

 1

Metaphor-Based Interfaces
Hayden Young

University of Auckland
Department of Computer Science

hyou030@ec.auckland.ac.nz

ABSTRACT
This paper looks at what metaphor is in user interfaces and
how they affect user’s performance. The definition of
metaphor is analysed in light detail then four interfaces that
are based on metaphors are also analysed but in heavier
detail. The interfaces analysed are Fold-and-Drop,
Boomerang, DocPlayer, and BumpTop. Both strengths and
flaws given to the interface because of the metaphors used
in these systems are discussed based on what Marcus and
Hamilton say about metaphors.

Author Keywords
Metaphor, user interface

INTRODUCTION
Graphical User Interfaces are now a big thing in computing
and getting new users used to them is one of the challengers
the designer has to overcome. This is where basing an
interface from a metaphor comes in. To explain what
metaphor is and what the intention is when used to design
user interfaces, sources from Marcus and Hamilton will be
used.

Four attempts to use metaphor in user interfaces will be
looked at. The first is Fold-and-Drop, a technique
developed to make drag-and-drop operations easier by
using a paper metaphor [3]. The second is Boomerang;
another technique developed to make drag-and-drop
operations easier and improves on Fold-and-Drop [7]. The
third is DocPlayer. Whilst it doesn’t use a physical
metaphor it achieves its goal of document management by
being based off a metaphor of media-players [6]. The last is
BumpTop, a 3D desktop that uses a number of metaphors
like piling and physics to organize files and make the work
space look more like a real desktop [1].

This paper is split into nine parts: what metaphors are, the
purpose of metaphor in user interfaces, what motivated the
developers to develop their interface, Marcus’s three

guidelines for metaphor design, how the four interfaces
differ from the metaphor and if it’s a bad difference, the
flaws in the interface caused by the metaphor, a summary,
and then finally shortcomings for metaphor-based-
interfaces.

WHAT A METAPHOR IS
When asked “what is a metaphor?” you might give the
answer that gets drilled into children’s heads when they are
in a high school English class. That is “a metaphor is when
you say something is something else”. In fact “gets drilled
into our heads” is a metaphor in itself. Obviously our
English teachers never took a drill to our heads and inserted
the meaning of metaphors into them but it was mentioned
so much it’s kind of the same. In fact this is the mismatch
that Hamilton et al. talk about which alerts people to look
for similarities between the things mentioned [4].

The above definition is the definition if you want to use
metaphor as a figure of speech. So what does a figure of
speech have to do with user interfaces? Perhaps a more
elaborate answer to “what is a metaphor?” would be to say
“they utilize well-understood concepts of attributes from
one domain to make points or provide insights about
another” [5] or they “are the fundamental concepts, terms,
and images by which and through which information is
easily recognized, understood, and remembered” [4]. For a
history of metaphor I refer the interested reader onto
Hamilton [4].

PURPOSE OF METAPHOR
In designing user interfaces it is argued that metaphors help
quickly turn a novice user into an expert user by showing
complex things as something more familiar [5].

With a metaphor the user is expected to instantly know
what certain pieces of a user interface is, how it operates,
and what its purpose is. Of course it is possible that
metaphor can have the reverse of the intended effect or may
be so strange to users that it gets confusing. Hamilton
describes this with Macintosh’s “trashcan” metaphor, which
Marcus says was probably used because of some
programmer’s culture speaking of “garbage in, garbage out”
[5]. User’s can drag discarded files into the trashcan and are
able to retrieve them so long as the trashcan hasn’t been
“emptied”. The trashcan can also be used to eject floppy
disks when the appropriate icon is moved to the trash can.
This “broke” the metaphor in a troubling way since it seems

like you are discarding all the work that is on the floppy
disk says Hamilton [4].

Marcus warns that should a metaphor be inappropriate (by
being unbelievable or too foreign to the user) then “the user
will become confused, disinterested, distracted, bored, and
antagonistic to the message carried by the metaphor.”[5]
Being confused is certainly what most users would have felt
with the trashcan being able to eject floppy disks.

MOTIVATION FOR DEVELOPMENT
The metaphors that are developed in the four interfaces
mentioned are all aimed around making it easier for a user
to perform common operations. Dragicevic [3] and
Kobayashi and Igarashi [7] aim at making drag-and-drop
operations easier, while Agarawala and Balakrisnan [1] and
McGee and Foo [6] attempt to improve on file
management.

In the case of the drag and drop operations Dragicevic [3]
tells of how drag and dropping an object between windows
can be a problem when the target window is partially or
totally hidden. Current techniques that may be employed to
get around this include dropping the object on the visible
part of the target window, using the cut and paste operation,
rearranging windows so that they are both visible, and using
the Windows’s alt-tab during the drag operation.

Dropping the object on visible parts of the target window
relies on the assumption that the target window can be
identified, and the target is not totally hidden. Rearranging
windows requires more effort than really needed. Using cut
and paste requires giving the target window focus, and as
mentioned by Kobayashi and Igarashi [7] cut and paste
involves either keyboard short cuts or context menus, which
is not desirable on small-screen devices. Using Windows’s
alt-tab is said to be intricate.

After Dragicevic developed Fold-and-Drop Kobayashi and
Igarashi [7] identified the same problems for drag-and-drop
operations. He also said that Fold-and-Drop is insufficient
as users may need to scroll a window to a distant target.
Opening a sub folder or change an active tab is also not
possible to do while dragging an object. Therefore
Boomerang was developed to overcome difficulties of the
drag-and-drop operations.

McGee and Foo [6] recognise that keepings lots of files is
typical for a typical user and that “‘the need for more
intuitive, flexible, and effective management-systems is
becoming more and more evident”. Files become hard to
manage because users are forced to categorize their files
into folders and there are limited tools aid file management.
Storing and retrieving files can be difficult should the file
be able to fit into two different categories. An example of
this is given by having two folders, one for horses and one
for people, and deciding which folder a file about people on
horses should go into. Therefore they have developed a
solution called DocPlayer, “inspired by the control-
metaphor of media-players” [6].

Agarawala and Balakrisnan [1] identify that the “casual
organisation, prevalent in the real world, differs greatly
from the GUI desktop which forces users to immediately
file their documents into a rigid hierarchy”. Because of all
the effort put into filing it’s more likely that a user will keep
old files that have low value. Therefore they developed
BumpTop, a new way of presenting the desktop metaphor
interface by making a 3D interface with a physics engine.
Also BumpTop looks more like a real desktop unlike the
current look of desktops.

THE INTERFACE AND THEIR METAPHORS
The four interfaces will be introduced separately so it is
easier to see the mapping between the metaphor and the
interface.

Fold-and-Drop
Fold-and-Drop uses a paper metaphor. Imagine you have a
pile of paper and on the top sheet you have a post-it note.
Now you’ve decided that the post-it note doesn’t belong on
the top page but rather on some page further down in the
stack. So what do you do? You flick through and lift the
pages until you find the target page and you stick the post-it
note there. The same thing applies to fold-and-drop. The
windows represent paper, and being on top of each other
represents their position in the pile of paper. Now you have
an object you want to be put into some other window,
you’ll flick through the windows like they are paper until
you find the right window and drop the object there.

The interface has many features to it mapping to the paper
metaphor.

When first searching through a pile of paper people tend to
pick up the corner of the paper before deciding whether or
not to remove it from the pile. This is represented by
something called a transient fold [3], which becomes
visible when the cursor leaves the window for a short time
before it folds back (see Figure 1).

When someone decides they want to take a page off the pile
or lift up part of it they would take the corner and continue
lifting. In the fold-and-drop technique this is done when the
cursor is put near the transient fold and only when the
transient fold is visible. After all, it’s not possible to lift a
piece of paper with your fingers without holding onto it
first. Orientation of the mouse gesture determines how the
fold folds (see Figure 2).

Figure 1. Fold-and-Drop: transient fold (from Dragicevic,

2004) [3]

 3

Just like when someone lifts off a page from the pile, the
user can make a window disappear if they keep going with
folding the window (see Figure 3).

Should someone decide they have lifted too many pages
they would just remove their finger out from under the
lifted pages. The same with the interface, if the user moves
the cursor out from the fold and back onto an unfolded
portion of the window then the window will unfold (see
Figure 4).

Being able to fold mass amounts of paper in the pile is
doable in a physical pile and so such thing is doable in the
interface. Hence the user can fold multiple windows all at
once (see Figure 5).

Boomerang
The most recognised type of boomerang is the returning
boomerang, a throwing stick that that, when thrown
correctly, returns to where it was thrown. During the time
you’ve thrown it you can do other things like throw another
boomerang. This is the action of a boomerang, and the
Boomerang interface uses this idea for throwing objects in
this manner instead of using drag-and-drop.

In reference to the Boomerang state diagram (see Figure 6)
S0 is active when nothing is happening and the user hasn’t
picked up a file. Then transition S0 to S1 represents the time
when the user picks up a file. At this point it’s the same as
someone picking up a Boomerang. In the implementation
when a user picks up a file the file is animated as spinning.

To throw a Boomerang one must first move their hand at a
certain speed, if they don’t then the Boomerang won’t go
anywhere. Moving the hand fast is represented by the
transition S1 to S2 should the user move the mouse faster
than a user defined threshold. If the user changes their mind
and decides to slow how fast they are moving the mouse
then the active state will become S1 again.

When holding a Boomerang and moving your hand fast you
need to let go of the Boomerang or it won’t go anywhere.
The same with the Boomerang interface, if you don’t let go
of the mouse button when the mouse is moving faster than
the threshold then the file will not be thrown. Throwing the
file is represented by the transition between S2 and S3.
Should the threshold not be met then the file will just drop
where it is at the time (see Figure 7).

Figure 7. Boomerang: an example of throwing and
catching an object (from Kobayashi and Igarashi, 2007) [7] Figure 6. Boomerang state diagram of the actions performed

in the technique (from Kobayashi and Igarashi, 2007) [7]

Figure 4. Fold-and-Drop: unfolding a page by moving the
mouse around the fold (from Dragicevic, 2004) [3]

Figure 5. Fold-and-Drop: manipulating multiple folds,
(from Dragicevic, 2004) [3]

Figure 3. Fold-and-Drop: discarding a window by lifting it
off (from Dragicevic, 2004)

Figure 2. Fold-and-Drop: confirming and pushing folds
(from Dragicevic, 2004) [3]

When the file is thrown a translucent growing and shrinking
circle will appear at the point of where the file was thrown.
Whilst the file is thrown the user can do other things like
finding the target folder. To bring back the file the user just
has to move the mouse to the circle. This is the same as
when someone stands where they threw the Boomerang and
it comes back to them. Multiple files can be thrown in this
manner whilst other files have been thrown (see Figure 8).

There are some advanced features to this interface. The first
is grouping. Users can create groups by dropping objects
onto the representative circle of another thrown object.
Groups can be controlled by grabbing the circle at the
centre and objects can be removed from the group if
dragged out separately (see Figure 9).

Two visual cues will appear at the upper and lower centre
of the screen when holding an object. The top one
represents copy, the bottom represents deleting. Throwing
things up will copy and object and the original will go back
its original place, and throwing down gives a prompt for
deletion (see Figure 10).

DocPlayer
DocPlayer is a very simple interface. With a media player
you can add media files to it and group them into certain
groups, play them, and remove them from play lists.
DocPlayer uses much the same concept in that you can
import documents into a document collection where users
can manage the collections and open and view documents
in the collection.

With media players such as iTunes a user can create play-
lists and smart play-lists. A similar thing can be done in
DocPlayer where users make groups and smart groups.
Groups have the same function as play-lists, where the user
can add/remove documents to groups the same way they
can add media files to play-lists. Smart groups are also
implemented in DocPlayer. A smart group is a subgroup of
groups which contain documents that match a specific
query. Quite like how Smart Play-lists work in iTunes
where a user can filter media files that only contain certain
properties such as artist or album [2].

Quick search can be done to enable queries of different
sorts to be performed [6].

Figure 11. DocPlayer: a partial view of the interface
(from McGee and Foo, 2003) [6]

Figure 9. Boomerang: adding objects to groups (from
Kobayashi and Igarashi, 2007) [7]

Figure 12. DocPlayer: a partial view of a media player
(from McGee and Foo, 2003) [6]

Figure 10. Boomerang: prompts for copy and deletion
(from Kobayashi and Igarashi, 2007) [7]

Figure 8. Boomerang: throwing multiple objects (from
Kobayashi and Igarashi, 2007) [7]

 5

BumpTop
BumpTop takes the desktop metaphor to a more true-to-the-
metaphor level. It’s a 3D desktop that looks like a cubicle
that uses a pen as its main input device. The interface has
shadows and a 2½D view of a 25o desktop and objects are
scattered all over the place or in piles (see Figure 13).

On a physical desktop people can have their books, folders,
and papers scattered all over or in nice/messy piles. This
sort of behaviour is captured in BumpTop by having icons
scattered around the workspace which the user can throw
around. Objects are represented as squashed cubes that are
texture mapped. The texture mapping allows for quick
browsing when documents are stacked up on top of each
other, similar to when someone piles a whole lot of books
on top of each other and scans the spine to see what’s in the
pile. Icons can be dragged and thrown around and when
they collide they displace one another. Windows can be
crumpled up like paper, and both windows and icons can
have their size changed consequently making them heavier
and less mobile when thrown.

People can stack paper and books in different orientations
on purpose to show the document’s importance. This

behaviour is mapped into the interface by allowing users to
rotate or out objects slightly from piles (see Figure 14).
Piles can be created with the lasso tool which also has
additional menus for additional functions (see Figure 15).

Much like how users can pile their papers into certain piles,
users can do the same with objects. Grouping objects like
this is done with the lasso tool, a drawing technique used to
encapsulate various objects. After creating the group the
user can interpolate between a messy and tidy pile and see
the contents of the pile with a grid view, fish eye view or
fan layout. The user can also “leaf through” a group as well
as compressing higher items in a pile to view the ones
beneath (see Figure 16).

If a person can’t remember where they put a specific
document but sort of know the location of the pile it’s in
then they could dump the pile onto the floor and sift
through the documents. In BumpTop there is a technique
called Exploding piles [1] which takes a pile and explodes it
into a hovering grid view.

A feature called PressureLock [1] allows for objects to be

Figure 15. BumpTop: the lasso tool grouping together
some objects with a menu that appears when the lasso is
complete (from Agarawala and Balakrisnan, 2006) [1]

Figure 14. BumpTop: Pile with items rotated and pulled
out for emphasis. (a) In the real world (b) In BumpTop

(from Agarawala and Balakrisnan, 2006) [1]

Figure 13. BumpTop: a view of icons on the BumpTop
interface Here we see a pile of photos (bottom left) and
(fromasually arranged (top left) and crumpled up (top

right) windows (from Agarawala and Balakrisnan, 2006)

Figure 16. BumpTop: pile browsing is triggered by six different widgets. (a) Fisheye. (b) Leafing through like pages of a book,.
(c) Compression Browsing higher items to view items below. (d) Interpolating between messy and tidy piles. (e) Grid browse,

locked down for further manipulation with PressureLock, (f) Fan out on a user drawn path (from Agarawala and Balakrisnan,

held in place when a user applies enough pressure with the
pen. This also allows for objects to be pinned up to the
walls and rotations to be locked. Locking an object’s
rotation allows for them to constantly stand up (even when
bumped by other objects) (see Figure 17). PressureLock is
shown with a pressure circle with an inner circle that
increases in size as the pressure does.

REVIEW OF METAPHORS

Marcus says that “achieving the right mixture of
metaphorical references in a complex user interface is a
design task.” He also says that three proven effective
principles for visual communication can be used to assist in
designing metaphors. The three principles he outlines are
organisation, economy, and communication [5].

For the metaphor to be organised it must be simple, clear,
and consistent [5]. Simplicity is definitely present in the
fold-and-drop, Boomerang, and DocPlayer interfaces as
they are only based on one metaphor and the metaphors
chosen are very simple concepts. BumpTop is based mainly
on a desktop metaphor, but it also adds in a few other
metaphors with the lasso tool and paper-like objects. Yet it
is simple enough for its intentional purpose. Clarity
between the interfaces and their metaphor are easy to see.
Both DocPlayer and its metaphor have been programmed
on the computer so it’s easy to see the mappings. The other
three interfaces have more complex metaphors but they also
map clearly onto it. Seeing windows as paper and objects as
Boomerangs or physical entities on your desk gives a clear
and easy to see metaphor in the respective interfaces. The
implementation of metaphors is consistent throughout the
interfaces other than the time that the physics engine is
turned off in BumpTop.

The economy of the interfaces is achieved if the interface
maximises the effectiveness of a minimal set of metaphors
[5]. In other words, there shouldn’t be too many metaphors
and the metaphors that are used had better portray the
intended meaning well. This is clearly achieved by all four
interfaces as none of them have any pointless metaphors
when trying to achieve their goals. Fold-and-Drop,
Boomerang, and DocPlayer are all based on one metaphor
and they are very simple. BumpTop being a more complex

interface requires more metaphors, but nonetheless all
metaphors are relevant to the desktop.

Good communication is achieved by matching the
metaphors to the user’s capabilities such as their needs,
desires, education, and social habits [5]. Effective
communication of the metaphor to the interface is achieved
well in all four interfaces. This is because the interfaces are
mapped well to their metaphors. Most people will be able to
look at these interfaces and realise exactly what they can do
(with the few exceptions if they are new to computers and
don’t quite understand all the extra features in Boomerang
or understand how media players work). Most people
would have come across paper before computers and most
people would know what a desk is or at least how physical
objects interact with each other.

HOW THE METAPHOR IS BROKEN
When designing the metaphor new concepts might be
introduced if the metaphor is not enough to capture all
functionality for the interface. If the interface at all breaks
the metaphor then the designer risks getting undesired
responses from users. The example used for both Marcus
[5] and Hamilton [4] is the Macintosh’s trash can explained
earlier in this paper. Using a metaphor which the user
“trusts” results in the rethinking certain actions [4].

Fold-and-Drop does not break the metaphor as it contains
no features that differ from paper. Everything you can do
with a post-it and pile of paper you can do in Fold-and-
Drop. Unlike Fold-and-Drop, on one extreme Boomerang
which adds features to the metaphor with the copy and
delete prompts and being able to add objects to make
groups when you’ve already thrown an object. Such
concept is not within a real Boomerang because if one was
to throw a boomerang up then it is not expected a second
copy would come back down, and throwing it down one
would not expect the boomerang to vanish. Nonetheless
such features do not appear to hinder the user’s
understanding of the interface according to the initial
feedback. On the other end of the extreme DocPlayer
ignores parts of the metaphor it’s based upon ― and for
good reason. DocPlayer only copies the play-list
management from media players and how to import files.
Should it contain all the controls of a media player then it
would also have a volume control and play, fast-forward,
rewind, slow forward, slow rewind, and skip buttons. Such
things make no sense to contain in an interface for
document management (what does it meant to rewind or
fast-forward a document?). Reaching into both ends of the
extreme is BumpTop, which adds functions such as the
widgets for browsing piles and ignores certain parts of the
metaphor such as turning off the physics engine. This too is
also done on purpose and works well. If the widgets for
browsing piles were not there then it would take a lot more
effort to sift and search through piles and it would get
frustrating. Should the physics engine always be on then in
a messy or tidy pile perfectly touching objects would cause

Figure 17. BumpTop: Axis alignment to enforce a tidier
appearance. The ‘shelf’ (left) was made by pinning up a
rotation-locked item (from Agarawala and Balakrisnan,

 7

all sorts of unnecessary movements. Also it would be
possible to knock over piles by throwing objects at them
and the user would probably get frustrated if they had to
keep putting objects back into a pile [1].

FLAWS CAUSED BY THE METAPHORS
Not everything is perfect and these interfaces do not go
without flaws caused by the metaphors. Marcus [5] and
Hamilton [4] say a metaphor can restrict the actions of the
user. But it is also apparent that the metaphor can restrict
the functions of the interface or get distracting.

Fold-and-Drop has the flaw pointed out by Kobayashi and
Igarashi [7] and that is the user can not perform other tasks
while still holding a file to be moved like renaming a few
folders. This is a fault by the metaphor as people can’t just
start whiting out some words and write over it while
holding a post-it note.

The initial feedback from Boomerang mentions that the
spinning of the objects gets distracting [7]. The spinning is
mapped from boomerangs spinning when being thrown.
Also if a user lets go of the object at a place where they
need the mouse to perform a job then the objects
continuously coming back every time the mouse hits the
circle could get annoying (although this can be fixed by
letting the mouse go in a more efficient location).

DocPlayer does not appear to have any particular flaws
caused by the metaphor. Even if a user is new to computers
and has never seen a media player the concept of creating
groups and smart groups is easy to pick up.

BumpTop’s pile metaphor is its biggest flaw. Piles do not
scale up very well and BumpTop can get overcrowded
pretty fast. Also icons do not have names so it’s impossible
to distinguish between multiple files of the same type.
Developers and animators will generate millions of files for
a single project. Most users have thousands of media files
and the widgets aren’t particularly suited for thousands of
files. Even if this interface is useful for new computer uses
(as implied by the user evaluation) this interface would not
do well in the industry or for people who use the computer
a lot for their own things.

SUMMARY
Metaphor-based interaction has its strengths and its flaws.
Whilst metaphors will help new users adapt to new systems
a metaphor might not be able to capture all the features that
the interface can use or it might get in the way and prevent
possible functions or events. Four interfaces that rely
heavily on a metaphor have been analysed against
guidelines by Marcus and the purpose of the metaphor has
been achieved. Two of the interfaces aimed at making drag-
and-drop operations easier (Fold-and-Drop and
Boomerang), the other two aimed at making document

management easier (DocPlayer and BumpTop) and
BumpTop also aimed to make the virtual desktop an easier
interface to work with. Metaphors should be used lightly in
designing interfaces (as Fold-and-Drop isn’t the best
solution to drag-and-drop operations) since new concepts or
functions will inevitably have to be introduced for complex
tasks (shown by Boomerang, and BumpTop).

SHORTCOMINGS OF METAPHORS IN USER
INTERFACES
Metaphor-based interfaces might be a good way to
introduce new ideas but sticking strictly to it can cause
problems. As demonstrated by Fold-and-Drop sticking
strictly to a metaphor may not completely solve the
problem. Sometimes only having part of a metaphor like in
DocPlayer may be better than being true to the whole
metaphor. Nonetheless, having an interface based off from
a metaphor will most likely have the designer introducing
new functions that the user has never seen before (such as
copy and delete in Boomerang and widgets in BumpTop).
Being based on a metaphor will restrict the user into
rethinking certain actions or thinking that something isn’t
possible when it is. It still isn’t clear if metaphors should be
avoided so they shouldn’t be heavily relied upon.

REFERENCES
1. Agarawala A., Balakrishnan R, (2006). Keepin’ It Real:

Pushing the Desktop Metaphor with Physics, Piles, and
the Pen. Proceedings of the SIGCHI conference on
Human Factors in computing systems. 1283 – 1292.

2. Apple iTunes, (2001). www.apple.com/itunes/
3. Dragicevic P, (2004). Combining Crossing-Based and

Paper-Based Interaction Paradigms for Dragging and
Dropping Between Overlapping Windows. Proceedings
of the 17th annual ACM symposium on User interface
software and technology. 193 – 196.

4. Hamilton A, (2000) Metaphor in Theory and Practice:
the Influence of Metaphors on Expectations. ACM
Journal of Computer Documentation (JCD), 24(4). 237
– 253.

5. Marcus A, (1994). Managing Metaphors for Advanced
User Interfaces. Proceedings of the workshop on
Advanced visual interfaces. 12 – 18.

6. McGee K., Foo J, (2003). DocPlayer: why doesn’t your
desktop play this way? Linköpings universitet
http://citeseer.ist.psu.edu/738493.html

7. Kobayashi M., Igarashi T, (2007). Boomerang:
Suspendable Drag-and-Drop Interactions Based on a
Throw-and-Catch Metaphor . Proceedings of the 20th
annual ACM symposium on User interface software and
technology. 187 – 190.

