
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

ABSTRACT

Originating from basic research conducted in the 1970’s and
1980’s, the parallel and distributed simulation field has ma-
tured over the last few decades. Today, operational systems
have been fielded for applications such as military training,
analysis of communication networks, and air traffic control
systems, to mention a few. This tutorial gives an overview
of technologies to distribute the execution of simulation pro-
grams over multiple computer systems. Particular emphasis
is placed on synchronization (also called time management)
algorithms as well as data distribution techniques.

1 INTRODUCTION

Parallel and distributed simulation is concerned with issues
introduced by distributing the execution of a discrete event
simulation program over multiple computers. Parallel dis-
crete event simulation is concerned with execution on mul-
tiprocessor computing platforms containing multiple cen-
tral processing units (CPUs) that interact frequently, e.g.,
thousands of times per second. Distributed simulation is
concerned with the execution of simulations on loosely
coupled systems where interactions take much more time,
e.g., milliseconds or more, and occur less often. It includes
execution on geographically distributed computers inter-
connected via a wide area network such as the Internet. In
both cases the execution of a single simulation model, per-
haps composed of several simulation programs, is distrib-
uted over multiple computers.

There are two principal categories of simulations of
concern here. The first are simulations primarily used for
analysis, e.g., to evaluate alternate designs or control poli-
cies of a complex system, e.g., an air traffic network. Here
the principal goal is to compute results of the simulation as
quickly as possible in order to improve the effectiveness of
the simulation tool. A related application is to use simula-
tions to evaluate alternate courses of action, e.g., to evaluate
different control actions imposed on an air traffic network in
order to reduce delays induced by inclement weather in one

portion of the air space. Use of simulations to manage on-
going processes is referred to as on-line simulation.

The second type of simulation of interest here are
those used to create virtual environments into which hu-
mans and/or hardware devices are embedded. Such envi-
ronments are widely used for training, entertainment (e.g.,
video games), and test of evaluation of devices. Virtual
environments have been used extensively to train military
personnel because they provide a much safer, more cost
effective, and environmentally friendlier approach to train-
ing than field exercises.

Parallel and distributed simulation systems can provide
substantial benefit to these applications in several ways:

• Execution times of analytic simulations can be re-

duced by subdividing a large simulation computa-
tion into many sub-computations that can execute
concurrently. One can reduce the execution time
by up to a factor equal to the number of proces-
sors that are used. This may be important simply
because the simulation takes a long time to exe-
cute, e.g., simulations of communication networks
containing tens of thousands of nodes may require
days or weeks for a single run.

• Very fast executions are needed for on-line simu-
lations because there is often very little time
available to make important decisions. In many
cases, simulation results must be produced in sec-
onds in order for simulation results to be useful.
Again, parallel simulation provides a means to re-
duce execution time.

• Simulations used for virtual environments must
execute in real time, i.e., the simulator must be
able to simulate a second of activity in a second of
wallclock time so that the virtual environment ap-
pears realistic in that it evolves as rapidly as the
actual system. Distributing the execution of the
simulation across multiple processors can help to
achieve this property. Ideally, scalable execution
can be obtained whereby the distributed simula-
tion continues to run in real time as the system be-

PARALLEL AND DISTRIBUTED SIMULATION SYSTEMS

Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280, U.S.A.

147

Fujimoto

ing simulated and the number of processors are
increased in proportion.

• Distributed simulation techniques can be used to
create virtual environments that are geographi-
cally distributed, enabling one to allow humans
and/or devices to interact as if they were co-
located. Such distributed virtual environments
have obvious benefits in terms of convenience
and reduced travel costs.

• Distributed simulation can simplify integrating
simulators that execute on machines from different
manufacturers. For example, flight simulators for
different types of aircraft may have been developed
on different architectures. Rather than porting these
programs to a single computer, it may be more cost
effective to “hook together” the existing simulators,
each executing on a different computer, to create a
new virtual environment.

• Another potential benefit of utilizing multiple
processors is increased tolerance to failures. If one
processor fails, it may be possible for other proc-
essors to continue the simulation provided critical
elements do not reside on the failed processors.

 Work in parallel and distributed simulation systems has
taken place in three, largely separate research communities.
The first is the high performance computing community
which was concerned primarily with speeding up the execu-
tion of simulation programs by distributing their execution
over multiple CPUs. Early work in synchronization algo-
rithms dates back to the late 1970’s with seminal work by
Chandy and Misra (1978), and Bryant (1977) (among oth-
ers) who are credited with first formulating the synchroniza-
tion problem and developing the first algorithms to solve it.
These algorithms are among a class of algorithms that are
today referred to as conservative synchronization algo-
rithms. A few years later, seminal work by Jefferson devel-
oped the Time Warp algorithm (Jefferson 1985). Time
Warp is important because it defined fundamental constructs
widely used in a class of algorithms termed optimistic syn-
chronization. Conservative and optimistic synchronization
techniques form the core of a large body of work concerning
parallel discrete event simulation techniques.
 The second community involved in the development
of distributed simulation technology is the defense com-
munity. While the high performance computing commu-
nity was largely concerned with reducing execution time,
the defense community was concerned with integrating
separate training simulations in order to facilitate interop-
erability and software reuse. The SIMNET (SIMulator
NETworking) project (1983 to 1990) demonstrated the vi-
ability of using distributed simulations to create virtual
worlds for training soldiers in military engagements
(Miller and Thorpe 1995). This lead to the development of
a set of standards for interconnecting simulators known as

the Distributed Interactive Simulation (DIS) standards
(IEEE Std 1278.1-1995 1995). The 1990’s also saw the
development of the Aggregate Level Simulation Protocol
(ALSP) that applied the SIMNET concept of interoperabil-
ity and model reuse to wargame simulations. ALSP and
DIS have since been replaced by the High Level Architec-
ture whose scope spans the broad range of defense simula-
tions, including simulations for training, analysis, and test
and evaluation of hardware components.
 A third track of research and development efforts
arose from the Internet and computer gaming community.
Work in this area can be traced back to a role-playing
game called dungeons and dragons and a textual fantasy
computer game called Adventure developed in the 1970’s.
These soon gave way to MultiUser Dungeon (MUD)
games in the 1980’s. Important additions such as sophisti-
cated computer graphics helped created the video game in-
dustry that is flourishing today.
 This paper is organized as follows. The next section is
concerned with the execution of analytic simulations on
parallel computers, with the principal goal of reducing
execution time. Synchronization is a key problem that
must be addressed. Section 3 is concerned with an ap-
proach to parallel simulation known as time decomposi-
tion. Section 4 is concerned with distributed virtual envi-
ronments and issues such as data distribution that arise in
that domain. This paper is an updated version of a previ-
ous tutorial presented at this conference in (Fujimoto
1999b). A much more detailed treatment of this subject is
presented in (Fujimoto 2000).

2 TIME MANAGEMENT

Time management is concerned with ensuring that the exe-
cution of the parallel/distributed simulation is properly
synchronized. This is particularly important in analytic
simulations. Time management not only ensures that
events are processed in a correct order, but also helps to
ensure that repeated executions of a simulation with the
same inputs produce exactly the same results. Currently,
time management techniques such as those described here
are typically not used in training simulations, where incor-
rect event orderings and non-repeatable simulation execu-
tions can usually be tolerated.
 Time management algorithms usually assume the
simulation consists of a collection of logical processes
(LPs) that communicate by exchanging timestamped mes-
sages or events. The goal of the synchronization mecha-
nism is to ensure that each LP processes events in time-
stamp order; this requirement is referred to as the local
causality constraint. It can be shown that if each LP ad-
heres to the local causality constraint, execution of the
simulation program on a parallel computer will produce
exactly the same results as an execution on a sequential
computer. An important side effect of this property is that

148

Fujimoto

it is straightforward to ensure that the execution of the
simulation is repeatable.

Each LP can be viewed as a sequential discrete event
simulation. This means each LP maintains some local state
and a list of time stamped events that have been scheduled
for this LP (including local events within the LP that it has
scheduled for itself), but have not yet been processed. This
pending event list must also include events sent to this LP
from other LPs. The main processing loop of the LP repeat-
edly removes the smallest time stamped event and processes
it. Thus, the computation performed by an LP can be
viewed as a sequence of event computations. Processing an
event means zero or more state variables within the LP may
be modified, and the LP may schedule additional events for
itself or other LPs. Each LP maintains a simulation time
clock that indicates the time stamp of the most recent event
processed by the LP. Any event scheduled by an LP must
have a time stamp at least as large as the LP’s simulation
time clock when the event was scheduled.

Time management algorithms can be classified as be-
ing either conservative or optimistic. Each of these are de-
scribed next.

2.1 Conservative Synchronization

The first synchronization algorithms were based on conser-
vative approaches. This means the synchronization algo-
rithm takes precautions to avoid violating the local causality
constraint. For example, suppose an LP is at simulation
time 10, and it is ready to process its next event with time
stamp 15. But how does the LP know it won’t later receive
an event from another LP with time stamp (say) 12? The
synchronization algorithm must ensure no event with time
stamp less than 15 can be later received before it can allow
the time stamp 15 event to be processed.

Thus, the principal task of any conservative protocol is
to determine when it is “safe” to process an event, i.e.,
when can one guarantee no event containing a smaller time
stamp will be later received by this LP. An LP cannot
process an event until it has been guaranteed to be safe.

2.1.1 First Generation Algorithms

The algorithms described in (Bryant 1977, Chandy and
Misra 1978) were perhaps the first synchronization algo-
rithms to be developed. They assume the topology indicat-
ing which LPs send messages to which others is fixed and
known prior to execution. It is assumed each LP sends
messages with non-decreasing time stamps, and the com-
munication network ensures that messages are received in
the same order that they were sent. This guarantees that
messages arriving on each incoming link of an LP arrive in
timestamp order. This implies that the timestamp of the
last message received on a link is a lower bound on the

timestamp of any subsequent message that will later be re-
ceived on that link.

Messages arriving on each incoming link are stored in
first-in-first-out order, which is also timestamp order be-
cause of the above restriction. Local events scheduled
within the LP can be handled by having a queue within
each LP that holds messages sent by an LP to itself. Each
link has a clock that is equal to the timestamp of the mes-
sage at the front of that link’s queue if the queue contains a
message, or the timestamp of the last received message if
the queue is empty. The process repeatedly selects the link
with the smallest clock and, if there is a message in that
link’s queue, processes it. If the selected queue is empty,
the process blocks. The LP never blocks on the queue con-
taining messages it schedules for itself, however. This pro-
tocol guarantees that each process will only process events
in non-decreasing timestamp order.

Although this approach ensures the local causality
constraint is never violated, it is prone to deadlock. A
cycle of empty links with small link clock values (e.g.,
smaller than any unprocessed message in the simulator)
can occur, resulting in each process waiting for the next
process in the cycle. If there are relatively few unproc-
essed event messages compared to the number of links in
the network, or if the unprocessed events become clus-
tered in one portion of the network, deadlock may occur
very frequently.

Null messages are used to avoid deadlock. A null
message with timestamp Tnull sent from LPA to LPB is a
promise by LPA that it will not later send a message to LPB
carrying a timestamp smaller than Tnull. Null messages do
not correspond to any activity in the simulated system;
they are defined purely for avoiding deadlock situations.
Processes send null messages on each outgoing link after
processing each event. A null message provides the re-
ceiver with additional information that may be used to de-
termine that other events are safe to process.

Null messages are processed by each LP just like ordi-
nary non-null messages, except no activity is simulated by
the processing of a null message. In particular, processing
a null message advances the simulation clock of the LP to
the time stamp of the null message. However, no state
variables are modified and no non-null messages are sent
as the result of processing a null message.

How does a process determine the timestamps of the
null messages it sends? The clock value of each incoming
link provides a lower bound on the timestamp of the next
event that will be removed from that link’s buffer. When
coupled with knowledge of the simulation performed by the
process, this bound can be used to determine a lower bound
on the timestamp of the next outgoing message on each out-
put link. For example, if a queue server has a minimum ser-
vice time of T, then the timestamp of any future departure
event must be at least T units of simulated time larger than
any arrival event that will be received in the future.

149

Fujimoto

Whenever a process finishes processing a null or non-
null message, it sends a new null message on each outgo-
ing link. The receiver of the null message can then com-
pute new bounds on its outgoing links, send this informa-
tion on to its neighbors, and so on. It can be shown that
this algorithm avoids deadlock (Chandy and Misra 1978).

The null message algorithm introduced a key property
utilized by virtually all conservative synchronization algo-
rithms: lookahead. If an LP is at simulation time T, and it
can guarantee that any message it will send in the future will
have a time stamp of at least T+L regardless of what mes-
sages it may later receive, the LP is said to have a lookahead
of L. As we just saw, lookahead is used to generate the time
stamps of null messages. One constraint of the null message
algorithm is it requires that no cycle among LPs exist con-
taining zero lookahead, i.e., it is impossible for a sequence
of messages to traverse the cycle, with each message sched-
uling a new message with the same time stamp.

2.1.2 Second Generation Algorithms

The main drawback with the null message algorithm is it
may generate an excessive number of null messages. Con-
sider a simulation containing two LPs. Suppose both are
blocked, each has reached simulation time 100, and each
has a lookahead equal to 1. Suppose the next unprocessed
event in the simulation has a time stamp of 200. The null
message algorithm will result in null messages exchanged
between the LPs with time stamp 101, 102, 103, and so on.
This will continue until the LPs advance to simulation time
200, when the event with time stamp 200 can now be proc-
essed. A hundred null messages must be sent and proc-
essed between the two LPs before the non-null message
can be processed. This is clearly very inefficient. The
problem becomes even more severe if there are many LPs.

The principal problem is the algorithm uses only the
current simulation time of each LP and lookahead to pre-
dict the minimum time stamp of messages it could generate
in the future. To solve this problem, we observe that the
key piece of information that is required is the time stamp
of the next unprocessed event within each LP. If the LPs
could collectively recognize that this event has time stamp
200, all of the LPs could immediately advance from simu-
lation time 100 to time 200. Thus, the time of the next
event across the entire simulation provides critical
information that avoids the “time creeping” problem in the
null message algorithm. This idea is exploited in more ad-
vanced synchronization algorithms.

Another problem with the null message algorithm
concerns the case where each LP can send messages to
many other LPs. In the worst case, the LP topology is
fully connected meaning each LP could send a message to
any other. In this case, each LP must broadcast a null mes-
sage to every other LP after processing each event. This
also results in an excessive number of null messages.

One early approach to solving these problems is an al-
ternate algorithm that allows the computation to deadlock,
but then detects and breaks it (Chandy and Misra 1981).
The deadlock can be broken by observing that the mes-
sage(s) containing the smallest timestamp is (are) always
safe to process. Alternatively, one may use a distributed
computation to compute lower bound information (not
unlike the distributed computation using null messages de-
scribed above) to enlarge the set of safe messages.

Many other approaches have been developed. Some
protocols use a synchronous execution where the computa-
tion cycles between (i) determining which events are
“safe’” to process, and (ii) processing those events. It is
clear that the key step is determining the events that are
safe to process each cycle. Each LP must determine a
lower bound on the time stamp (LBTS) of messages it
might later receive from other LPs. This can be deter-
mined from a snapshot of the distributed computation as
the minimum among:

• the simulation time of the next event within each

LP if the LP is blocked, or the current time of the
LP if it is not blocked, plus the LP’s lookahead
and

• the time stamp of any transient messages, i.e., any
message that has been sent but has not yet been
received at its destination.

A barrier synchronization can be used to obtain the

snapshot. Transient messages can be “flushed” out of the
system in order to account for their time stamps. If first-in-
first-out communication channels are used, null messages
can be sent through the channels to flush the channels,
though as noted earlier, this may result in many null mes-
sages. Alternatively, each LP can maintain a counter of the
number of messages it has sent, and the number if has re-
ceived. When the sum of the send and receive counters
across all of the LPs are the same, and each LP has reached
the barrier point, it is guaranteed that there are no more
transient messages in the system. In practice, summing the
counters can be combined with the computation for com-
puting the global minimum value.

To determine which events are safe, the distance be-
tween LPs is sometimes used. This “distance” is the
minimum amount of simulation time that must elapse for
an event in one LP to directly or indirectly affect another
LP, and can be used by an LP to determine bounds on the
timestamp of future events it might receive from other LPs.
This assumes it is known which LPs send messages to
which other LPs. Full elaboration this technique is beyond
the scope of the present discussion, however, these tech-
niques and others are described in (Fujimoto 2000).

Another thread of research in synchronization algo-
rithms concerns relaxing ordering constraints in order to
improve performance. Some approaches amount to simply

150

Fujimoto

ignoring out of order event processing (Sokol and Stucky
1990, Rao, et al. 1998). Use of time intervals, rather than
precise time stamps, to encode uncertainty of temporal in-
formation in order to improve the performance of time
management algorithms have also been proposed
(Fujimoto 1999a) (Beraldi and Nigro 2000). Use of causal
order rather than time stamp order for distributed simula-
tion applications has also been studied (Lee, et al. 2001).

2.2 Optimistic Synchronization

In contrast to conservative approaches that avoid violations
of the local causality constraint, optimistic methods allow
violations to occur, but are able to detect and recover from
them. Optimistic approaches offer two important advan-
tages over conservative techniques. First, they can exploit
greater degrees of parallelism. If two events might affect
each other, but the computations are such that they actually
don’t, optimistic mechanisms can process the events con-
currently, while conservative methods must sequentialize
execution. Second, conservative mechanism generally rely
on application specific information (e.g., distance between
objects) in order to determine which events are safe to
process. While optimistic mechanisms can execute more
efficiently if they exploit such information, they are less
reliant on such information for correct execution. This al-
lows the synchronization mechanism to be more transpar-
ent to the application program than conservative ap-
proaches, simplifying software development. On the other
hand, optimistic methods may require more overhead com-
putations than conservative approaches, leading to certain
performance degradations.

The Time Warp mechanism (Jefferson 1985) is the
most well known optimistic method. When an LP receives
an event with timestamp smaller than one or more events it
has already processed, it rolls back and reprocesses those
events in timestamp order. Rolling back an event involves
restoring the state of the LP to that which existed prior to
processing the event (checkpoints are taken for this pur-
pose), and “unsending” messages sent by the rolled back
events. An elegant mechanism called anti-messages is
provided to “unsend” messages.

An anti-message is a duplicate copy of a previously
sent message. Whenever an anti-message and its matching
(positive) message are both stored in the same queue, the
two are deleted (annihilated). To “unsend” a message, a
process need only send the corresponding anti-message. If
the matching positive message has already been processed,
the receiver process is rolled back, possibly producing ad-
ditional anti-messages. Using this recursive procedure all
effects of the erroneous message will eventually be erased.

Two problems remain to be solved before the above ap-
proach can be viewed as a viable synchronization mecha-
nism. First, certain computations, e.g., I/O operations, can-
not be rolled back. Second, the computation will continually

consume more and more memory resources because a his-
tory (e.g., checkpoints) must be retained, even if no roll-
backs occur; some mechanism is required to reclaim the
memory used for this history information. Both problems
are solved by global virtual time (GVT). GVT is a lower
bound on the timestamp of any future rollback. GVT is
computed by observing that rollbacks are caused by mes-
sages arriving “in the past.” Therefore, the smallest time-
stamp among unprocessed and partially processed messages
gives a value for GVT. Once GVT has been computed, I/O
operations occurring at simulated times older than GVT can
be committed, and storage older than GVT (except one state
vector for each LP) can be reclaimed.

GVT computations are essentially the same as LBTS
computations used in conservative algorithms. This is be-
cause rollbacks result from receiving a message or anti-
message in the LP’s past. Thus, GVT amounts to comput-
ing a lower bound on the time stamp of future messages (or
anti-messages) that may later be received.

A pure Time Warp system can suffer from overly op-
timistic execution, i.e., some LPs may advance too far
ahead of others leading to excessive memory utilization
and long rollbacks. Many other optimistic algorithms have
been proposed to address these problems. Most attempt to
limit the amount of optimism. An early technique involves
using a sliding window of simulated time (Sokol and
Stucky 1990). The window is defined as [GVT, GVT+W]
where W is a user defined parameter. Only events with
time stamp within this interval are eligible for processing.
Another approach delays message sends until it is guaran-
teed that the send will not be later rolled back, i.e., until
GVT advances to the simulation time at which the event
was scheduled. This eliminates the need for anti-messages
and avoids cascaded rollbacks, i.e., a rollback resulting in
the generation of additional rollbacks (Dickens and Rey-
nolds 1990). A technique called direct cancellation is
sometimes used to rapidly cancel incorrect messages,
thereby helping to reduce overly optimistic execution
(Fujimoto 1989, Zhang and Tropper 2001).

Another problem with optimistic synchronization con-
cerns the amount of memory that may be required to store
history information. Several techniques have been devel-
oped to address this problem. For example, one can roll
back computations to reclaim memory resources (Jefferson
1990, Lin and Preiss 1991). State saving can be performed
infrequently rather than after each event (Lin, et al. 1993,
Palaniswamy and Wilsey 1993). The memory used by
some state vectors can be reclaimed even though their time
stamp is larger than GVT (Preiss and Loucks 1995).

Early approaches to controlling Time Warp execution
used user-defined parameters that had to be tuned to opti-
mize performance. Later work has focused on adaptive
approaches where the simulation executive automatically
monitors the execution and adjusts control parameters to
maximize performance. Examples of such adaptive control

151

Fujimoto

mechanisms are described in (Ferscha 1995, Das and Fu-
jimoto 1997), among others.

Practical implementation of optimistic algorithms re-
quires that one must be able to roll back all operations, or
be able to postpone them until GVT advances past the
simulation time of the operation. Care must be taken to
ensure operations such as memory allocation and dealloca-
tion are handled properly, e.g., one must be able to roll
back these operations. Also, one must be able to roll back
execution errors. This can be problematic in certain situa-
tions, e.g., if an optimistic execution causes portions of the
internal state of the Time Warp executive to be overwritten
(Nicol and Liu 1997).

Another approach to optimistic execution involves the
use of reverse computation techniques rather than rollback
(Carothers, et al. 1999). Undoing an event computation is
accomplished by executing the inverse computation, e.g.,
to undo incrementing a state variable, the variable is in-
stead decremented. The advantage of this technique is it
avoids state saving, which may be both time consuming
and require a large amount of memory. In (Carothers, et
al. 1999) a reverse compiler is described to automatically
generate inverse computations.

2.3 Current State-of-the-Art

Synchronization is a well-studied area of research in the par-
allel discrete event simulation field. There is no clear con-
sensus concerning whether optimistic or conservative syn-
chronization perform better; indeed, the optimal approach
usually depends on the application. In general, if the appli-
cation has good lookahead characteristics and programming
the application to exploit this lookahead is not overly bur-
densome, conservative approaches are the method of choice.
Indeed, much research has been devoted to improving the
lookahead of simulation applications, e.g., see (Deelman, et
al. 2001). Otherwise, optimistic synchronization offers
greater promise. Disadvantages of optimistic synchroniza-
tion include the potentially large amount of memory that
may be required, and the complexity of optimistic simula-
tion executives. Techniques to reduce memory utilization
further aggravate the complexity issue.

Recently, synchronization algorithms have assumed an
increased importance because of their use in the DoD High
Level Architecture (HLA). Because the HLA is driven by
the desire to reuse existing simulations, an important dis-
advantage of optimistic synchronization in this context is
the effort required to add state saving and other mechanism
to enable the simulation to be rolled back.

3 TIME PARALLEL SIMULATION

Time-parallel simulation methods have been developed for
attacking specific simulation problems with well-defined
objectives, e.g., measuring the loss rate of a finite capacity

queue of an ATM multiplexer. Time-parallel algorithms
divide the simulated time axis into intervals, and assign
each interval to a different processor. This allows for mas-
sively parallel execution because simulations often span
long periods of simulated time.

A central question that must be addressed by time-
parallel simulators is ensuring the states computed at the
“boundaries” of the time intervals match. Specifically, it is
clear that the state computed at the end of the interval [Ti-

1,Ti] must match the state at the beginning of interval
[Ti,Ti+1]. Thus, this approach relies on being able to per-
form the simulation corresponding to the ith interval with-
out first completing the simulations of the preceding (i-1, i-
2, ... 1) intervals.

Because of the “state-matching” problem, time-parallel
simulation is really more of a methodology for developing
massively parallel algorithms for specific simulation prob-
lems than a general approach for executing arbitrary dis-
crete-event simulation models on parallel computers. Time-
parallel algorithms are currently not as robust as space-
parallel approaches because they rely on specific properties
of the system being modeled, e.g., specification of the sys-
tem’s behavior as recurrence equations and/or a relatively
simple state descriptor. This approach is currently limited to
a handful of applications, e.g., queuing networks, Petri nets,
cache memories, and multiplexers in communication net-
works. Space-parallel simulations offer greater flexibility
and wider applicability, but concurrency is limited to the
number of logical processes. In some cases, both time and
space-parallelism can be used.

One approach to solving the state matching problem is
to have each processor guess the initial state of its simula-
tion, and then simulate the system based on this guessed
initial state (Lin and Lazowska 1991). In general, the initial
state will not match the final state of the previous interval.
After the interval simulators have completed, a “fix-up”
computation is performed to account for the fact that the
wrong initial state was used. This might be performed, for
instance, by simply repeating the simulation, using the fi-
nal state computed in the previous interval as the new ini-
tial state. This “fix-up” process is repeated until the initial
state of each interval matches the final state of the previous
interval. In the worst case, N such iterations are required
when there are N simulators. However, if the final state of
each interval simulator is seldom dependent on the initial
state, far fewer iterations will be needed.

In (Heidelberger and Stone 1990) the above approach
is proposed to simulate cache memories using a least-
recently-used replacement policy. This approach is effec-
tive for this application because the final state of the cache
is not heavily dependent on the cache’s initial state. A
variation on this approach devised in the context of simu-
lating statistical multiplexers for asynchronous transfer
mode (ATM) switches precomputes certain points in time
where one can guarantee that a buffer overflow (full

152

Fujimoto

queue) or underflow (empty queue) will occur (Fujimoto,
et al. 1995). Because the state of the system, namely, the
number of occupied buffers in the queue, is known at these
points, independent simulations can be begun at these
points in simulated time, thereby eliminating the need for a
fix-up computation.

Another approach to time-parallel simulation is de-
scribed in (Greenberg, et al. 1991). Here, a queuing net-
work simulation is expressed as a set of recurrence equa-
tions that are then solved using well-known parallel prefix
algorithms. The parallel prefix computation enables the
state of the system at various points in simulated time to be
computed concurrently. Another approach also based on
recurrence equations is described in (Baccelli and Canales
1993) for simulating timed Petri nets.

4 DISTRIBUTED VIRTUAL ENVIRONMENTS

While the foundation for parallel discrete event simulation
lies in early research concerning synchronization algorithms,
early work in DVEs came from the SIMNET project that
demonstrated the viability of interconnecting autonomous
simulators in a distributed environment for military training
exercises (Miller and Thorpe 1995). SIMNET was used as
the basis for the initial DIS protocols and standards, and
many of the fundamental principles defined in SIMNET re-
main in DIS and the HLA today. SIMNET realized over
250 networked simulators at 11 sites in 1990.

From a model execution standpoint, a DIS exercise can
be viewed as a collection of autonomous virtual (manned
training simulators), live (physical equipment), and
constructive (wargaming simulators and other analytic tools)
simulators, each generating its own representation of the bat-
tlefield from its own perspective. Each simulator sends
messages, called protocol data units (PDUs), whenever its
state changes in a way that might affect another simulator.
Typical PDUs include movement to a new location, firing at
another simulated entity, changes in its appearance to other
simulators (such as rotating the turret of a tank), etc.

In order to achieve interoperability among separately
developed simulators, a set of standards have been devel-
oped (IEEE Std 1278.1-1995 1995). The standards specify
the format and contents of PDUs exchanged between simu-
lators as well as when PDUs should be sent.

DIS is based on the following underlying design prin-
ciples (DIS Steering Committee 1994):

• Autonomy of simulation nodes. Autonomy facili-

tates the development, integration of legacy simu-
lators, and simulators joining or leaving the exer-
cise while it is in progress. Each simulator
advances simulation time according to a local
real-time clock. Simulators are not required to
determine which other simulators must receive
PDUs; rather, PDUs are broadcast to all simula-

tors and the receiver must determine those that are
relevant to its own virtual environment.

• Transmission of “ground truth” information.
Each node sends absolute truth about the state of
the entities it represents. Degradations of this in-
formation (e.g., due to environmental effects or
sensor limitations) are performed by the receiver.

• Transmission of state change information only.
To economize on communications, simulation
nodes only transmit changes in behavior. If a ve-
hicle continues to “do the same thing” (e.g., travel
in a straight line with constant velocity), the rate
at which state updates are transmitted is reduced.
Simulators do transmit “keep alive” messages,
e.g., every five seconds, so new simulators enter-
ing the exercise can include them in their virtual
environment.

• Dead Reckoning Algorithms. All simulators use
common algorithms to extrapolate the current
state (position) of other entities between state up-
dates. More will be said about this later.

• Simulation time constraints. Because humans
cannot distinguish differences in time less than
100 milliseconds, a communication latency of up
to this amount is required. Lower latencies are
needed for other, non-training, simulators, e.g.,
testing of weapons systems.

4.1 Dead Reckoning

DIS simulations use a technique called dead-reckoning to re-
duce interprocessor communication to distribute position in-
formation. This reduction is realized by observing that rather
than sending new position coordinates of moving entities at
some predetermined frequency, processors can estimate the
location of other entities through a local computation.

In principal, one could duplicate a remote simulator in
the local processor so that any dynamically changing state
information is readily available. This local computation,
when applied to computing position information of moving
entities, is referred to as the dead-reckoning model (DRM).

In practice, the DRM is only an approximation of the
true simulator. An approximation is used because (1) the
DRM does not receive inputs received by the actual simula-
tor, e.g., a pilot using a flight simulator decides to travel in a
new direction, and (2) to economize on the amount of com-
putation required to execute the DRM. In practice, the
DRM is realized as a simplified, lower fidelity version of the
true model. To limit the amount of error between the true
model and the DRM, the true simulator maintain its own
copy of the DRM to determine when the divergence be-
tween them has become too large, In other words, the differ-
ence between the true position and the dead-reckoned posi-
tion exceeds some threshold. When this occurs, the true
simulator transmits new, updated information (the true posi-

153

Fujimoto

tion) to reset the DRM. To avoid jumps in the display when
the DRM is reset, simulators may realize the transition to the
new position as a sequence of steps (Fujimoto 2000).

A variety of dead reckoning techniques have been pro-
posed. Standard techniques are usually based on location,
velocity, and acceleration of the moving object. Prediction
based on history is described in (Singhal and Cheriton
1995). Group dead reckoning is used in (Das, et al. 1997).

4.2 Data Distribution (DD)

An important question concerns scaling exercises to in-
clude more entities and sites (locations). Significant
changes to DIS are required to enable simulations of this
size, particularly with respect to the amount of
communications that are required.

Even with dead-reckoning, the DIS protocol described
above does not scale to such large simulations. An obvious
problem is the reliance on broadcasts. There are two prob-
lems: (1) realization of the communication bandwidth
needed to perform broadcasts, is costly, and (2) the compu-
tation load required to process incoming PDUs is excessive
and wasteful, particularly as the size of the exercise in-
creases because a smaller percentage of the incoming
PDUs will be relevant to each simulator.

Whenever a simulator performs some action that may
be of interest to other simulators, e.g., moving an entity to
a new location, a message is generated. Some means is re-
quired to specify which other simulators should receive a
copy of this message. Specifically, the distributed simula-
tion system must provide mechanisms for the simulators to
describe both the information it is producing, and the in-
formation it is interested in receiving. Based on these
specifications, the executive must then determine which
simulators should receive what messages.

Data distribution has some similarities to Internet
newsgroups. Specifically, newsgroup users must express
what information they are interested in receiving by sub-
scribing to specific newsgroups. The contents of the infor-
mation that is being published is described by the news-
group(s) to which it is sent, e.g., a recipe for a new cake
would be published to a cooking newsgroup, not one con-
cerning the weather. The newsgroup names are critical be-
cause they provide a common vocabulary for users to char-
acterize both the information being published, and the
information they are interested in receiving.

The set of newsgroup names defines a name space, i.e.,
a common vocabulary used to describe data and to express
interests. Each user provides an interest expression that
specifies a subset of the name space, i.e., a list of news-
groups, that indicate what information he is interested in re-
ceiving. A description expression, again a subset of the
name space, is associated with each message that describes
the contents of the message. Logically, the software manag-
ing the news groups matches the description expression of

each message with the interest expression of each user. If the
two overlap, i.e., have at least one element of the name
space in common, the message is sent to that user.

The name space, interest expressions, and description
expressions define the heart of the interface to the DD
mechanisms. The DD software must map this interface to
the primitives provided by the communication facilities
such as joining, leaving, and sending messages to multicast
groups. The challenging aspect of the DD interface is de-
fining abstractions that are both convenient for the modeler
to use, and provide an efficient realization using standard
communication primitives. DD interfaces that are similar
to basic communications primitives lend themselves to
straightforward implementation, but may be difficult for
modelers to use. On the other hand, higher level mecha-
nisms such as “I am interested in receiving position up-
dates for all tanks with a 2.0 radius circle of my current po-
sition” are more difficult to implement, leading to slow
and/or inefficient mechanisms.

4.3 Data Distribution in the HLA

To illustrate these concepts, consider the data distribu-
tion mechanisms provided in the High Level Architecture.
The HLA Interface Specification includes two sets of ser-
vices to implement data distribution: declaration management
and data distribution management. Declaration management
services use a class-based approach. This means the federa-
tion defines a set of objects according to a class hierarchy,
and individual federates may subscribe to receive updates to
object attributes of specific classes. For example, a simulator
might specify that it wishes to receive a message whenever
the position attribute of any tank object (object declared from
the tank class) is updated. This approach is static in the sense
that interest expressions are based on classes that are stati-
cally defined. One could not, for instance, use these services
to get updates for tank objects that are “close by” because the

0.0 0.5 1.0

1.0

0.5

0.0

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������S1

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

US2

Figure 1: HLA DDM example.

154

Fujimoto

position of other tanks relative to one’s current position is not
known until during the execution.

The data distribution management (DDM) services pro-
vide a means for providing this capability. The name space
for the HLA DDM services is called a routing space. Rout-
ing spaces are an abstraction defined separately from objects
and attributes, solely for the purpose of data distribution. A
routing space is a multidimensional coordinate system. The
name space for a single N-dimensional routing space is a tu-
ple (X1, X2, ... XN) with Xmin ≤ Xi ≤ Xmax, where Xmin and
Xmax are federation-defined values. For example, Figure 1
shows a two-dimensional routing space with axis values
ranging from 0.0 to 1.0. The relationship of the routing
space to elements of the virtual environment is left to the
federation designers. For example, a two dimensional rout-
ing space might be used to represent the geographical area
covered by the virtual environment, however, the data distri-
bution software is not aware of this interpretation.

Interest and description expressions in the HLA define
areas called regions, of a routing space. Specifically, each
region is a set of one or more extents, where each extent is
a rectangular N-dimensional area defined within the N-
dimensional routing space. Four extents are shown in Fig-
ure 1. Each extent is specified as a sequence of N ranges
(R1, R2, ... RN) where range Ri is an interval along dimen-
sion i of the routing space. For example, the extent labeled
S1 in Figure 1 is denoted ([0.1,0.5], [0.2,0.5]), using the
convention that R1 corresponds to the horizontal axis, and
R2 corresponds to the vertical axis.

A region is the union of the set of points in the routing
space covered by its extents. Interest expressions are re-
ferred to as subscription regions, and description expres-
sions are referred to as publication regions. For example,
the routing space in Figure 1 includes one update region U
and two subscription regions S1 and S2. The extents defin-
ing a single region need not overlap.

Each federate can qualify a subscription to an object
class by associating a subscription region with the subscrip-
tion, e.g., to only get updates for vehicles within a certain
portion of the routing space. Similarly, an update region may
be associated with each instance of an object. If a federate’s
subscription region for an object class overlaps with the up-
date region associated with the instance of the object being
modified, then a message is sent to the federate.

For example, suppose the routing space in Figure 1
corresponds to the geographic area (i.e., the playbox) of a
virtual environment that includes moving vehicles. Sup-
pose the update region U is associated with an aircraft ob-
ject that contains attributes indicating the aircraft’s posi-
tion. The region defined by U indicates the aircraft is
within this portion of the playbox. Suppose S1 and S2 are
the subscription regions created by two distinct federates
F1 and F2, each modeling a sensor. The extents of these
subscription regions are set to encompass all areas that the
sensors can reach. If the aircraft moves to a new position

within U, thereby updating its position attribute, a message
will be sent to F1 because its subscription region S1 over-
laps with U, but no message will be sent to F2 whose sub-
scription region does not overlap with U.

Definition of subscription regions also involves certain
compromises, particularly if the subscription region
changes, as would be the case for a sensor mounted on a
moving vehicle. Changing a subscription region can be a
time consuming operation involving joining and leaving
multicast groups. Defining large subscription regions will
result in less frequent region modifications, but will result
in the federate receiving more messages that are not rele-
vant to it. Small regions yield more precise filtering, but
more frequent changes. The region size should be set to
strike a balance between these two extremes.

There has been much research in recent years focused
on data distribution management techniques. Implementa-
tion of HLA DDM services involves defining a set of mul-
ticast groups, and mapping federates to these groups to de-
fine source/destination pairs. One implementation
approach is to superimpose a grid over the routing space,
and define a multicast group for each grid cell. Each fed-
erate must subscribe to the groups overlapping with that
federate’s subscription regions. A sender sends a message
to each group corresponding to a grid cell overlapping the
corresponding publication region.

Another approach is the region-based (or sender-based)
implementation. Here, a multicast group is defined for each
publication region. A sender sends a message to the group
corresponding to the publication region associated with the
send. Federates with subscription regions overlapping with
the publication region are members of the group, and will
each receive a copy of the message. A “matching” operation
is required to determine group membership whenever publi-
cation or subscription regions change.

Early performance studies of the HLA and HLA-like
DDM services are discussed in (Rak and Van Hook 1996,
Cohen and Kemkes 1997). Performance of a hybrid grid
approach using dynamic group assignments is described in
(Boukerche, et al. 2000). An agent-based implementation
approach is described in (Tan, et al. 2001).

5 SUMMARY

Parallel and distributed simulation technologies address
issues concerning the execution of simulation programs on
multiprocessor and distributed computing platforms.
These technologies find applications in high performance
computing contexts as well as in the creation of geographi-
cally distributed virtual environments. Originating in the
1970’s, these remain active fields of research to this day.

We have given a brief introduction to this field by giv-
ing a sampling of some of the issues commonly addressed
by researchers working in this area. Synchronization is a
fundamental issue that has long been studied in the parallel

155

Fujimoto

discrete event simulation field. A central issue in distrib-
uted virtual environments concerns efficient distribution of
data, particularly for large DVEs.

REFERENCES

Baccelli, F. and M. Canales (1993). “Parallel Simulation of
Stochastic Petri Nets Using Recurrence Equations.”
ACM Transactions on Modeling and Computer Simu-
lation 3(1): 20-41.

Beraldi, R. and L. Nigro (2000). Exploiting Temporal Un-
certainty in Time Warp Simulations. Proceedings of
the 4th Workshop on Distributed Simulation and Real-
Time Applications: 39-46.

Boukerche, A., et al. (2000). Dynamic Grid-Based Multicast
Group Assignment tin Data Distribution Management.
Proceedings of the 4th Workshop on Distributed Simu-
lation and Real-Time Applications.: 47-54.

Bryant, R. E. (1977). Simulation of Packet Communication
Architecture Computer Systems. Computer Science
Laboratory. Cambridge, Massachusetts, Massachu-
setts Institute of Technology.

Carothers, C. D., et al. (1999). “Efficient Optimistic Parallel
Simulation Using Reverse Computation.” ACM Trans-
actions on Modeling and Computer Simulation 9(3).

Chandy, K. M. and J. Misra (1978). “Distributed Simula-
tion: A Case Study in Design and Verification of Dis-
tributed Programs.” IEEE Transactions on Software
Engineering SE-5(5): 440-452.

Chandy, K. M. and J. Misra (1981). “Asynchronous Distrib-
uted Simulation via a Sequence of Parallel Computa-
tions.” Communications of the ACM 24(4): 198-205.

Cohen, D. and A. Kemkes (1997). User-Level Measure-
ment of DDM Scenarios. Proceedings of the Spring
Simulation Interoperability Workshop.

Das, S. R. and R. M. Fujimoto (1997). “Adaptive Memory
Management and Optimism Control in Time Warp.”
ACM Transactions on Modeling and Computer Simu-
lation 7(2): 239-271.

Das, T., et al. (1997). NetEffect: A Network Architecture
for Large-Scale Multi-User Virtual Virtual Worlds.
Proceedings of the ACM Virtual Reality Software and
Technology Conference: 157-163.

Deelman, E., et al. (2001). Improving Lookahead in Paral-
lel Discrete Event Simulations of LArge-Scale Appli-
cations using Compiler Analysis. Proceedings of the
15th Workshop on Parallel and Distributed Simula-
tion: 5-13.

Dickens, P. M. and J. Reynolds, P. F. (1990). SRADS
With Local Rollback. Proceedings of the SCS Multi-
conference on Distributed Simulation. 22: 161-164.

DIS Steering Committee (1994). The DIS Vision, A Map
to the Future of Distributed Simulation. Orlando, Flor-
ida, Institute for Simulation and Training.

Ferscha, A. (1995). Probabilistic Adaptive Direct Optimism
Control iin Time Warp. Proceedings of the 9th Work-
shop on Parallel and Distributed Simulation: 120-129.

Fujimoto, R. M. (1989). “Time Warp on a Shared Memory
Multiprocessor.” Transactions of the Society for Com-
puter Simulation 6(3): 211-239.

Fujimoto, R. M. (1999a). Exploiting Temporal Uncertainty
in Parallel and Distributed Simulations. Proceedings
of the 13th Workshop on Parallel and Distributed
Simulation: 46-53.

Fujimoto, R. M. (1999b). Parallel and Distributed Simula-
tion. Proceedings of the Winter Simulation Conference.

Fujimoto, R. M. (2000). Parallel and Distributed Simula-
tion Systems, Wiley Interscience.

Fujimoto, R. M., et al. (1995). “Parallel Simulation of Sta-
tistical Multiplexers.” Journal of Discrete Event Dy-
namic Systems 5: 115-140.

Greenberg, A. G., et al. (1991). “Algorithms for Unbound-
edly Parallel Simulations.” ACM Transactions on
Computer Systems 9(3): 201-221.

Heidelberger, P. and H. Stone (1990). Parallel Trace-
Driven Cache Simulation by Time Partitioning. Pro-
ceedings of the 1990 Winter Simulation Conference:
734-737.

IEEE Std 1278.1-1995 (1995). IEEE Standard for Distrib-
uted Interactive Simulation -- Application Protocols.
New York, NY, Institute of Electrical and Electronics
Engineers, Inc.

Jefferson, D. (1985). “Virtual Time.” ACM Transactions on
Programming Languages and Systems 7(3): 404-425.

Jefferson, D. R. (1990). Virtual Time II: Storage Manage-
ment in distributed Simulation. Proceedings of the
Ninth Annual ACM Symposium on Principles of Dis-
tributed Computing: 75-89.

Lee, B.-S., et al. (2001). A Causality Based Time Man-
agement Mechanism for Federated Simulations. Pro-
ceedings of the 15th Workshop on Parallel and Dis-
tributed Simulation: 83-90.

Lin, Y.-B. and E. D. Lazowska (1991). “A Time-Division
algorithm for Parallel Simulation.” ACM Transactions
on Modeling and Computer Simulation 1(1): 73-83.

Lin, Y.-B. and B. R. Preiss (1991). “Optimal Memory
Management for Time Warp Parallel Simulation.”
ACM Transactions on Modeling and Computer Simu-
lation 1(4).

Lin, Y.-B., et al. (1993). Selecting the Checkpoint Interval in
Time Warp Simulations. Proceedings of the 7th Work-
shop on Parallel and Distributed Simulation: 3-10.

Miller, D. C. and J. A. Thorpe (1995). “SIMNET: The Ad-
vent of Simulator Networking.” Proceedings of the
IEEE 83(8): 1114-1123.

Nicol, D. M. and X. Liu (1997). The Dark Side of Risk.
Proceedings of the 11th Workshop on Parallel and
Distributed Simulation: 188-195.

156

Fujimoto

Palaniswamy, A. C. and P. A. Wilsey (1993). An Analyti-

cal Comparison of Periodic Checkpointing and Incre-
mental State Saving. Proceedings of the 7th Workshop
on Parallel and Distributed Simulation: 127-134.

Preiss, B. R. and W. M. Loucks (1995). Memory Manage-
ment Techniques for Time Warp on a Distributed
Memory Machine. Proceedings of the 9th Workshop
on Parallel and Distributed Simulation: 30-39.

Rak, S. J. and D. J. Van Hook (1996). Evaluation of Grid-
Based Relevance Filtering for Multicast Group As-
signment. Proceedins of the 14th DIS Workshop on
Standards for the Interoperability of Distributed Simu-
lations. Orlando, FL.

Rao, D. M., et al. (1998). Unsynchronized Parallel Discrete
Event Simulation. Proceedings of the Winter Simula-
tion Conference: 1563-1570.

Singhal, S. K. and D. R. Cheriton (1995). “Exploiting Posi-
tion History for Efficient Remote Rendering in Net-
worked Virtual Reality.” Presence 4(2): 169-193.

Sokol, L. M. and B. K. Stucky (1990). MTW: Experimen-
tal Results for a Constrained Optimistic Scheduling
Paradigm. Proceedings of the SCS Multiconference on
Distributed Simulation. 22: 169-173.

Tan, G., et al. (2001). An Agent-based DDM for High
Level Architecture. Proceedings of the 15th Workshop
on Parallel and Distributed Simulation: 75-82.

Zhang, J. L. and C. Tropper (2001). The Dependence List
in Time Warp. Proceedings of the 15th Workshop on
Parallel and Distributed Simulation: 35-45.

AUTHOR BIOGRAPHY

RICHARD M. FUJIMOTO is a professor with the Col-
lege of Computing at the Georgia Institute of Technology.
He received the Ph.D. and M.S. degrees from the Univer-
sity of California (Berkeley) in 1980 and 1983 (Computer
Science and Electrical Engineering) and B.S. degrees from
the University of Illinois (Urbana) in 1977 and 1978
(Computer Science and Computer Engineering). He has
been an active researcher in the parallel and distributed
simulation community since 1985 and has published nu-
merous papers on this subject. He has given several tutori-
als on parallel and distributed simulation at leading confer-
ences. He has co-authored a book on parallel processing
and recently completed a second on parallel and distributed
simulation. He served as the technical lead in defining the
time management services for the DoD High Level Archi-
tecture (HLA). Fujimoto is an area editor for ACM Trans-
actions on Modeling and Computer Simulation. He also
served as chair of the steering committee for the Workshop
on Parallel and Distributed Simulation, (PADS) from 1990
to 1998 as well as the conference committee for the Simu-
lation Interoperability workshop (1996-97).

157

