 

natural language expressions can be handled. Also, 

semantically equivalent natural language expressions are 

translated into the same command. As mentioned earlier, 

their knowledge base may grow through machine learning 

techniques. 

SILT (Kate et al., 2005) accepts two versions of mapping 

representations. Their approach focuses on learning 

transformation rules that associate patterns with templates. 

Each version uses strings of words or trees as patterns to 

match against natural language sentences. Transformation 

rules are iteratively learnt through their complex algorithms. 

Manaris et al. (1994) constructed NLIOS through several 

key steps, which include identifying operating system 

operations, determining natural language expressions, 

identifying corresponding command language syntax for 

these operations, modeling the above knowledge, and 

producing an interface to encapsulate the above knowledge. 

Similar to Michos et al. (1996), they found that the most 

challenging task was determining the possible natural 

language expressions. They also conducted a survey to 

achieve this. NLIOS is essentially based on three sets of 

input specifications. Augmented semantic grammar (ASG) 

specification consists of possible natural language 

expressions that map to commands in operating system 

command language (OSCL) specification. Lexicon 

specification models synonymy and polysemy in relation 

with ASG. 

In solution presented by Little and Miller (2006), keywords 

are converted into a function tree prior to being translated 

into executable code. This translation algorithm is broken 

down into two steps. The first step is tokenizing the input. 

The input is split into words or “tokens”. For example, if 

the input is “LeftMargin”, the system splits it into two 

tokens “Left” and “Margin”. Further separation is 

performed through a spell checker for common compound 

expressions. For instance, “login” becomes “log” and “in” 

tokens. The second step is to feed the token sequence 

obtained from the previous step into a recursive algorithm 

that tries to match substring of tokens with function names. 

Through this algorithm, the function with highest 

explanatory power, which measures how well the function 

explain the token sequence, is identified as the best fitting 

command. Keywords in the expression are used as 

identifiers. The translation from keyword to command is 

performed if there is at least a partial match between the 

keyword and the function name. For instance, a single 

keyword “inches” is sufficient to be interpreted as 

InchesToPoints function. The ultimate function is 

dependent on the arguments. That is, if there exist multiple 

candidates, the system decides upon the remaining 

keywords. 

Evaluation 

There were several interesting findings presented in these 

researches. Firstly, Michos et al. (1996) conducted 

performance test on their interface and found that it had a 

real-time response. Also, the system knowledge base 

increased from 500 to 1500 words after introducing 

learning capabilities. Considering that these figures are over 

ten years old, this is an outstanding improvement. Kate et al. 

(2005) claimed that SILT performs overall better than 

previous systems despite the fact that their system had 

lower score in precision and recall. They suggested SILT is 

more general and supports multiple target command 

languages. Little and Miller (2006) conducted a user study 

on their prototype, which showed that untrained users 

generated successful keyword commands for 90% of the 

tasks and succeeded 73% on their first attempt. Although 

this system requires users to have basic knowledge about 

the domain, these figures suggest that learning curve of 

complex syntaxes can be overcome through more “natural” 

commands. 

SUMMARY 

Many researches have focused on providing user interface 

that is more scalable, user-friendly and flexible in order to 

Figure 2. Enso interface (Raskin, 2008) 



 5 

overcome the limitations of current user interface 

paradigms that are becoming more evident. Scalability is 

increased through developing upon pure textual command 

lines that are more portable. Usability is increased through 

natural language utilization, providing more “natural” input. 

Flexibility is increased through accepting synonyms, 

handling variants, and learning new commands. The current 

state of natural language utilization is quite rare 

nevertheless the paradigm is rapidly expanding from the 

Web to operating systems and will continuously develop. 

FUTURE WORK 

Utilization of natural language has enhanced command line 

interaction. It improves both existing and emerging issues 

of current user interface paradigms. However, natural 

language interfaces have their own limitations. As 

mentioned previously, natural language processing is still 

considered as an extremely complex task (Raskin, 2008). 

Firstly, the inability to fully anticipate user input is the key 

concern. This problem will not be resolved entirely 

regardless of knowledge base size because current mapping 

techniques cannot interpret variety of styles used to express 

ideas with arbitrary English expressions (Little & Miller, 

2006). Users still have to learn system’s capabilities 

because free input is restrained (Hayes, 1985). Another 

weakness is that command line by itself is not efficient in 

doing certain tasks. English expressions can be verbose, 

which means it could take many keystrokes than syntactical 

commands. Balanced combination of GUI and enhanced 

CLI that accepts both formal and natural language 

commands could be the key. 

REFERENCES 

Hayes, P. J. (1985). The utility of natural language 

interfaces. Paper presented at the Proceedings of the 

SIGCHI Conference on Human Factors in Computer 

Systems, San Francisco, California, United States. 

Retrieved April 10, 2008, from 

http://doi.acm.org/10.1145/317456.317460 

Kate, R. J., Wong, Y. W., & Mooney, R. J. (2005) Learning 

to transform natural to formal languages. Paper presented 

at the Proceedings of the 20th National Conference on 

Artificial Intelligence, Pittsburgh, PA. Retrieved April 10, 

2008, from http://www.cs.utexas.edu/~ml/papers/transform-

aaai-05.pdf 

Little, G., & Miller, R. C. (2006). Translating keyword 

commands into executable code. Paper presented at the 

Proceedings of the 19th Annual ACM Symposium on User 

interface Software and Technology, Montreux, Switzerland. 

Retrieved March 22, 2008, from 

http://doi.acm.org/10.1145/1166253.1166275 

Manaris, B. Z., Pritchard, J. W., & Dominick, W. D. 

(1994). Developing a natural language interface for the 

UNIX operating system. SIGCHI Bulletin, 26(2), 34-40. 

Retrieved April 10, 2008, from 

http://doi.acm.org/10.1145/198125.198137 

Michos, S. E., Fakotakis, N., & Kokkinakis, G. (1996). 

Towards an adaptive natural language interface to 

command languages. Natural Language Engineering, 2(3), 

191-209. Retrieved March 22, 2008, from 

http://portal.acm.org/citation.cfm?id=974680.974681 

Norman, D. (2007). The next UI breakthrough: command 

lines. Interactions, 14(3), 44-45. Retrieved March 21, 2008, 

from http://doi.acm.org/10.1145/1242421.1242449 

Raskin, A. (2008). The linguistic command line. 

Interactions, 15(1), 19-22. Retrieved March 21, 2008, from 

http://doi.acm.org/10.1145/1330526.1330535 

 

 


