
Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W, David Kehton, Gordon M. Clark (eds.)

INTRODUCTION TO SIMULATION

tie Thesen

Department of Industrial Engineering
University of Wisconsin-Madison

Madison, Wisconsin, 53706

ABSTRACT

We give an overview of simulation modeling and
analysis from the perspective of prospective users
wanting to use simulation as a decision aid. Important
considerations in building simulation models and
analyzing their outputs are discussed. A few examples of
simulation software are given. At the end of this
tutorial, you should have a general understanding of
simulation and its applicability to your situation.

1 INTRODUCTION

Simulation is simply the use of a computer model to
“mimic” the behavior of a complicated system and
thereby gain insight into the performance of that system
under a variety of circumstances. Simulations are often
used to determine how some aspect of a system should be
set up or operated.

For example, we may want to understand how a
proposed new runway at an airport will affect the pereent
of planes that must circle for a given length of time. To
arrive at this understanding, we would first build a
computer model representing the arrival and handling of
planes. This model would use random variables to
replicate variability in quantities such as the time
between arrivals, the time required for an individual plane
to land, and changes in the weather. Then we would run
the model (i.e., operate the simulated airport),
accumulating data on the delays experienced by individual
simulated planes. This data would then be used as a
basis for a cost-benefit analysis of the proposed runway.

As a second example, we may want to understand how
tie contlguration of resources in a hospital will affect the
time it takes for a patient to receive a variety of services.
In this case, we would build a computer model to mimic
the arrival of patients and the processing of the differing
needs of the various patients. Processes such as
admitting patients, taking X-rays, and drawing blood
would be modeled as time delays. The computer model
would keep track of the time patients spent waiting for
various resources. We could then run the model and

5

Laurel E. Travis

Department of Finance and Management Science
University of Alberta

Edmonton, Alberta, Cana& T6G 2R6

observe how well the resourees are utilized, and how long
patients must wait for service. Resources (such as
additional X-ray machines) could be added or removed,
and the resulting performance differences could be
analyzed.

Or, we maybe interested in the layout of a production
line. Our model could help us understand how the
routing of parts, the material-handling system, and the
number and speed of machines of various types affect
throughput and the quantity of work-in-progress
inventory.

In these examples, as in most simulations, the
computer program simply describes how the system
operates and collects dlata on the performance of the
system. It is the job of the analysts to propose scenarios
to be tested and to draw conclusions from the simulation
results.

1.1 What is Discrete Event Simulation?

We frequently hear of simulation being used for tasks
such as driver training, rocket flight analysis, and weather
prediction. These simnlat.ions describe how a system
changes continuously over time in response to
continuous controls (such as the turning of the car’s
steering wheel) that may vary smoothly through time.
In contrast, discrete ev,enr simulation (the topic of this
tutorial) describes systems that are assumed to change
instantaneously in response to certain sudden or discrete

events or occurrences. For example, if we were doing a
capacity planning study involving a grain elevator, we
might simulate how the quantity of grain stored changes
over the course of a year. For this purpose, we would
probably model the arrival of a truckload of grain as a
discrete event. In other words we would ignore the fact
that the quantity of gralin stored changes slowly while
grain is being poured into the storage facility and assume
instead that the grain level jumps up to the new value
instantaneously at a specific point in time. This

assumption would be appropriate since we are modeling
the system on a day-by-day, truckload-by-truckload basis
instead of a second-by-second, grain-by-grain basis.



6 Thesen and Travis

When we choose to model a real world system using
discrete event simulation, we give up the ability to
capture a degree of detail that can only be described as
smooth continuous change. In return, we get a
simplicity that allows us to capture the important
features of many systems that are too complex to capture
with continuous simulation.

1.2 Drawbacks and Pitfalls of Simulation

Simulation analysis is not without drawbacks. First,
the quality of the analysis depends on the quality of the
model. Second, it is often difficult to determine the
extent to which an observation made during a simulation
run is due to a signflcant underlying relationship in the
system being modeled or due to the built-in randomness
of the run; simulation results are hard to interpret.
Finally, simulation is usually a time-consuming and
expensive process, and an adequate analysis may not be
feasible within the time availabl~ analytic methods may
be better for “quick and dirty” estimates. These and other
pitfalls are listcxl in Figure 1.

L Failure to state a clear objective
2. Failure to frame an answerable question

3. Using simulation when a simpler approach suffices
4. Inappropriate level of complexity
5. Bad assumptions in model
6. Misinterpreting simulation outputs

Figure 1: Common Pitfalls in Simulation

For simulation to be effective, it must be focused on a
well defined problem (otherwise we do not know what
elements of the system to include in the model and what
information to collect). Using simulation before a
specitlc problem is articulated may lead to a large number
of unfocused simulation runs that use inappropriately
designed models, and produce little or no information of
value. This is perhaps the most common pitfall of
simulation analysis. To avoid this all too common
waste of time and money, a simulation project should
not be undertaken unless there is a clearly defined
question to be answered or decision to be made. This
question or decision should be used to guide the
development and analysis of the simulation model.

It is also important to use a model with an appropriate
level of detail. Long term planning projects often evolve
through a series of stages with the level of detail
increasing at each stage. For example, questions about

overall plant capacity are frequently asked early in the
project when few details about the design are available,
and fairly rough answers may suffice. In this case a

simple model is appropriate. On the other hand,
questions about the efficiency of different scheduling
rules in an automated manufacturing line can only be an-
swered when the detailed design of the system is
finalized. In this case a detailed model is required and a
fairly sophisticated analysis of the simulation output is
called for.

When beginning a simulation, it is often tempting to
build a model describing all of the phenomena that are
easily observed. For example, if we want to understand
the effect of the reliability of a given machine on overall
throughput in a plant, we maybe tempted to describe in
detail how the machine works. This may be
inappropriate, as the level of detail and time resolution
required to completely describe machine operation is
different from that of describing the general pattern of
machine failure, It is therefo= a good idea to begin with
the simplest possible model that provides the necessary
information. Starting with such a rough model enables
the modeler to describe some of the important
relationships in the system without excessive detail. The
insights gained from this model can then be used to aid
in the effective development of a more detailed model.

2 ELEMENTS OF SIMULATION MODELING

Our ability to develop simulation models of a wide
range of different phenomena is due to the fairly universal
nature of the building blocks on which the models are
based. In particular, the representation of dynamic
behavior and the use of random variables are fundamental
to all discrete event simulations. These two concepts are
discussed in this section.

2.1 Modeling Elementary Random Processes

Our goal is to mimic real life phenomena in the
computer. For example, if we are studying the effect of
different repair policies for factory equipment, we need to
generate intervals between machine breakdowns that
represent the intervals observed in the factory. Instead of
carrying out a detailed analysis of the state of each
machine in the system so that we can predict the exact
time of specific breakdowns, we use random variables to
mimic the overall pattern of breakdowns regardless of
cause. The time of any one simulated breakdown will be
different from what we observe in real life but the long
range pattern of breakdowns should be indistinguishable
from the real life process.

Most simulation models use random variables this way
to compensate for our lack of detailed knowledge of what
is going to happen at any one instant in a real life
process. Given a phenomenon that we intend to model
with a random variable, we must select an appropriate



Introduction to Simulation 7

probability distribution. The computer will then be

Pro-reed to generate random variates (observations of
random variables) from this distribution for use in the
simulation. The selection of appropriate probability
distributions is critical to the art of model building, If
we draw a data set of random observations from the
distribution we have selected for our model, we want that
data set to be statistically indistinguishable from
empirical observations of the phenomenon we are
modeling.

We are frequently asked to simulate situations about
which we have limited knowledge -- we cannot fit a
distribution to the data when there is no data. For
example, we may be asked to evaluate the effect of
different scheduling policies in a not-yet-constructed pro-
duction system. Many modelers, in this situation, would
select an exponential distribution for the random variable
representing service time simply because this is a
distribution that is well known and easy to work with.
This choice, however, might severely decrease the ac-
curacy of the model since exponential distributions tend
to over-estimate the variability of a process. While
incorrect variability may seem like a minor oversight
when the mean of the distribution is correc~ it can in fact
cause extremely misleading results. Systems with lower
variability tend to mn much more smoothly and have
fewer bottlenecks than systems with higher variability,
so using distributions with inappropriately high
variability can lead to pessimistic models and wasteful
recommendations. Thus we seethat selecting appropriate
distributions in the absence of good data requires a great
deal of experience and judgement, or the gathering of
additional information.

In sum, we use random variables to mimic red world
events in the computer. The choice of probability
distributions for these random variables involves
collecting data on the real world processes and fitting
distributions to this data. Since the choice of these
distributions has a large impact on the validity of the
model, it is well worth the modeler’s time and effort to
collect good data.

2.2 Describing Dynamic Behavior

Discrete event simulation models are run by tracing
events over time, particularly those events that change
the state of the system. Since we do not normally think
of systems in terms of events and state changes, we
usually use a simulation language or software package
that allows us to represent the model more naturally.
The computer then translates this to an event oriented
approach (i.e., events and state changes) to actually mn
the model. One such “natural” approach, the transaction
flow approach, will be described here.

Many simulations describe how transactions flow

through a block diagrunz. For example, transactions may
represent subassemblies (e.g., car transmissions), and the
block diagram may show how these subassemblies flow
from station to station in an assembly process. As a
second example, transactions may represent customers
(e.g., patients at a hospital) and the block diagram may
show how these customers progress through multiple
stagesof service. Usinj3 a limited number of standardized
building blocks to describe what happens to transactions,
these languages are able to represent the behavior of a
wide range of different ~systems.

The fwst block in a model often generates transactions.
For example, transactions representing individual patients
in a hospital might be generated at random time inter-
vals. Once generated, a transaction immediately flows
through the diagram until it hits some obstacle that
causes it to be delayed. Eventually, conditions change
and the delayed transaction is allowed to move again.
Two important mechanisms that cause the flow of
transactions to be impeded are explicit delays and
blocking. Blocking usually occurs when a transaction
wants to use a resource that is currently not available.
For example, the transaction may want to receive the
attention of a server that is busy serving somebody else.
Since many transactions may be waiting for service, a
running model may contain a large number of trans-
actions simultaneously.

A feature of the transaction-flow approach is that
resources (e.g., X-ray machines) are not always explicitly
shown in the model. Instead, we show how the resource
and the transaction interact. Accordhgly, simulation lan-
guagesprovide blocks to request the use of a resource and
blocks to release control of resources. A block diagram
of a single server waiting line or queueing model is
shown in Figure 2. (Here the “server” could be an X-ray
machine.) Instead of explicitly showing the server, a
request for service is represented by the SEIZE block and
the release of the server is represented by the RELEASE
block. This diagram corresponds to a seven line program
in the popular simulation language called GPSS, When
mn, the program would simulate the arrival, service, and
departure of patients. The analyst could use the program
to collect &ta on the simulated system and use this data
to make decisions about various system redesign
possibilities.

Several different dialects of GPSS are available.
However, the resulting model will in most cases be
almost identical regardless of which version (such as
GPS!VH or GPSS/PC) is used. Furthermore, since most
major simulation languages use very similar approaches
for modeling dynamic behavior, conceptually similar
models will result if one of the other major languages
(such as SIMSCRIPT, SIMAN, or SLAM) is used.



8 Thesen and Travis

These simulation languages all use similar approaches
for modeling dynamic behavior. (Information on these,
and other simulation packages, can be found throughout
this volume and in the references listed at the end of this

PI=.)
In this section we have focused on two basic ideas that

are common to all discrete event simulation the need to
use randomness and the need to describe dynamic
behavior. While these “underpinnings” are the same for
all discrete event simulations, their implementation
varies widely. In the next section we will describe some
different types of computer packages used by simulators.

e%
oQUEUE

LCMBY

Allow patients arriving for
treatment to enter the
model at a specified rate

Mark patient for data collection

w- is not available for other jobs

An individual patient
monopolizes the machine so it

FiiFP-tihqwue
Collect data on time patient

J 1

4
WV ANCE Patient stays here for time it

takes to be x-rayed

J

RELEASE X-ray machine is freed for

XRAY next patient

Patient leaves
radiology

Figure 2 GPSS Block Diagram of a Single Server
Queueing Model

3 SOME SOFTWARE PACKAGES

Since it can be exceptionally difficult to capture the
detail of a situation or system on a computer, we try,
whenever possible, to design models that draw upon pre-
viously developed models and programs. The mom
closely we follow a common model, the fewer choices
we have to make. The further we deviate from

commonly used models, however, the more difficult the
modeling process becomes.

3.1 Template Packages

On one extreme, with special purpose simulators such
as XCELL+, users are shown a model templare giving
model structure and default parameters. After changing a
few parameter values, the model is ready to nm. It is not
necessary for the modeler to write a program describing
the model structure, since this structure has already been
built into the software. Although these template
packages are convenient if the pre-programmed model
accurately reflects the problem at hand, they are unable to
describe many special circumstances.

As an illustration of a template based simulation
system, consider the simple pallet loop system shown in
Figure 3. A slab of processed meat is loaded onto a
pallet at the loading station. The pallet transports the
slab to the slicing station on an automated conveyor. At
the slicing station, the slab is cut into individual slices
and stacked on trays. The trays then move to the inspect
station. If a problem exists, the entire stack is discarded.
Good stacks are moved to the packing station. Here,
stacks are packaged in a vacuum sealed plastic container.
These packages leave the system and the empty pallet
returns to the fwst work center.

This system could easily be simulated using a template
system. If we used one such system, called TBS-11, we
would use three different templates to describe model
elements such as workstations, operations, and part flow.
One of these, the workstations template, is shown at he
top of Figure 4. Note that we specifkd limited buffer ca-
pacities simply by entering the size of the buffer in the
appropriate field. Also note that unreliable machines are
modeled simply by entering data about the failure and
repair processes. Data is entered in the other templates in
a similar manner.

Infinite SUDDIY

/ ILoading

Fi~shed Disczudcd
Packages stacks

Figure 3: Simple Pallet-Loop System



Introduction to Simulation 9

Once all the parameters have been specified, the
simulation is ready to mn. Severat different reports are
produced at the end of the run. The workstation
utilization report is shown at the bottom of Figure 4.
With this information, bottlenecks can be spotted, and
capacity decisions can be made.

Work Centers Input Template
work Buffer Machines Reliability

Centez size Rule count Lot MTI’F MRT
Name size

1 Lxxul 5 ftio 1 2 8 0.25
2 Slice 5 fifo 2 1 9,999 0
3 Inspect 5 flfo 1 1 9,999 0
4 Pack 5 fifo 1 1 9,999 0

Work center utilization report (partial)

Avg Avg Mach State Mean

Center Buff Wolk block down idle transit
Size time

lbad 0.51 0.50 0.00 0.03 0.47 1.6
2 Slice 0.01 1.40 0.00 0.00 0.60 1.4

3 Insp 0.45 0.72 0.00 0.00 0.28 1.1
4 Pack 2.84 1.00 0.00 0.00 0.00 3.8

Figure 4: Typical Input and Output from Luncheon
Meats Example

This example is typical of template simulation in that
the user needs to do no computer programming, but the
system being simulated must “fit” the assumptions built
into the template package. TBS, for example, is well
suited for modeling the flow of parts between
workstations, but of no use for modeling many other
situations, such as inventory systems.

3.2 Simulation Languages and Animation

Users writing their simulations in a simulation

lung uage use model building blocks such as
GENERATE, ADVANCE, TERMINATE, SEIZE, to
specify the flow and logic of their model. While
statements in a simulation language often correspond to
activities in the system being modeled (ADVANCE,
QUEUE) rather than to activities in the computer
(multiply, divide), these languages have much of the
structural flexibility of programming languages.
Simulation languages therefore are appropriate when the
modeler requires more flexibility than provided by
template packages.

Many simulation languages can be used with graphical
user interfaces (e.g., SLAMSYSTEM). These interfaces
atlow the user to write a simulation program by selecting

blocks using pull-down menus and a mouse. Once a
block is selected, the user is prompted to supply any

accompanying parameters. The software then puts the
blocks together in the order they were chosen and inserts
any punctuation needed to create a simulation program
with the correct syntax. These interfaces radically change
what the model builder views on the screen, but they do
not change the underlying logic or level of detail of the
model; the modeler still requires the same detailed
knowledge of how the model and the language worlq and
still retains the flexibility of a simulation language.
While many beginning simulators find these graphical
user interfaces an attractive way to avoid syntax and typo-
graphical errors, more advanced programmers often f~ it
less cumbersome to type the program directly into a text
editor or word processing package.

Software packages for animation of simulation models
are also available for most of the common simulation
languages. These packages allow the modeler to draw

pictures representing the transactions and resources used
in the model. When the simulation program is run,
these pictures are used to create an animation that shows
the events taking place in the model.

For example, the modeler might write a simulation
program representing automatic guided vehicles moving
pallets of materials on a factory floor. When the
simulation program has been written, the modeler draws
a static background depicting the layout of the factory
floor and icons depicting the vehicles and pallets. When
the simulation program is mn, the animation package
displays the static background on the computer screen and
moves the vehicles and pallets through this background
as dictated by the simulation program.

It should be noted that animation does not change the
nature of the underlying simulation; it is simply a tool
that aids in the debugging and presentation of a
simulation model. But it can be a powerful tool. When
used during program development, animation gives the
programmed a simple overview of the internal workings
of the program, allowing logical errors to be quickly
pinpointed and debugging time to be dramatically
reduced. When used with a finished model, animation
helps the modeler present results to decision makers and
convince them that the simulation adequately reflects the
real-world system.

Animation, however, is not without pitfalls. Since
the creation of a highly detailed animation can take days
or weeks, the modeler should keep in mind that a
rudimentary animation can be as useful as a visually
elaborate one. The amount of time spent on purely aes-
thetic detail should usually be kept to a minimum.

Although the potential for wasted time is a serious
pitfall of animation, even more alarming is the
temptation for simulators using animation to perform



10 Thesen and Travis

little statistical analysis on their finished models. An
animated simulation can give the impression of a
completed projecc proposed modifications to the real-life
system can be implemented in the simulation and the
results can be viewed on the screen. A simulation
project is not completed, however, until the model has
been run many times and the results have been analyzed
statistically. This fact can be difficult to remember when
a polished animation is being viewe@ intuition gathered
directly from watching the animation can be wrong. A

single run of the model may give the viewer the
impression that a specific proposed system alteration has
a positive effect when, in fact, random variation caused
that particular run of the model to go smoothly.
Am”mation in no way replaces responsible, thorough

analysis of simulation results.

3.3 Other Software Tools

Occasionally a situation is so unique that it cannot be
effectively modeled using a template package or
simulation language. This might occur, for example,
when complex material handling systems using fairly
elaborate control schemes are simulated. If the control
scheme used is quite complex, it maybe cumbersome or
even impossible to model it using the blocks provided by

a simulation language. In these cases general purpose
programming languages such as Fortran, Pascal, or C
must be used. These languages were not designed for
simulation, using them for simulation is often difficult.

Finally, there are certain types of discrete event
simulation software that fall outside our classification
scheme. For example, simulation models can be fully

integmted with a factory’s production scheduling system.

When this integrated simulation is used, data giving the
current status of the shop floor is input whenever the
model is used. In this way, simulation can produce
solutions that are specific to the problems of that
particular day or even that particular instant.

For a comprehensive survey of simulation software see
Law and Haider (1989), or since this information changes
rapidly, consult the yearly proceedings of the Winter
Simulation Conference.

4 INTERPRETING SIMULATION DATA

Regardless of the type of software used to perform the
simulation, the use of simulation data for decision
making should be approached with care. Since discrete
event simulations are based on randomness, statistical
analysis must be used to interpret simulation results.

Say, for example, that we are interested in the average
time it takes a customer to get through a service facility
(e.g., the radiology department of a small hospital). If

we simulate this facility, we can easily nxord the length-
of-stay for each individual customer during a run, and at
the end of the run we can compute the average length-of-
stay for customers in this run. If we run the program a
second time, the computer will generate different
observations of the random service and arrival times.
Since the events that occur within the simulated system
all depend on these times, the resulting average length~f-
stay will be different from the f~st run. In fact, every
time we run the simulation, we will in all likelihood
observe a different average length-of-stay. We would like
to draw conclusions and make decisions based on the
average length-of-stay, but every time the model is run a
different value results. We are observing values of a
mndom variable whose distribution we do not know. In
other words simulation follows the RIRO principle --
random input, random output. It is essential to keep this
in mind when interpreting your results.

Since we deliberately introduce randomness at many
different points in most simulation models, it is not
surprising that the outputs from these simulations
include randomness. Unfortunately, this randomness
may cause the output from any one simulation to be of
limited value. (Is the observed performance due to chance
or is it due to some intrinsic propmy of the system?) We
use statistical analysis to understand the effects of this
randomness. Statistical tools for &ta analysis are used
in a wide variety of different fields, and, generally
speaking, tools that are useful in one area often work
well in many other areas. However, as we summarize in
Figure 5, several important differences exist between the
way statistical tools are USUI in simulation and in other
settings. As we will see in the next sections, a naive
application of tools that work in other areas may give
very misleading results when used to analyze simulation

Other Contexts Simulation

Collection May introduce errors Perfect

Outliers Present None

Randomness Assumed Under user control

Replications Not always possible Under user control

“Noise” Often unknown origin Fully explained

scenarios Often uncontrollable Under user control

Underlying Unknown Fully specified

Figure 5: How Simulation Experiments Differ From
Other Statistical Experiments



Introduction to Simulation
11

4.1 Performance of a Single System

Say, for example, we want to determine whether the
long run average length-of-stay in a system is greater
than or less than 10. Perhaps we have mn the model 20
times and eolleeted this average during each rum for some
runs the average was below 10, for some above. The
overall average of these averages came out to, say, 10.3.
Can we conclude that the overall long-inn average (i.e.,
the true mean) is greater than 10, or would additional
replications be likely to reverse this conclusion?
Questions such as this are generally approached using
statistical techniques such as confidence intervals and
hypothesis testing. Simulation data, however, often
present difficulties that make the computation of
meaningful eotildence intervals somewhat involved.

4.1.1 Autocorrelation

Most simple statistical data analysis techniques require
that the data be observations of independent identically
distributed random variables. Simulation output data
often does not satisfy this assumption. Consider, for
example, the time it takes for a patient to wait in line at
a busy X-ray machine. Two consecutive patients, due to
their proximity, often wait for the same people ahead of
them in the line. Consequently these two are likely to
have similar waiting times and the corresponding data
points are not independent (they are positively
autoeorrelated). The difference in the pattern of
consecutive observations of independent and positively
autocorrelated data is shown in Figure 6.

Observe how there is no obvious pattern in the
independent data while large (and small) values tend to be
clustered together in the positively autoeorrelated data set.

This lack of independence between consecutive data
points is an example of aurocorrelation, a property of
most simulation output &ta. Since autocorrelated data
does not satisfy the assumption of independence, naive
application of conventional statistical techniques will
lead to misleading results. Changes often occur more
slowly in positively autoeorrelated data. If we ignore
this, and naively compute the sample variance from a
simulation data set, this estimate of variance is usually
less than the true variance of the system. Confidence
intervals based on small variance estimators are too
narrow, and they may lead us to believe that our
simulation results include much less error than they actu-
ally do. The actual percentage of time that a procedure
for computing confidence intervals includes the true mean
is referred to as the coverage of that procedure. The
coverage of confidence intervals is often quite poor if the
data is positively autoeorrelated and that fact is ignored.

1

12

10 I

Replication 200

Independent observations

1 Customer 200

Positively autocorrelated observations

Figure 6 Two Types of Simulation Output Data

Several techniques have been developed for computing
confidence intervals based on autoeorrelated simulation
data. Perhaps the simplest of these techniques, the
method of batch means, is based on a simple idea.
Assume, for example, that we have a data set composed
of the time in the system for each of the f~st 12,000
customers in a simulation of a single server queueing
system. We partition these 12,000 observations into
twelve batches each containing one thousand consecutive
observations. We then compute the average value of the
observations in each batch, and base our confidence
interval computation on this new twelve point data set.
Our hope is these twelve averages (called batch means)

are sufficiently independent to make the resulting
eontldenee interval meaningful.

In Figure 7 we show that the coverage of batch means
confidence intervals is substantially better than the
coverage of the confidence intervals that result when the
autoeorrelation is simply ignored. To generate the data
in this figure, a single server (M/M/l) queueing system
with different levels of utilization was simulated.



12 Thesen and Travis

Confidence intervals for the mean time in the system
were computed, using a total of 12,000 departures to
compute each interval. For the batch-means intervals,
one thousand departures were used for each batch mean.
Each point shows the fraction of 100 90% confidence
intervals that contained the true mean.
coverage
1.01 Batch

0.6

1

‘~ ❑
❑

8=
■ m

0.4
mm

❑
m ❑

1Conventioml
0.2

❑ % “m
Confidence ❑ =

hteNd ■m%

0.0 ‘ m●=
m +

0.0 0.2 0.4 0. 0.8 1.0

utilization-

Figure 7: Coverage of Some 90% Confidence Intervals

We see that the batch means technique worked
reasonably well for server utilization up to about 85%
but that the coverage rapidly deteriorated as the utilization
increased beyond this point. We also see that the
coverage of conventional confidence intervals (computed
without assuring that successive data points are
independent) decreased at a constant rate regardless of
server utilization. Thus we conclude that if the &ta set
has significant autocorrelation (as in the case of time-irt-
system data for a queueing system), we should never
compute confidence intervals straight from the original
data. Batch means analysis can be used with reasonable
accuracy unless the autocorrelation is very high (in our
&ta, high autocorrelation was caused by high server
utilization). More sophisticated techniques compensate
more effectively for high autocordation.

4.1.2 The Initial Bias

Unfortunately, autocorrelation is not the only property
of simulation data that makes analysis challenging.
Another such property is known as the initial bias.

We often want to use simulation to evaluate the
performance of fairly crowded and busy systems. For
example, we may want to simulate an assembly system

with fourteen different stations and several hundred parts
in process at one time. It is often convenient to start
such simulations with an empty model (i.e., no parts at

any of the stations). This does not seem to be too
unreasonable, since the model will quickly “fall up” and
reach a representative state. Unfortunately, unless
properly handled, this practice may cause serious
distortions in the data that we collect. Since the fmt
simulated parts flowing through the system encounter
little or no congestion, these parts have shorter than
average transit times. By including these values in our
data ~ we bias the average transit time downward.

To show the impact of initial bias, we computed five
separateconfidence intervals for the mean time-in-system
for a simple queueing system. To compute the first
confidence interval, we ran 240 independent replications
of our simulation, each starting with an empty system,
and for each replication we computed the average rime in
the system. These 240 independent averages were then
used to estimate a confidence interval for the true mean of
the time in the system.

We then repeated the entire process four more times,
using a different number of replications each time (but
each time using the same total number of observations).
The resulting confidence intervals are shown in Figure 8.
For comparison, we have also computed the true mean of
our performance measure (mean time in system) using
queueing theory and included it on the graph.

True mean

I
I

050 100200 400 800

Departures per replication

Figure 8: Effect of the Initial Bias

We see that the fwst confidence interval (based on the
fifty departures per replication) gives information that is
very precise (since the confidence interval is narrow), but
also very incorrect (since the interval is very far away



Introduction to Simulation 13

from the true mean of 9.0 minutes). The analyst who
made the mistake of believing this computation would
have a result that seemed quite convincing but was, in
fact, off by approximately a factor of three. This
disturbing miscalculation is a consequence of initial bias.
As the number of departures per replication increased,
however, the confidence interval moved towards the true
mean (since the effect of the initial bias was only present
in the early observations of each run).

We see that failure to take into account the effect of the
initial bias can lead to very serious estimation errors,
especially when the simulation runs are short. The
easiest way to reduce the effect of the initial bias is to
run the model for a suitable length of time before
beginning data colhxx.ion. Other more sophisticated
techniques for compensating for initial bias can be found
elsewhere in this volume.

4.2 Comparing Designs

Simulations are often used to compare the performance
of different potential solutions to a problem. This
requires careful ptanning. Since the observed value of a
performance measure for any single simulation run is art
observation of a random variable, the observed difference
between the performance of multiple systems will also
be a random variable. Say we are interested in comparing
system A to system B, and we run a computer
simulation of each. If the simulated performance of
system A is slightly better than that of system B, can we
conclude that this difference is due to a genuine difference
between the systems, or might it only be caused by the
inherent randomness of our simulation runs?

As an example, recall the simple patlet loop system
discussed earlier. A decision maker involved in the
design of such a system might have two potential
configurations in mind. These two configurations might
differ, say, in the number of machines and buffer space at
each work center. The decision maker may wish to know
which of these systems is likely to produce a higher
throughput in the long run.

Say we simulated the two potential setups and ran each
simulation ten times collecting throughput data for each
replication. We might for example get an average
throughput of1117 packages per hour for the fwst setup,
and 1178 packages per hour for the second. Do we then
conclude that, since 1178> 1117, the throughput will,

on average, be higher for the second setup and therefore
this setup should be used? Shall we, on the other hand,
say that the observed difference between the averages is
too small to be conclusive given that only ten

replications were made and additional runs might give the
opposite answer?

We generally use hypothesis testing to answer
questions such as these. In this example we would start
from the hypothesis that the two setups result in the
same average throughput, and then if our data provides
strong enough evidence, we would reject this hypothesis,
and conclude that the average throughput does indeed
depend on which setup we use.

Sometimes our data does not provide enough evidence
to reject the hypothesis we have stated, and the analysis
is therefore inconclusive. This inconclusiveness is either
due to the fact that there indeed is no difference in
performance, or it could be due to the fact that the
variance in the observed data was too high (i.e., the data
was too “noisy” for us to extract useful information from
a data set of this size). If the observed difference was due
to the built-in randomness of the model, then we could
either perform many more (perhaps expensive)
simulation mns or we could use special techniques called
variance reduction techniques to strategically collect a
data set that is likely to be more conclusive.

In Figure 5 we pointed out that there area number of
important differences between simulation experiments
and other statistical experiments. One of the most
important of these is the fact that the random behavior
observed in simulation experiments is completely under
our control. There are many ways in which we can
exploit this to increase the information gained in a
simulation experiment. For example, we can use
identical “random” streams of customers to evaluate two
different management policies. Since the random factors
are identical in the two simulations, the observed
differences are more likely to be due to intrinsic
differences between policies. Data collected using this
technique is more likely to yield a conclusive statistical
analysis.

Techniques such as the one described above are referred
to as variance reduction techniques. Their use can
significantly reduce the data requirement (and hence the
cost) of many simulations. Variance reduction requires a
thorough understanding of simulation and statistics;
information on this topic can also be found in this
volume.

We have seen that the RIRO principle (random input,
random output) has implications critical to the
interpretation of simulation results. Observed differences
between individual runs of two simulated systems do not
necessarily imply actuat performance differences between
the two models. Many replications of the simulation
runs, careful data analysis, and perhaps variance reduction
techniques, are required to get conclusive results.

In sum, since performance measures generated by

simulations are random, any decisions made from
simulation generated data must be based on statistical
inference. However, simulation data often does not



14 Thesen and Travis

satisfy the assumptions underlying the most common
techniques for computing confidence intervals and
performing hypothesis testing. Application of
inappropriate statistical techniques may lead to
misleading conclusions and hence expensive errors in
policy. Consequently, a great deal of effort has been
devoted to the development of valid, efficient techniques
for extracting information from simulation &ta

5 SUMMARY

We have attempted to provide an introduction to the
uses of simulation, the underlying concepts, and the
types of computer packages available to the analyst.
While some of these tools require significant expertise
and experience, others are quite accessible to the novice.
Some guidelines for the beginning analyst am

1) Define your objectives before simulating.
2) Use the correct level of detail -- begin with a

simple model.
3) Select software that is appropriate for your

problem, level of experience, and timeframe.
4) Remember that simulation results are observations

of random variables, and learn to interpret your
results accordingly.

We have also pointed to a few of the many technical
considerations involved in effective simulation. Finally
some useful references are given in the following section.

6 FURTHER READING

For readers interested in a introductory overview of
simulation methodology, a number of appropriate texts
exist. Three of these are Banks and Carson (1990),
Pegden, Sadowski, and Shannon (1990), and Thesen and
Travis (199 1). For more those interested in a more
advanced methodology text, we recommend Bratley,
Bennett and Schrage (1987), Johnson (1987), or Law and
Kelton (1990). For a text that focuses on a specific
simulation language, we recommend Banka, Carson, and
Sy (1989), Markowits, Kiviat, and Villanueva (1987),
Pegden, Sadowski, and Shannon (1990), Pritsker (1984),
or Schriber (1990), depending on the language of interest.

ACKNOWLEDGEMENT

We would like to thank West Publishing Co. for
allowing us to adapt material from our text Simulation

for Decision Making for this tutorial.

REFERENCES

Banks, Jerry and John S. Carson II. 1990. Discrete-Event

System Simulation, Second Edition. Englewood
Cliffs, NJ: Prentice-Hall.

Banka, Jerry, John S. Carson II, and John Ngo Sy. 1989.
Getting Started With GPSSIH, Wolverine Software
Corporation, Annandale, VA.

Bratley, Paul, Bennett L. Fox, and Linus E. Schrage.
1987. A Glu”de to Simulatwn, Second Edition. New
Yorlc Springer-Verlag.

Johnson, M.E. 1987. Multivariate Statistical

Simulation. New York John Wiley.
Law, Averill M. and S. Wali Haider. 1989. Selecting

Simulation Software for Manufacturing
Applications: Practical Guidelines & Software
Survey. Industrial Engineering, May 1989,33-46.

Law, Averill M., and W. David Kelton. 1990.
Simulation Mo&ling and Analysis, Second Edition.
New York McGraw-Hill.

Markowits, H.M., PJ. Kiviat, and R. Villanueva 1987.
Simscript 11.5 Programmhg Language, CACI, Los
Angeles, CA.

Pegden, C.D., R.P. Sadowski, and R.E. Shannon. 1990.
Introduction to Simulation Using SIMAN, Systems
Modeling Corporation, Sewickley, PA.

Pritsker, A.A.B. 1986. Introduction to Simulation and

SLAM H, Third Edition. New York Halsted Press.
Schriber, Thomas J. 1990. An Introduction to

Simulation Using GPSSIH, Second Edition. New
York John Wiley.

Thesen, Arne and Laurel E. Travis. 1991. Simulation for

Decision Making, West Publishing Co.

AUTHOR BIOGRAPHIES

ARNE THESEN is a professor and chair of the
Department of Industrial Engineering at the University of
Wisconsin-Madison. His research interests are in the
areasof simulation modeling and scheduling of material
handling systems.

LAUREL TRAVIS is an assistant professor in the

Department of Finance and Management Science at the
University of Alberta Her research interests include
applications of operations research to a variery of
business and macroeconomic theory settings.


