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ABSTRACT 

Originating from basic research conducted in the 1970’s and 
1980’s, the parallel and distributed simulation field has ma-
tured over the last few decades.  Today, operational systems 
have been fielded for applications such as military training, 
analysis of communication networks, and air traffic control 
systems, to mention a few.  This tutorial gives an overview 
of technologies to distribute the execution of simulation pro-
grams over multiple computer systems.  Particular emphasis 
is placed on synchronization (also called time management) 
algorithms as well as data distribution techniques. 

1 INTRODUCTION 

Parallel and distributed simulation is concerned with issues 
introduced by distributing the execution of a discrete event 
simulation program over multiple computers.  Parallel dis-
crete event simulation is concerned with execution on mul-
tiprocessor computing platforms containing multiple cen-
tral processing units (CPUs) that interact frequently, e.g., 
thousands of times per second.  Distributed simulation is 
concerned with the execution of simulations on loosely 
coupled systems where interactions take much more time, 
e.g., milliseconds or more, and occur less often.  It includes 
execution on geographically distributed computers inter-
connected via a wide area network such as the Internet.  In 
both cases the execution of a single simulation model, per-
haps composed of several simulation programs, is distrib-
uted over multiple computers. 

There are two principal categories of simulations of 
concern here.  The first are simulations primarily used for 
analysis, e.g., to evaluate alternate designs or control poli-
cies of a complex system, e.g., an air traffic network.  Here 
the principal goal is to compute results of the simulation as 
quickly as possible in order to improve the effectiveness of 
the simulation tool.  A related application is to use simula-
tions to evaluate alternate courses of action, e.g., to evaluate 
different control actions imposed on an air traffic network in 
order to reduce delays induced by inclement weather in one 

portion of the air space.  Use of simulations to manage on-
going processes is referred to as on-line simulation. 

The second type of simulation of interest here are 
those used to create virtual environments into which hu-
mans and/or hardware devices are embedded.  Such envi-
ronments are widely used for training, entertainment (e.g., 
video games), and test of evaluation of devices.  Virtual 
environments have been used extensively to train military 
personnel because they provide a much safer, more cost 
effective, and environmentally friendlier approach to train-
ing than field exercises. 

Parallel and distributed simulation systems can provide 
substantial benefit to these applications in several ways: 

 
• Execution times of analytic simulations can be re-

duced by subdividing a large simulation computa-
tion into many sub-computations that can execute 
concurrently.  One can reduce the execution time 
by up to a factor equal to the number of proces-
sors that are used.  This may be important simply 
because the simulation takes a long time to exe-
cute, e.g., simulations of communication networks 
containing tens of thousands of nodes may require 
days or weeks for a single run. 

• Very fast executions are needed for on-line simu-
lations because there is often very little time 
available to make important decisions.  In many 
cases, simulation results must be produced in sec-
onds in order for simulation results to be useful.  
Again, parallel simulation provides a means to re-
duce execution time. 

• Simulations used for virtual environments must 
execute in real time, i.e., the simulator must be 
able to simulate a second of activity in a second of 
wallclock time so that the virtual environment ap-
pears realistic in that it evolves as rapidly as the 
actual system.  Distributing the execution of the 
simulation across multiple processors can help to 
achieve this property.  Ideally, scalable execution 
can be obtained whereby the distributed simula-
tion continues to run in real time as the system be-
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ing simulated and the number of processors are 
increased in proportion. 

• Distributed simulation techniques can be used to 
create virtual environments that are geographi-
cally distributed, enabling one to allow humans 
and/or devices to interact as if they were co-
located.  Such distributed virtual environments 
have obvious benefits in terms of convenience 
and reduced travel costs. 

• Distributed simulation can simplify integrating 
simulators that execute on machines from different 
manufacturers. For example, flight simulators for 
different types of aircraft may have been developed 
on different architectures. Rather than porting these 
programs to a single computer, it may be more cost 
effective to “hook together” the existing simulators, 
each executing on a different computer, to create a 
new virtual environment. 

• Another potential benefit of utilizing multiple 
processors is increased tolerance to failures. If one 
processor fails, it may be possible for other proc-
essors to continue the simulation provided critical 
elements do not reside on the failed processors. 

 
 Work in parallel and distributed simulation systems has 
taken place in three, largely separate research communities.  
The first is the high performance computing community 
which was concerned primarily with speeding up the execu-
tion of simulation programs by distributing their execution 
over multiple CPUs.  Early work in synchronization algo-
rithms dates back to the late 1970’s with seminal work by 
Chandy and Misra (1978), and Bryant (1977) (among oth-
ers) who are credited with first formulating the synchroniza-
tion problem and developing the first algorithms to solve it.  
These algorithms are among a class of algorithms that are 
today referred to as conservative synchronization algo-
rithms.  A few years later, seminal work by Jefferson devel-
oped the Time Warp algorithm (Jefferson 1985).  Time 
Warp is important because it defined fundamental constructs 
widely used in a class of algorithms termed optimistic syn-
chronization.  Conservative and optimistic synchronization 
techniques form the core of a large body of work concerning 
parallel discrete event simulation techniques. 
 The second community involved in the development 
of distributed simulation technology is the defense com-
munity.  While the high performance computing commu-
nity was largely concerned with reducing execution time, 
the defense community was concerned with integrating 
separate training simulations in order to facilitate interop-
erability and software reuse.  The SIMNET (SIMulator 
NETworking) project (1983 to 1990) demonstrated the vi-
ability of using distributed simulations to create virtual 
worlds for training soldiers in military engagements 
(Miller and Thorpe 1995).  This lead to the development of 
a set of standards for interconnecting simulators known as 

the Distributed Interactive Simulation (DIS) standards 
(IEEE Std 1278.1-1995 1995).  The 1990’s also saw the 
development of the Aggregate Level Simulation Protocol 
(ALSP) that applied the SIMNET concept of interoperabil-
ity and model reuse to wargame simulations.  ALSP and 
DIS have since been replaced by the High Level Architec-
ture whose scope spans the broad range of defense simula-
tions, including simulations for training, analysis, and test 
and evaluation of hardware components. 
 A third track of research and development efforts 
arose from the Internet and computer gaming community.  
Work in this area can be traced back to a role-playing 
game called dungeons and dragons and a textual fantasy 
computer game called Adventure developed in the 1970’s. 
These soon gave way to MultiUser Dungeon (MUD) 
games in the 1980’s.  Important additions such as sophisti-
cated computer graphics helped created the video game in-
dustry that is flourishing today. 
 This paper is organized as follows.  The next section is 
concerned with the execution of analytic simulations on 
parallel computers, with the principal goal of reducing 
execution time.  Synchronization is a key problem that 
must be addressed.  Section 3 is concerned with an ap-
proach to parallel simulation known as time decomposi-
tion. Section 4 is concerned with distributed virtual envi-
ronments and issues such as data distribution that arise in 
that domain.  This paper is an updated version of a previ-
ous tutorial presented at this conference in (Fujimoto 
1999b).  A much more detailed treatment of this subject is 
presented in (Fujimoto 2000).  

2 TIME MANAGEMENT 

Time management is concerned with ensuring that the exe-
cution of the parallel/distributed simulation is properly 
synchronized.  This is particularly important in analytic 
simulations.  Time management not only ensures that 
events are processed in a correct order, but also helps to 
ensure that repeated executions of a simulation with the 
same inputs produce exactly the same results.  Currently, 
time management techniques such as those described here 
are typically not used in training simulations, where incor-
rect event orderings and non-repeatable simulation execu-
tions can usually be tolerated. 
 Time management algorithms usually assume the 
simulation consists of a collection of logical processes 
(LPs) that communicate by exchanging timestamped mes-
sages or events.  The goal of the synchronization mecha-
nism is to ensure that each LP processes events in time-
stamp order; this requirement is referred to as the local 
causality constraint.  It can be shown that if each LP ad-
heres to the local causality constraint, execution of the 
simulation program on a parallel computer will produce 
exactly the same results as an execution on a sequential 
computer.  An important side effect of this property is that 

148



Fujimoto 
 
it is straightforward to ensure that the execution of the 
simulation is repeatable. 

Each LP can be viewed as a sequential discrete event 
simulation.  This means each LP maintains some local state 
and a list of time stamped events that have been scheduled 
for this LP (including local events within the LP that it has 
scheduled for itself), but have not yet been processed.  This 
pending event list must also include events sent to this LP 
from other LPs.  The main processing loop of the LP repeat-
edly removes the smallest time stamped event and processes 
it.  Thus, the computation performed by an LP can be 
viewed as a sequence of event computations.  Processing an 
event means zero or more state variables within the LP may 
be modified, and the LP may schedule additional events for 
itself or other LPs.  Each LP maintains a simulation time 
clock that indicates the time stamp of the most recent event 
processed by the LP.  Any event scheduled by an LP must 
have a time stamp at least as large as the LP’s simulation 
time clock when the event was scheduled. 

Time management algorithms can be classified as be-
ing either conservative or optimistic.  Each of these are de-
scribed next. 

2.1 Conservative Synchronization 

The first synchronization algorithms were based on conser-
vative approaches.  This means the synchronization algo-
rithm takes precautions to avoid violating the local causality 
constraint.  For example, suppose an LP is at simulation 
time 10, and it is ready to process its next event with time 
stamp 15.  But how does the LP know it won’t later receive 
an event from another LP with time stamp (say) 12?  The 
synchronization algorithm must ensure no event with time 
stamp less than 15 can be later received before it can allow 
the time stamp 15 event to be processed. 

Thus, the principal task of any conservative protocol is 
to determine when it is “safe” to process an event, i.e., 
when can one guarantee no event containing a smaller time 
stamp will be later received by this LP.  An LP cannot 
process an event until it has been guaranteed to be safe. 

2.1.1 First Generation Algorithms 

The algorithms described in (Bryant 1977, Chandy and 
Misra 1978) were perhaps the first synchronization algo-
rithms to be developed.  They assume the topology indicat-
ing which LPs send messages to which others is fixed and 
known prior to execution.  It is assumed each LP sends 
messages with non-decreasing time stamps, and the com-
munication network ensures that messages are received in 
the same order that they were sent.  This guarantees that 
messages arriving on each incoming link of an LP arrive in 
timestamp order.  This implies that the timestamp of the 
last message received on a link is a lower bound on the 

timestamp of any subsequent message that will later be re-
ceived on that link. 

Messages arriving on each incoming link are stored in 
first-in-first-out order, which is also timestamp order be-
cause of the above restriction.  Local events scheduled 
within the LP can be handled by having a queue within 
each LP that holds messages sent by an LP to itself.  Each 
link has a clock that is equal to the timestamp of the mes-
sage at the front of that link’s queue if the queue contains a 
message, or the timestamp of the last received message if 
the queue is empty.  The process repeatedly selects the link 
with the smallest clock and, if there is a message in that 
link’s queue, processes it.  If the selected queue is empty, 
the process blocks.  The LP never blocks on the queue con-
taining messages it schedules for itself, however.  This pro-
tocol guarantees that each process will only process events 
in non-decreasing timestamp order. 

Although this approach ensures the local causality 
constraint is never violated, it is prone to deadlock.  A 
cycle of empty links with small link clock values (e.g., 
smaller than any unprocessed message in the simulator) 
can occur, resulting in each process waiting for the next 
process in the cycle.  If there are relatively few unproc-
essed event messages compared to the number of links in 
the network, or if the unprocessed events become clus-
tered in one portion of the network, deadlock may occur 
very frequently. 

Null messages are used to avoid deadlock.  A null 
message with timestamp Tnull sent from LPA to LPB is a 
promise by LPA that it will not later send a message to LPB 
carrying a timestamp smaller than Tnull.  Null messages do 
not correspond to any activity in the simulated system; 
they are defined purely for avoiding deadlock situations.  
Processes send null messages on each outgoing link after 
processing each event.  A null message provides the re-
ceiver with additional information that may be used to de-
termine that other events are safe to process. 

Null messages are processed by each LP just like ordi-
nary non-null messages, except no activity is simulated by 
the processing of a null message.  In particular, processing 
a null message advances the simulation clock of the LP to 
the time stamp of the null message.  However, no state 
variables are modified and no non-null messages are sent 
as the result of processing a null message. 

How does a process determine the timestamps of the 
null messages it sends?  The clock value of each incoming 
link provides a lower bound on the timestamp of the next 
event that will be removed from that link’s buffer.  When 
coupled with knowledge of the simulation performed by the 
process, this bound can be used to determine a lower bound 
on the timestamp of the next outgoing message on each out-
put link.  For example, if a queue server has a minimum ser-
vice time of T, then the timestamp of any future departure 
event must be at least T units of simulated time larger than 
any arrival event that will be received in the future. 
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Whenever a process finishes processing a null or non-
null message, it sends a new null message on each outgo-
ing link. The receiver of the null message can then com-
pute new bounds on its outgoing links, send this informa-
tion on to its neighbors, and so on.  It can be shown that 
this algorithm avoids deadlock (Chandy and Misra 1978). 

The null message algorithm introduced a key property 
utilized by virtually all conservative synchronization algo-
rithms: lookahead.  If an LP is at simulation time T, and it 
can guarantee that any message it will send in the future will 
have a time stamp of at least T+L regardless of what mes-
sages it may later receive, the LP is said to have a lookahead 
of L.  As we just saw, lookahead is used to generate the time 
stamps of null messages. One constraint of the null message 
algorithm is it requires that no cycle among LPs exist con-
taining zero lookahead, i.e., it is impossible for a sequence 
of messages to traverse the cycle, with each message sched-
uling a new message with the same time stamp. 

2.1.2 Second Generation Algorithms 

The main drawback with the null message algorithm is it 
may generate an excessive number of null messages. Con-
sider a simulation containing two LPs.  Suppose both are 
blocked, each has reached simulation time 100, and each 
has a lookahead equal to 1. Suppose the next unprocessed 
event in the simulation has a time stamp of 200.  The null 
message algorithm will result in null messages exchanged 
between the LPs with time stamp 101, 102, 103, and so on.  
This will continue until the LPs advance to simulation time 
200, when the event with time stamp 200 can now be proc-
essed.  A hundred null messages must be sent and proc-
essed between the two LPs before the non-null message 
can be processed. This is clearly very inefficient.  The 
problem becomes even more severe if there are many LPs. 

The principal problem is the algorithm uses only the 
current simulation time of each LP and lookahead to pre-
dict the minimum time stamp of messages it could generate 
in the future.  To solve this problem, we observe that the 
key piece of information that is required is the time stamp 
of the next unprocessed event within each LP.  If the LPs 
could collectively recognize that this event has time stamp 
200, all of the LPs could immediately advance from simu-
lation time 100 to time 200.  Thus, the time of the next 
event across the entire simulation provides critical 
information that avoids the “time creeping” problem in the 
null message algorithm.  This idea is exploited in more ad-
vanced synchronization algorithms. 

Another problem with the null message algorithm 
concerns the case where each LP can send messages to 
many other LPs.  In the worst case, the LP topology is 
fully connected meaning each LP could send a message to 
any other.  In this case, each LP must broadcast a null mes-
sage to every other LP after processing each event.  This 
also results in an excessive number of null messages. 

One early approach to solving these problems is an al-
ternate algorithm that allows the computation to deadlock, 
but then detects and breaks it (Chandy and Misra 1981).  
The deadlock can be broken by observing that the mes-
sage(s) containing the smallest timestamp is (are) always 
safe to process.  Alternatively, one may use a distributed 
computation to compute lower bound information (not 
unlike the distributed computation using null messages de-
scribed above) to enlarge the set of safe messages. 

Many other approaches have been developed.  Some 
protocols use a synchronous execution where the computa-
tion cycles between (i) determining which events are 
“safe’” to process, and (ii) processing those events.  It is 
clear that the key step is determining the events that are 
safe to process each cycle.  Each LP must determine a 
lower bound on the time stamp (LBTS) of messages it 
might later receive from other LPs.  This can be deter-
mined from a snapshot of the distributed computation as 
the minimum among: 

 
• the simulation time of the next event within each 

LP if the LP is blocked, or the current time of the 
LP if it is not blocked, plus the LP’s lookahead 
and 

• the time stamp of any transient messages, i.e., any 
message that has been sent but has not yet been 
received at its destination. 

 
A barrier synchronization can be used to obtain the 

snapshot.  Transient messages can be “flushed” out of the 
system in order to account for their time stamps.  If first-in-
first-out communication channels are used, null messages 
can be sent through the channels to flush the channels, 
though as noted earlier, this may result in many null mes-
sages.  Alternatively, each LP can maintain a counter of the 
number of messages it has sent, and the number if has re-
ceived.  When the sum of the send and receive counters 
across all of the LPs are the same, and each LP has reached 
the barrier point, it is guaranteed that there are no more 
transient messages in the system.  In practice, summing the 
counters can be combined with the computation for com-
puting the global minimum value. 

To determine which events are safe, the distance be-
tween LPs is sometimes used.  This “distance” is the 
minimum amount of simulation time that must elapse for 
an event in one LP to directly or indirectly affect another 
LP, and can be used by an LP to determine bounds on the 
timestamp of future events it might receive from other LPs.  
This assumes it is known which LPs send messages to 
which other LPs.  Full elaboration this technique is beyond 
the scope of the present discussion, however, these tech-
niques and others are described in (Fujimoto 2000). 

Another thread of research in synchronization algo-
rithms concerns relaxing ordering constraints in order to 
improve performance.  Some approaches amount to simply 
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ignoring out of order event processing (Sokol and Stucky 
1990, Rao, et al. 1998).  Use of time intervals, rather than 
precise time stamps, to encode uncertainty of temporal in-
formation in order to improve the performance of time 
management algorithms have also been proposed 
(Fujimoto 1999a) (Beraldi and Nigro 2000).  Use of causal 
order rather than time stamp order for distributed simula-
tion applications has also been studied (Lee, et al. 2001). 

2.2 Optimistic Synchronization 

In contrast to conservative approaches that avoid violations 
of the local causality constraint, optimistic methods allow 
violations to occur, but are able to detect and recover from 
them.  Optimistic approaches offer two important advan-
tages over conservative techniques.  First, they can exploit 
greater degrees of parallelism.  If two events might affect 
each other, but the computations are such that they actually 
don’t, optimistic mechanisms can process the events con-
currently, while conservative methods must sequentialize 
execution.  Second, conservative mechanism generally rely 
on application specific information (e.g., distance between 
objects) in order to determine which events are safe to 
process.  While optimistic mechanisms can execute more 
efficiently if they exploit such information, they are less 
reliant on such information for correct execution.  This al-
lows the synchronization mechanism to be more transpar-
ent to the application program than conservative ap-
proaches, simplifying software development.  On the other 
hand, optimistic methods may require more overhead com-
putations than conservative approaches, leading to certain 
performance degradations. 

The Time Warp mechanism (Jefferson 1985) is the 
most well known optimistic method.  When an LP receives 
an event with timestamp smaller than one or more events it 
has already processed, it rolls back and reprocesses those 
events in timestamp order.  Rolling back an event involves 
restoring the state of the LP to that which existed prior to 
processing the event (checkpoints are taken for this pur-
pose), and “unsending” messages sent by the rolled back 
events.  An elegant mechanism called anti-messages is 
provided to “unsend” messages. 

An anti-message is a duplicate copy of a previously 
sent message.  Whenever an anti-message and its matching 
(positive) message are both stored in the same queue, the 
two are deleted (annihilated).  To “unsend” a message, a 
process need only send the corresponding anti-message.  If 
the matching positive message has already been processed, 
the receiver process is rolled back, possibly producing ad-
ditional anti-messages.  Using this recursive procedure all 
effects of the erroneous message will eventually be erased. 

Two problems remain to be solved before the above ap-
proach can be viewed as a viable synchronization mecha-
nism.  First, certain computations, e.g., I/O operations, can-
not be rolled back.  Second, the computation will continually 

consume more and more memory resources because a his-
tory (e.g., checkpoints) must be retained, even if no roll-
backs occur; some mechanism is required to reclaim the 
memory used for this history information.  Both problems 
are solved by global virtual time (GVT).  GVT is a lower 
bound on the timestamp of any future rollback.  GVT is 
computed by observing that rollbacks are caused by mes-
sages arriving “in the past.”  Therefore, the smallest time-
stamp among unprocessed and partially processed messages 
gives a value for GVT.  Once GVT has been computed, I/O 
operations occurring at simulated times older than GVT can 
be committed, and storage older than GVT (except one state 
vector for each LP) can be reclaimed. 

GVT computations are essentially the same as LBTS 
computations used in conservative algorithms.  This is be-
cause rollbacks result from receiving a message or anti-
message in the LP’s past.  Thus, GVT amounts to comput-
ing a lower bound on the time stamp of future messages (or 
anti-messages) that may later be received. 

A pure Time Warp system can suffer from overly op-
timistic execution, i.e., some LPs may advance too far 
ahead of others leading to excessive memory utilization 
and long rollbacks.  Many other optimistic algorithms have 
been proposed to address these problems. Most attempt to 
limit the amount of optimism.  An early technique involves 
using a sliding window of simulated time (Sokol and 
Stucky 1990).  The window is defined as [GVT, GVT+W] 
where W is a user defined parameter.  Only events with 
time stamp within this interval are eligible for processing. 
Another approach delays message sends until it is guaran-
teed that the send will not be later rolled back, i.e., until 
GVT advances to the simulation time at which the event 
was scheduled. This eliminates the need for anti-messages 
and avoids cascaded rollbacks, i.e., a rollback resulting in 
the generation of additional rollbacks (Dickens and Rey-
nolds 1990).  A technique called direct cancellation is 
sometimes used to rapidly cancel incorrect messages, 
thereby helping to reduce overly optimistic execution 
(Fujimoto 1989, Zhang and Tropper 2001). 

Another problem with optimistic synchronization con-
cerns the amount of memory that may be required to store 
history information.  Several techniques have been devel-
oped to address this problem.  For example, one can roll 
back computations to reclaim memory resources (Jefferson 
1990, Lin and Preiss 1991).  State saving can be performed 
infrequently rather than after each event (Lin, et al. 1993, 
Palaniswamy and Wilsey 1993).  The memory used by 
some state vectors can be reclaimed even though their time 
stamp is larger than GVT (Preiss and Loucks 1995). 

Early approaches to controlling Time Warp execution 
used user-defined parameters that had to be tuned to opti-
mize performance.  Later work has focused on adaptive 
approaches where the simulation executive automatically 
monitors the execution and adjusts control parameters to 
maximize performance.  Examples of such adaptive control 
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mechanisms are described in (Ferscha 1995, Das and Fu-
jimoto 1997), among others. 

Practical implementation of optimistic algorithms re-
quires that one must be able to roll back all operations, or 
be able to postpone them until GVT advances past the 
simulation time of the operation.  Care must be taken to 
ensure operations such as memory allocation and dealloca-
tion are handled properly, e.g., one must be able to roll 
back these operations.  Also, one must be able to roll back 
execution errors.  This can be problematic in certain situa-
tions, e.g., if an optimistic execution causes portions of the 
internal state of the Time Warp executive to be overwritten 
(Nicol and Liu 1997). 

Another approach to optimistic execution involves the 
use of reverse computation techniques rather than rollback 
(Carothers, et al. 1999).  Undoing an event computation is 
accomplished by executing the inverse computation, e.g., 
to undo incrementing a state variable, the variable is in-
stead decremented.  The advantage of this technique is it 
avoids state saving, which may be both time consuming 
and require a large amount of memory.  In (Carothers, et 
al. 1999) a reverse compiler is described to automatically 
generate inverse computations. 

2.3 Current State-of-the-Art 

Synchronization is a well-studied area of research in the par-
allel discrete event simulation field.  There is no clear con-
sensus concerning whether optimistic or conservative syn-
chronization perform better; indeed, the optimal approach 
usually depends on the application.  In general, if the appli-
cation has good lookahead characteristics and programming 
the application to exploit this lookahead is not overly bur-
densome, conservative approaches are the method of choice.  
Indeed, much research has been devoted to improving the 
lookahead of simulation applications, e.g., see (Deelman, et 
al. 2001).  Otherwise, optimistic synchronization offers 
greater promise.  Disadvantages of optimistic synchroniza-
tion include the potentially large amount of memory that 
may be required, and the complexity of optimistic simula-
tion executives. Techniques to reduce memory utilization 
further aggravate the complexity issue. 

Recently, synchronization algorithms have assumed an 
increased importance because of their use in the DoD High 
Level Architecture (HLA).  Because the HLA is driven by 
the desire to reuse existing simulations, an important dis-
advantage of optimistic synchronization in this context is 
the effort required to add state saving and other mechanism 
to enable the simulation to be rolled back. 

3 TIME PARALLEL SIMULATION 

Time-parallel simulation methods have been developed for 
attacking specific simulation problems with well-defined 
objectives, e.g., measuring the loss rate of a finite capacity 

queue of an ATM multiplexer.  Time-parallel algorithms 
divide the simulated time axis into intervals, and assign 
each interval to a different processor.  This allows for mas-
sively parallel execution because simulations often span 
long periods of simulated time. 

A central question that must be addressed by time-
parallel simulators is ensuring the states computed at the 
“boundaries” of the time intervals match.  Specifically, it is 
clear that the state computed at the end of the interval [Ti-

1,Ti] must match the state at the beginning of interval 
[Ti,Ti+1].  Thus, this approach relies on being able to per-
form the simulation corresponding to the ith interval with-
out first completing the simulations of the preceding (i-1, i-
2, ... 1) intervals. 

Because of the “state-matching” problem, time-parallel 
simulation is really more of a methodology for developing 
massively parallel algorithms for specific simulation prob-
lems than a general approach for executing arbitrary dis-
crete-event simulation models on parallel computers.  Time-
parallel algorithms are currently not as robust as space-
parallel approaches because they rely on specific properties 
of the system being modeled, e.g., specification of the sys-
tem’s behavior as recurrence equations and/or a relatively 
simple state descriptor.  This approach is currently limited to 
a handful of applications, e.g., queuing networks, Petri nets, 
cache memories, and multiplexers in communication net-
works.  Space-parallel simulations offer greater flexibility 
and wider applicability, but concurrency is limited to the 
number of logical processes. In some cases, both time and 
space-parallelism can be used. 

One approach to solving the state matching problem is 
to have each processor guess the initial state of its simula-
tion, and then simulate the system based on this guessed 
initial state (Lin and Lazowska 1991). In general, the initial 
state will not match the final state of the previous interval.  
After the interval simulators have completed, a “fix-up” 
computation is performed to account for the fact that the 
wrong initial state was used.  This might be performed, for 
instance, by simply repeating the simulation, using the fi-
nal state computed in the previous interval as the new ini-
tial state. This “fix-up” process is repeated until the initial 
state of each interval matches the final state of the previous 
interval.  In the worst case, N such iterations are required 
when there are N simulators.  However, if the final state of 
each interval simulator is seldom dependent on the initial 
state, far fewer iterations will be needed. 

In (Heidelberger and Stone 1990) the above approach 
is proposed to simulate cache memories using a least-
recently-used replacement policy.  This approach is effec-
tive for this application because the final state of the cache 
is not heavily dependent on the cache’s initial state. A 
variation on this approach devised in the context of simu-
lating statistical multiplexers for asynchronous transfer 
mode (ATM) switches precomputes certain points in time 
where one can guarantee that a buffer overflow (full 
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queue) or underflow (empty queue) will occur (Fujimoto, 
et al. 1995).  Because the state of the system, namely, the 
number of occupied buffers in the queue, is known at these 
points, independent simulations can be begun at these 
points in simulated time, thereby eliminating the need for a 
fix-up computation. 

Another approach to time-parallel simulation is de-
scribed in (Greenberg, et al. 1991).  Here, a queuing net-
work simulation is expressed as a set of recurrence equa-
tions that are then solved using well-known parallel prefix 
algorithms.  The parallel prefix computation enables the 
state of the system at various points in simulated time to be 
computed concurrently.  Another approach also based on 
recurrence equations is described in (Baccelli and Canales 
1993) for simulating timed Petri nets. 

4 DISTRIBUTED VIRTUAL ENVIRONMENTS 

While the foundation for parallel discrete event simulation 
lies in early research concerning synchronization algorithms, 
early work in DVEs came from the SIMNET project that 
demonstrated the viability of interconnecting autonomous 
simulators in a distributed environment for military training 
exercises (Miller and Thorpe 1995).  SIMNET was used as 
the basis for the initial DIS protocols and standards, and 
many of the fundamental principles defined in SIMNET re-
main in DIS and the HLA today.  SIMNET realized over 
250 networked simulators at 11 sites in 1990. 

From a model execution standpoint, a DIS exercise can 
be viewed as a collection of autonomous virtual (manned 
training simulators), live (physical equipment), and 
constructive (wargaming simulators and other analytic tools) 
simulators, each generating its own representation of the bat-
tlefield from its own perspective.  Each simulator sends 
messages, called protocol data units (PDUs), whenever its 
state changes in a way that might affect another simulator.  
Typical PDUs include movement to a new location, firing at 
another simulated entity, changes in its appearance to other 
simulators (such as rotating the turret of a tank), etc. 

In order to achieve interoperability among separately 
developed simulators, a set of standards have been devel-
oped (IEEE Std 1278.1-1995 1995).  The standards specify 
the format and contents of PDUs exchanged between simu-
lators as well as when PDUs should be sent. 

DIS is based on the following underlying design prin-
ciples (DIS Steering Committee 1994): 

 
• Autonomy of simulation nodes.  Autonomy facili-

tates the development, integration of legacy simu-
lators, and simulators joining or leaving the exer-
cise while it is in progress.  Each simulator 
advances simulation time according to a local 
real-time clock.  Simulators are not required to 
determine which other simulators must receive 
PDUs; rather, PDUs are broadcast to all simula-

tors and the receiver must determine those that are 
relevant to its own virtual environment. 

• Transmission of “ground truth” information.  
Each node sends absolute truth about the state of 
the entities it represents.  Degradations of this in-
formation (e.g., due to environmental effects or 
sensor limitations) are performed by the receiver. 

• Transmission of state change information only.  
To economize on communications, simulation 
nodes only transmit changes in behavior.  If a ve-
hicle continues to “do the same thing” (e.g., travel 
in a straight line with constant velocity), the rate 
at which state updates are transmitted is reduced.  
Simulators do transmit “keep alive” messages, 
e.g., every five seconds, so new simulators enter-
ing the exercise can include them in their virtual 
environment. 

• Dead Reckoning Algorithms.  All simulators use 
common algorithms to extrapolate the current 
state (position) of other entities between state up-
dates. More will be said about this later. 

• Simulation time constraints.  Because humans 
cannot distinguish differences in time less than 
100 milliseconds, a communication latency of up 
to this amount is required. Lower latencies are 
needed for other, non-training, simulators, e.g., 
testing of weapons systems. 

4.1 Dead Reckoning 

DIS simulations use a technique called dead-reckoning to re-
duce interprocessor communication to distribute position in-
formation.  This reduction is realized by observing that rather 
than sending new position coordinates of moving entities at 
some predetermined frequency, processors can estimate the 
location of other entities through a local computation. 

In principal, one could duplicate a remote simulator in 
the local processor so that any dynamically changing state 
information is readily available.  This local computation, 
when applied to computing position information of moving 
entities, is referred to as the dead-reckoning model (DRM). 

In practice, the DRM is only an approximation of the 
true simulator.  An approximation is used because (1) the 
DRM does not receive inputs received by the actual simula-
tor, e.g., a pilot using a flight simulator decides to travel in a 
new direction, and (2) to economize on the amount of com-
putation required to execute the DRM.  In practice, the 
DRM is realized as a simplified, lower fidelity version of the 
true model.  To limit the amount of error between the true 
model and the DRM, the true simulator maintain its own 
copy of the DRM to determine when the divergence be-
tween them has become too large, In other words, the differ-
ence between the true position and the dead-reckoned posi-
tion exceeds some threshold.  When this occurs, the true 
simulator transmits new, updated information (the true posi-
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tion) to reset the DRM.  To avoid jumps in the display when 
the DRM is reset, simulators may realize the transition to the 
new position as a sequence of steps (Fujimoto 2000). 

A variety of dead reckoning techniques have been pro-
posed.  Standard techniques are usually based on location, 
velocity, and acceleration of the moving object.  Prediction 
based on history is described in (Singhal and Cheriton 
1995).  Group dead reckoning is used in (Das, et al. 1997). 

4.2 Data Distribution (DD) 

An important question concerns scaling exercises to in-
clude more entities and sites (locations).  Significant 
changes to DIS are required to enable simulations of this 
size, particularly with respect to the amount of 
communications that are required. 

Even with dead-reckoning, the DIS protocol described 
above does not scale to such large simulations. An obvious 
problem is the reliance on broadcasts.  There are two prob-
lems: (1) realization of the communication bandwidth 
needed to perform broadcasts, is costly, and (2) the compu-
tation load required to process incoming PDUs is excessive 
and wasteful, particularly as the size of the exercise in-
creases because a smaller percentage of the incoming 
PDUs will be relevant to each simulator. 

Whenever a simulator performs some action that may 
be of interest to other simulators, e.g., moving an entity to 
a new location, a message is generated. Some means is re-
quired to specify which other simulators should receive a 
copy of this message. Specifically, the distributed simula-
tion system must provide mechanisms for the simulators to 
describe both the information it is producing, and the in-
formation it is interested in receiving. Based on these 
specifications, the executive must then determine which 
simulators should receive what messages. 

Data distribution has some similarities to Internet 
newsgroups. Specifically, newsgroup users must express 
what information they are interested in receiving by sub-
scribing to specific newsgroups. The contents of the infor-
mation that is being published is described by the news-
group(s) to which it is sent, e.g., a recipe for a new cake 
would be published to a cooking newsgroup, not one con-
cerning the weather. The newsgroup names are critical be-
cause they provide a common vocabulary for users to char-
acterize both the information being published, and the 
information they are interested in receiving. 

The set of newsgroup names defines a name space, i.e., 
a common vocabulary used to describe data and to express 
interests. Each user provides an interest expression that 
specifies a subset of the name space, i.e., a list of news-
groups, that indicate what information he is interested in re-
ceiving. A description expression, again a subset of the 
name space, is associated with each message that describes 
the contents of the message. Logically, the software manag-
ing the news groups matches the description expression of 

each message with the interest expression of each user. If the 
two overlap, i.e., have at least one element of the name 
space in common, the message is sent to that user. 

The name space, interest expressions, and description 
expressions define the heart of the interface to the DD 
mechanisms. The DD software must map this interface to 
the primitives provided by the communication facilities 
such as joining, leaving, and sending messages to multicast 
groups. The challenging aspect of the DD interface is de-
fining abstractions that are both convenient for the modeler 
to use, and provide an efficient realization using standard 
communication primitives. DD interfaces that are similar 
to basic communications primitives lend themselves to 
straightforward implementation, but may be difficult for 
modelers to use. On the other hand, higher level mecha-
nisms such as “I am interested in receiving position up-
dates for all tanks with a 2.0 radius circle of my current po-
sition” are more difficult to implement, leading to slow 
and/or inefficient mechanisms. 

4.3 Data Distribution in the HLA 

To illustrate these concepts, consider the data distribu-
tion mechanisms provided in the High Level Architecture.  
The HLA Interface Specification includes two sets of ser-
vices to implement data distribution: declaration management 
and data distribution management.  Declaration management 
services use a class-based approach.  This means the federa-
tion defines a set of objects according to a class hierarchy, 
and individual federates may subscribe to receive updates to 
object attributes of specific classes.  For example, a simulator 
might specify that it wishes to receive a message whenever 
the position attribute of any tank object (object declared from 
the tank class) is updated.  This approach is static in the sense 
that interest expressions are based on classes that are stati-
cally defined.  One could not, for instance, use these services 
to get updates for tank objects that are “close by” because the 
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Figure 1: HLA DDM example. 
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position of other tanks relative to one’s current position is not 
known until during the execution. 

The data distribution management (DDM) services pro-
vide a means for providing this capability.  The name space 
for the HLA DDM services is called a routing space.  Rout-
ing spaces are an abstraction defined separately from objects 
and attributes, solely for the purpose of data distribution. A 
routing space is a multidimensional coordinate system. The 
name space for a single N-dimensional routing space is a tu-
ple (X1, X2, ... XN) with Xmin ≤ Xi ≤ Xmax, where Xmin and 
Xmax are federation-defined values. For example, Figure 1 
shows a two-dimensional routing space with axis values 
ranging from 0.0 to 1.0. The relationship of the routing 
space to elements of the virtual environment is left to the 
federation designers. For example, a two dimensional rout-
ing space might be used to represent the geographical area 
covered by the virtual environment, however, the data distri-
bution software is not aware of this interpretation. 

Interest and description expressions in the HLA define 
areas called regions, of a routing space. Specifically, each 
region is a set of one or more extents, where each extent is 
a rectangular N-dimensional area defined within the N-
dimensional routing space. Four extents are shown in Fig-
ure 1. Each extent is specified as a sequence of N ranges 
(R1, R2, ... RN) where range Ri is an interval along dimen-
sion i of the routing space. For example, the extent labeled 
S1 in Figure 1 is denoted ([0.1,0.5], [0.2,0.5]), using the 
convention that R1 corresponds to the horizontal axis, and 
R2 corresponds to the vertical axis. 

A region is the union of the set of points in the routing 
space covered by its extents. Interest expressions are re-
ferred to as subscription regions, and description expres-
sions are referred to as publication regions. For example, 
the routing space in Figure 1 includes one update region U 
and two subscription regions S1 and S2. The extents defin-
ing a single region need not overlap. 

Each federate can qualify a subscription to an object 
class by associating a subscription region with the subscrip-
tion, e.g., to only get updates for vehicles within a certain 
portion of the routing space. Similarly, an update region may 
be associated with each instance of an object. If a federate’s 
subscription region for an object class overlaps with the up-
date region associated with the instance of the object being 
modified, then a message is sent to the federate. 

For example, suppose the routing space in Figure 1 
corresponds to the geographic area (i.e., the playbox) of a 
virtual environment that includes moving vehicles. Sup-
pose the update region U is associated with an aircraft ob-
ject that contains attributes indicating the aircraft’s posi-
tion. The region defined by U indicates the aircraft is 
within this portion of the playbox. Suppose S1 and S2 are 
the subscription regions created by two distinct federates 
F1 and F2, each modeling a sensor. The extents of these 
subscription regions are set to encompass all areas that the 
sensors can reach. If the aircraft moves to a new position 

within U, thereby updating its position attribute, a message 
will be sent to F1 because its subscription region S1 over-
laps with U, but no message will be sent to F2 whose sub-
scription region does not overlap with U. 

Definition of subscription regions also involves certain 
compromises, particularly if the subscription region 
changes, as would be the case for a sensor mounted on a 
moving vehicle. Changing a subscription region can be a 
time consuming operation involving joining and leaving 
multicast groups. Defining large subscription regions will 
result in less frequent region modifications, but will result 
in the federate receiving more messages that are not rele-
vant to it. Small regions yield more precise filtering, but 
more frequent changes. The region size should be set to 
strike a balance between these two extremes. 

There has been much research in recent years focused 
on data distribution management techniques.  Implementa-
tion of HLA DDM services involves defining a set of mul-
ticast groups, and mapping federates to these groups to de-
fine source/destination pairs.  One implementation 
approach is to superimpose a grid over the routing space, 
and define a multicast group for each grid cell.  Each fed-
erate must subscribe to the groups overlapping with that 
federate’s subscription regions.  A sender sends a message 
to each group corresponding to a grid cell overlapping the 
corresponding publication region. 

Another approach is the region-based (or sender-based) 
implementation.  Here, a multicast group is defined for each 
publication region.  A sender sends a message to the group 
corresponding to the publication region associated with the 
send.  Federates with subscription regions overlapping with 
the publication region are members of the group, and will 
each receive a copy of the message.  A “matching” operation 
is required to determine group membership whenever publi-
cation or subscription regions change. 

Early performance studies of the HLA and HLA-like 
DDM services are discussed in (Rak and Van Hook 1996, 
Cohen and Kemkes 1997). Performance of a hybrid grid 
approach using dynamic group assignments is described in 
(Boukerche, et al. 2000).  An agent-based implementation 
approach is described in (Tan, et al. 2001). 

5 SUMMARY 

Parallel and distributed simulation technologies address 
issues concerning the execution of simulation programs on 
multiprocessor and distributed computing platforms.  
These technologies find applications in high performance 
computing contexts as well as in the creation of geographi-
cally distributed virtual environments.  Originating in the 
1970’s, these remain active fields of research to this day. 

We have given a brief introduction to this field by giv-
ing a sampling of some of the issues commonly addressed 
by researchers working in this area.  Synchronization is a 
fundamental issue that has long been studied in the parallel 
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discrete event simulation field.  A central issue in distrib-
uted virtual environments concerns efficient distribution of 
data, particularly for large DVEs. 
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